首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1alpha-Hydroxy-23 carboxy-24,25,26,27-tetranorvitamin D(3) (calcitroic acid) is known to be the major water-soluble metabolite produced during the deactivation of 1,25-(OH)(2)D(3). This deactivation process is carried out exclusively by the multicatalytic enzyme CYP24 and involves a series of oxidation reactions at C(24) and C(23) leading to side-chain cleavage and, ultimately, formation of the calcitroic acid. Like 1,25-(OH)(2)D(3), 1alpha,25-1,25-(OH)(2)D(2) is also known to undergo side-chain oxidation and side-chain cleavage to form calcitroic acid (Zimmerman et al. [2001]. 1,25-(OH)(2)D(2) differs from 1,25-(OH)(2)D(3) by the presence of a double bond at C(22) and a methyl group at C(24). To date, there have been no studies detailing the participation of CYP24 in the production of calcitroic acid from 1,25-(OH)(2)D(2). We, therefore, studied the metabolism of 1,25-(OH)(2)D(3) and 1,25-(OH)(2)D(2) using a purified rat CYP24 system. Lipid and aqueous-soluble metabolites were prepared for characterization. Aqueous-soluble metabolites were subjected to reverse-phase high-pressure liquid chromatography (HPLC) analysis. As expected, 1,23(OH)(2)-24,25,26,27-tetranor D and calcitroic acid were the major lipid and aqueous-soluble metabolites, respectively, when 1,25-(OH)(2)D(3) was used as substrate. However, when 1,25-(OH)(2)D(2) was used as substrate, 1,24(R),25-(OH)(3)D(2) was the major lipid-soluble metabolite with no evidence for the production of either 1,23(OH)(2)-24,25,26,27-tetranor D or calcitroic acid. Apparently, the CYP24 was able to 24-hydroxylate 1,25-(OH)(2)D(2), but was unable to effect further changes, which would result in side-chain cleavage. These data suggest that the presence of either the double bond at C(22) or the C(24) methyl group impedes the metabolism of 1,25-(OH)(2)D(2) to calcitroic acid by CYP24 and that enzymes other than CYP24 are required to effect this process.  相似文献   

2.
Zhao B  Lamb DC  Lei L  Kelly SL  Yuan H  Hachey DL  Waterman MR 《Biochemistry》2007,46(30):8725-8733
Cytochrome P450 158A2 (CYP158A2) has been shown to catalyze an unusual oxidative C-C coupling reaction to polymerize flaviolin and form highly conjugated pigments (three isomers of biflaviolin and one triflaviolin) in Streptomyces coelicolor A3(2) which protect the soil bacterium from deleterious effects of UV irradiation (Zhao B. et al. (2005) J. Biol. Chem. 280, 11599-11607). The present studies demonstrate that the subfamily partner CYP158A1, sharing 61% amino acid identity with CYP158A2, can also catalyze the same flaviolin dimerization reactions, but it generates just two of the three isomers of biflaviolin that CYP158A2 produces. Furthermore, the two CYP158A1 products have very different molar ratios compared with the corresponding CYP158A2 products, indicating that each enzyme maintains its own stereo- and regiospecificity. To find an explanation for these differences, three CYP158A1 structures have been solved by X-ray crystallography and have been compared with those for CYP158A2. The structures reveal surprising differences. Particularly, only one flaviolin molecule is present close to the heme iron in CYP158A1, and the second flaviolin molecule binds at the entrance of the putative substrate access channel on the protein distal surface 9 A away. Our work describes two members of the same P450 subfamily, which produce the same products by oxidative C-C coupling yet show very different structural orientations of substrate molecules in the active site.  相似文献   

