首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We report the isolation and characterization of a mutant of Escherichia coli unable to grow aerobically on non-fermentable substrates, except for very slow growth on glycerol. The mutant contains cytochrome oxidases o and d, and grows anaerobically with alternative electron acceptors. Oxygen consumption rates of cell-free extracts were low relative to activities in an isogenic control strain, but were restored in vitro by adding ubiquinone-1 to cell-free extracts. Transformation with a cloned 2.8 kb ClaI-EcoRV fragment of chromosomal DNA restored the ability of this mutant (AN2571) to grow on succinate and also restored cellular quinone levels in this strain. The plasmid also complemented a previously isolated ubiG mutant (AN151) for aerobic growth on succinate. The nucleotide sequence revealed a 0.7 kb portion of gyrA. Unidirectional nested deletions from this fragment and complementation analysis identified an open reading frame encoding a protein with a predicted molecular mass of 26.5 kDa. This gene (ubiG) encodes the enzyme 2-octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone methyltransferase, which catalyses the terminal step in the biosynthesis of ubiquinone. The open reading frame is preceded by a putative Shine-Dalgarno sequence and followed by three palindromic unit sequences. Comparison of the inferred amino acid sequence of UbiG with the sequence of other S-adenosylmethionine (AdoMet)-dependent methyltransferases reveals a highly conserved AdoMet-binding region. The cloned 2.8 kb fragment also contains a sequence encoding the C-terminus of a protein with 42-44% identity to fungal acetyl-CoA synthetases.  相似文献   

4.
The plasmid-encoded citrate determinant of the Lactococcus lactis subsp. lactis var. diacetylactis NCDO176 was cloned and functionally expressed in a Cit- Escherichia coli K-12 strain. From deletion derivative analysis, a 3.4-kilobase region was identified which encodes the ability to transport citrate. Analysis of proteins encoded by the cloned fragment in a T7 expression system revealed a 32,000-dalton protein band, which correlated with the ability of cells to transport citrate. Energy-dependent [1,5-14C]citrate transport was found with membrane vesicles prepared from E. coli cells harboring the citrate permease-expressing plasmid. The gene encoding citrate transport activity, citP, was located on the cloned fragment by introducing a site-specific mutation that abolished citrate transport and resulted in a truncated form of the 32,000-dalton expression product. The nucleotide sequence for a 2.2-kilobase fragment that includes the citP gene contained an open reading frame of 1,325 base pairs coding for a very hydrophobic protein of 442 amino acids, which shows no sequence homology with known citrate carriers.  相似文献   

5.
6.
7.
8.
9.
10.
11.
A Tn501 mutant of Pseudomonas aeruginosa resistant to imipenem and lacking the imipenem-specific outer membrane porin protein OprD was isolated. The mutation could be complemented to imipenem susceptibility and OprD-sufficiency by a cloned 6-kb EcoRI-PstI fragment of DNA from the region of chromosome of the wild-type strain surrounding the site of Tn501 insertion. However, this fragment did not contain the oprD structural gene as judged by its inability to hybridize with an oligonucleotide corresponding to the N-terminal amino acid sequence of OprD. DNA sequencing of 3.9 kb of the region surrounding the Tn501 insertion site revealed three large open reading frames, one of which would be interrupted by the Tn501 insertion in the mutant. This latter open reading frame, named opdE (for putative regulator of oprD expression), predicted a hydrophobic protein of M(r) 41,592. Using the above-mentioned oligonucleotide, the oprD structural gene was cloned and expressed in Escherichia coli on a 2.1-kb Bam HI-KpnI fragment. DNA sequencing predicted a 420 amino acid mature OprD protein with a 23 amino acid signal sequence.  相似文献   

12.
13.
14.
15.
A 2.5 kb DNA fragment contain a gene encoding a phospho-α-(1–1)-glucosidase (phosphotrehalase), designated treA, was isolated from a Bacillus subtilis chromosomal library by complementation of the tre-12 mutation. The major TreA activity was found in the cytoplasm. TreA exhibits high sequence similarity to thermostable oligo 1,6 β-glucosidases of several species and the trehalose-6-phosphate hydrolase TreC of Escherichia coli. TreA activity is induced by trehalose and repressed by glucose, fructose or mannitol. Induction by trehalose and repression by glucose are concentration dependent. The highest activity of TreA occurs 90min before the end of the exponential growth phase in crude cell extracts. The enzyme is able to cleave para-nitrophenyl-glucopyranoside and trehalose-6-phosphate but not trehalose. These results indicate that treA encodes a specific phospho-α-(1–1)-giucosidase which cleaves trehalose-6-phosphate in the cytoplasm after transport and phosphorylation of trehalose. The 5′ flanking region of treA contains an open reading frame which was partially sequenced, whose product shows about 40% identity to sucrose Enzyme II of the phospho-transferase transport system from several organisms.  相似文献   