3.
Cytochrome P450 27A1 (P450 27A1) is an important metabolic enzyme involved in bile acid biosynthesis and the activation of vitamin D3 in mammals. Recombinant P450 27A1 heterologously expressed in Escherichia coli was found to be copurified with phospholipids (PLs). The PL content varied in different preparations and was dependent on the purification protocol. A link between the increased amounts of PLs and deterioration of the enzyme substrate binding properties was also observed. Tandem negative ionization mass spectrometry identified phosphatidylglycerol (PG) as the major PL copurified with P450 27A1. Subsequent reconstitution of P450 into exogenous PG vesicles assessed the effect of this contamination on substrate binding and enzyme activity. Two other PLs, phosphatidylethanolamine (PE) and phosphatidylserine (PS), were also tested. PG and PE increased the Kd for 5beta-cholestane-3alpha,7alpha,12alpha-triol and cholesterol binding, whereas PS had no effect on either substrate binding. PG and PE did not significantly alter 5beta-cholestane-3alpha,7alpha,12alpha-triol hydroxylase activity and even stimulated cholesterol hydroxylase activity. PS inhibited 5beta-cholestane-3alpha,7alpha,12alpha-triol hydrolyase activity and had no effect on cholesterol hydroxylase activity. Our study shows the potential for PLs to regulate the activity of P450 27A1 in vivo and alter the amount of cholesterol degraded through the "classical" and "alternative" bile acid biosynthetic pathways.  相似文献   

4.
Cytochrome P450C24A1 (CYP24A1), a peripheral inner mitochondrial membrane hemoprotein and candidate oncogene, regulates the side-chain metabolism and biological function of vitamin D and many of its related analog drugs. Rational mutational analysis of rat CYP24A1 based on hybrid (2C5/BM-3) homology modeling and affinity labeling studies clarified the role of key domains (N-terminus, A', A, and F-helices, beta3a strand, and beta5 hairpin) in substrate binding and catalysis. The scope of our study was limited by an inability to purify stable mutant enzyme targeting soluble domains (B', G, and I-helices) and suggested greater conformational flexibility among CYP24A1's membrane-associated domains. The most notable mutants developed by modeling were V391T and I500A, which displayed defective-binding function and profound metabolic defects for 25-hydroxylated vitamin D3 substrates similar to a non-functional F-helix mutant (F249T) that we previously reported. Val-391 (beta3a strand) and Ile-500 (beta5 hairpin) are modeled to interact with Phe-249 (F-helix) in a hydrophobic cluster that directs substrate-binding events through interactions with the vitamin D cis-triene moiety. Prior affinity labeling studies identified an amino-terminal residue (Ser-57) as a putative active-site residue that interacts with the 3beta-OH group of the vitamin D A-ring. Studies with 3-epi and 3-deoxy-1,25(OH)2D3 analogs confirmed interactions between the 3beta-OH group and Ser-57 effect substrate recognition and trafficking while establishing that the trans conformation of A-ring hydroxyl groups (1alpha and 3beta) is obligate for high-affinity binding to rat CYP24A1. Our work suggests that CYP24A1's amphipathic nature allows for monotopic membrane insertion, whereby a pw2d-like substrate access channel is formed to shuttle secosteroid substrate from the membrane to the active-site. We hypothesize that CYP24A1 has evolved a unique amino-terminal membrane-binding motif that contributes to substrate specificity and docking through coordinated interactions with the vitamin D A-ring.  相似文献   

5.
Homology models of cytochrome P450 24A1 (CYP24A1) were constructed using three human P450 structures, CYP2C8, CYP2C9 and CYP3A4 as templates for the model building. Using molecular operating environment (MOE) software the lowest energy CYP24A1 model was then assessed for stereochemical quality and side chain environment. Further active site optimisation of the CYP24A1 model built using the CYP3A4 template was performed by molecular dynamics to generate a final CYP24A1 model. The natural substrate, 1,25-dihydroxyvitamin D(3) (calcitriol) and the CYP24 inhibitor (R)-N-(2-(1H-imidazol-1-yl)-2-phenylethyl)-4'-chlorobiphenyl-4-carboxamide ((R)-VID-400) were docked into the model allowing further validation of the active site architecture. Using the docking studies structurally and functionally important residues were identified with subsequent characterisation of secondary structure.  相似文献   

6.
A putative binding region for cumene hydroperoxide in the active site of cytochrome P4501A1 was identified using photoaffinity labeling. Thr501 was determined as the most likely site of modification by azidocumene used as the photoaffinity label (T. Cvrk and H. W. Strobel, (1998) Arch. Biochem. Biophys. 349, 95-104). To evaluate further the role of this amino acid residue a site-directed mutagenesis approach was employed. P4501A1 wild type and two mutants, P4501A1Glu501 and P4501A1Phe501, were expressed in and purified from Escherichia coli and used for kinetic analysis to confirm the role of Thr501 residue in cumene hydroperoxide binding. The mutation resulted in a two- to fourfold decrease in the rate of heme degradation in the presence of 0.5 mM cumene hydroperoxide. The mutations do not prevent or significantly alter binding of the tested substrates; however, binding of 2-phenyl-2-propanol (product generated from cumene hydroperoxide) to P4501A1Glu501 and P4501A1Phe501 exhibited four- and eightfold decreases, respectively, suggesting that the mutations strongly affected the affinity of cumene hydroperoxide for the P4501A1 active site. The kinetic analysis of cumene hydroperoxide-supported reactions showed that both mutants exhibit increased Km and decreased VMax values for all tested substrates. Furthermore, the mutations affected product distribution in testosterone hydroxylation. On the basis of P4501A1Glu501 and P4501A1Phe501 characterization, it can be concluded that Thr501 plays an important role in cumene hydroperoxide/P4501A1 interaction.  相似文献   

7.
8.
A novel application of modeling and docking approaches involving ensembles of homology models is used to understand structural bases underlying subtle catalytic differences between related cytochromes P450 (CYPs). Mammalian CYP1A1s and fish CYP1As are orthologous enzymes with similar substrate preferences. With some substrates (3,3',4,4'-tetrachlorobiphenyl, TCB) oxidation rates differ by orders of magnitude, while others (e.g., benzo[a]pyrene; B[a]P) are oxidized at similar rates but with somewhat differing regiospecificity. These two environmental chemical substrates (TCB and B[a]P) as well as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were docked to multiple models of rat, human, scup, and/or killifish CYP1As, based on multiple templates, retaining multiple poses from each model, giving ensembles of docked poses for each species. With TCB, more poses were observed closer to the heme in ensembles of rat or human CYP1A1 than of killifish CYP1A. Analysis of interacting residues suggested that differences in TCB pose distributions are due primarily to Leu387 and Val230 in killifish CYP1A. In silico mutations L387V and V230G enabled TCB to dock closer to the heme in killifish CYP1A. Mutating additional interacting residues (Ala127, Thr233, Asn317, and Tyr386) of killifish CYP1A to the corresponding residues of human CYP1A1 resulted in TCB pose distributions nearly identical with those of human CYP1A1. Docking of TCDD to sets of consensus models of killifish, rat, and human CYP1As showed species differences similar to those with TCB, but with further structural constraints possibly contributing to slower oxidation of TCDD. Docking B[a]P to sets of consensus models of the human and fish CYP1As yielded frequencies of substrate orientations correlating with known regiospecificities for metabolism of B[a]P by these enzymes. The results demonstrate the utility of this ensemble modeling method, which can account for uncertainty inherent in homology modeling and docking by producing statistical distributions of ligand positions.  相似文献   

9.
Cytochrome P450BM3 (CYP102A1) from Bacillus megaterium, a fatty acid hydroxylase, is a member of a very large superfamily of monooxygenase enzymes. The available crystal structures of the enzyme show non-productive binding of substrates with their omega-end distant from the iron in a hydrophobic pocket at one side of the active site. We have constructed and characterised mutants in which this pocket is filled by large hydrophobic side-chains replacing alanine at position 82. The mutants having phenylalanine or tryptophan at this position have very much (approximately 800-fold) greater affinity for substrate, with a greater conversion of the haem iron to the high-spin state, and similarly increased catalytic efficiency. The enzyme as isolated contains bound palmitate, reflecting this much higher affinity. We have determined the crystal structure of the haem domain of the Ala82Phe mutant with bound palmitate; this shows that the substrate is binding differently from the wild-type enzyme but still distant from the haem iron. Detailed analysis of the structure indicates that the tighter binding in the mutant reflects a shift in the conformational equilibrium of the substrate-free enzyme towards the conformation seen in the substrate complex rather than differences in the enzyme-substrate interactions. On this basis, we outline a sequence of events for the initial stages of the catalytic cycle. The Ala82Phe and Ala82Trp mutants are also very much more effective catalysts of indole hydroxylation than the wild-type enzyme, suggesting that they will be valuable starting points for the design of mutants to catalyse synthetically useful hydroxylation reactions.  相似文献   