16.
17.
The RNA1 of tobacco rattle virus (TRV) has been cloned as cDNA and the nucleotide sequence determined of 2 kb from the 3'-terminal region. The sequence contains three long open reading frames. One of these starts 5' of the cDNA and probably corresponds to the carboxy-terminal sequence of a 170-K protein encoded on RNA1. The deduced protein sequence from this reading frame shows homology with the putative replicases of tobacco mosaic virus (TMV) and tricornaviruses. The location of the second open reading frame, which encodes a 29-K polypeptide, was shown by Northern blot analysis to coincide with a 1.6-kb subgenomic RNA. The validity of this reading frame was confirmed by showing that the cDNA extending over this region could be transcribed and translated in vitro to produce a polypeptide of the predicted size which co-migrates in electrophoresis with a translation product of authentic viral RNA. The sequence of this 29-K polypeptide showed homology with two regions in the 30-K protein of TMV. This homology includes positions in the TMV 30-K protein where mutations have been identified which affect the transport of virus between cells. The third open reading frame encodes a potential 16-K protein and was shown by Northern blot hybridisation to be contained within the region of a 0.7-kb subgenomic RNA which is found in cellular RNA of infected cells but not virus particles. The many similarities between TRV and TMV in viral morphology, gene organisation and sequence suggest that these two viral groups may share a common viral ancestor.  相似文献   

18.
The citrate utilization determinant from a large 200-kilobase (kb) naturally occurring plasmid was previously cloned into the PstI site of plasmid vector pBR325 creating the Cit+ tetracycline resistance plasmid pWR61 (15 kb). Tn5 insertion mutagenesis analysis of plasmid pWR61 limited the segment responsible for citrate utilization to a 4.8-kb region bordered by EcoRI and PstI restriction nuclease sites. The 4.8-kb fragment was cloned into phage M13, and the DNA sequence was determined by the dideoxyribonucleotide method. Within this sequence was a 1,296-base-pair open reading frame with a preceding ribosomal binding site. The 431-amino-acid polypeptide that could be translated from this open reading frame would be highly hydrophobic. A second long open reading frame with the potential of encoding a 379-amino-acid polypeptide preceded the larger open reading frame. Portions of the 4.8-kb fragment were further subcloned with restriction endonucleases BglII and BamHI, reducing the minimum size needed for a citrate-positive phenotype to a 1.9-kb BamHI-BglII fragment (which includes the coding region for the 431-amino-acid polypeptide, but only the distal 2/3 of the reading frame for the 379-amino-acid polypeptide). Citrate utilization results from a citrate transport activity encoded by the plasmid. With the 4.8-kb fragment (as with larger fragments) the citrate transport activity was inducible by growth on citrate. On transfer from glucose, succinate, malate, or glycerol medium to citrate medium, the Cit+ Escherichia coli strains showed a delay of 36 to 48 h before growth.  相似文献   

19.
20.
The HEM15 gene in Saccharomyces cerevisiae encodes ferrochelatase (EC 4.99.1.1, protoheme ferrolyase), a mitochondrial inner membrane-bound enzyme which catalyzes the insertion of ferrous ion into protoporphyrin IX, the last step in protoheme biosynthesis. The gene was isolated by functional complementation of a hem15 mutant. Sequence analysis of a 2.9-kilobase genomic DNA fragment revealed an open reading frame of 1179 nucleotides, plus a gene coding for a tRNA(Val)(GUU) and delta elements downstream from the 3'-end of HEM15. The open reading frame encodes a precursor form of the protein containing a 31-amino acid presequence. The mature enzyme contains 362 amino acid residues; its calculated molecular weight (40,900) and predicted amino-terminal sequence agree with those determined from the purified protein. It is relatively abundant in lysine (9%) and contains no apparent transmembrane segment. Disruption of the HEM15 gene led to non-viable cells in certain genetic background. Northern (RNA) analysis showed a slight (1.5-2-fold) repression of HEM15 expression by glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号