10.
Fluorescence of eight tryptophan residues in cytochrome P-450scc with bound endogenous cholesterol could be fitted with a two component model: a single exponential and a "top-hat" distribution of lifetimes as the second component. The short-lived component (tau 1 about 700 ps) does not change significantly upon binding of substrate (22R-hydroxycholesterol). The parameters of the long-lived component (central lifetime tau m about 3.4 ns) change upon binding of carbon monoxide and substrate. 22R-hydroxycholesterol binding broadens the distribution of the long-lived component; that is the heterogeneity of the Trp environment is increased when this substrate displaces the endogenous cholesterol.  相似文献   

11.
A systematic analysis of conserved H-bonding patterns and tertiary structural motifs from 13 crystal structures was used to create a homology model for the human multicatalytic cytochrome P450, CYP24A1, involved in catabolism of 1alpha,25-dihydroxyvitamin D3. The substrate was docked in the active site and used to identify potential substrate contact residues in the B' helix, B'/C loop, F-helix and the beta-5 hairpin. Seven CYP24A1 mutants were created and studied by mammalian cell transfection and CYP24A1 activity assay. Mutants showed reduced metabolic rates and altered metabolite patterns compared to wild-type. We conclude that: Ile-131 positions substrate via A-ring and cis-triene contacts; Trp-134 and Gly-499 are determinants of substrate access; Leu-148 contacts the substrate side-chain; Met-246 is important in mediating regioselectivity. Our findings validate the new model of CYP24A1, which can now be used to predict structural modifications for rational vitamin D drug design.  相似文献   

12.
A Dey  D Parmar  M Dayal  A Dhawan  P K Seth 《Life sciences》2001,69(4):383-393
Studies initiated to characterise the catalytic activity and expression of CYP1A1 in rat blood lymphocytes revealed significant activity of 7-ethoxyresorufin-O-deethylase (EROD) in rat blood lymphocytes. Pretreatment with 3-methylcholanthrene (MC) and beta-naphthoflavone (NF) resulted in significant induction in the activity of lymphocyte EROD suggesting that like the liver enzyme, EROD activity in lymphocytes is inducible and is mediated by the MC inducible isoenzymes of P450. The increase in the activity of EROD was associated with a significant increase in the apparent Vmax and affinity of the substrate towards EROD. That this increase in the activity of EROD could be primarily due to the increase in the expression of CYP1A1 isoenzymes was demonstrated by RT-PCR and western immunoblotting studies indicating an increase in the expression of CYP1A1 in blood lymphocytes after MC pretreatment. Significant inhibition in the EROD activity of MC induced lymphocyte by anti-CYP1A1/1A2 and alpha-naphthoflavone further provided evidence that the CYP1A1/1A2 isoenzymes are involved in the activity of EROD in blood lymphocytes. The data indicating similarities in the regulation of CYP1A1 in blood lymphocytes with the liver isoenzyme suggests that factors which may affect expression of CYP1A1 in liver may also affect expression in blood lymphocytes and that blood lymphocytes could be used as a surrogates for studying hepatic expression of the xenobiotic metabolising enzymes.  相似文献   

13.
Human cytochrome P450 1A1, which is present in lungs, plays an important role in the metabolic activation of chemical carcinogens, and in particular, is thought to be linked to lung cancer. The mechanism of carcinogenesis is related to the enzyme's ability to oxidize highly toxic compounds, such as polycyclic aromatic hydrocarbons (PAHs), to their carcinogenic derivatives. In order to better understand P450 1A1 function, a homology model of this enzyme has been constructed. The model has been based on the structure of P450 2C5, the first mammalian P450 to be crystallized. The coordinates of the model have been calculated using a consensus strategy, and the resulting structure has been evaluated with the ProStat and Profiles-3D programs. P450 1A1 substrates, such as benzo[a]pyrene, ethoxyresorufin and methoxyresorufin, were then docked into the active site of the model, and key amino acid residues able to interact with the substrate, have been identified. The analysis of enzyme-substrate interactions indicated that hydrophobic interactions are mainly responsible for binding of these substrates in the active site. Moreover, the non-bond enzyme-substrate interaction energy for ethoxyresorufin was lower than that for methoxyresorufin, which is consistent with higher activity of 1A1 towards the former substrate. Key residue Val-382 may play an important role in these interactions. Additionally, we performed binding free energy calculations for the three substrates. The obtained values were similar to those observed experimentally, which suggests that this approach might be useful for prediction of binding constants.  相似文献   

14.
25-hydroxyvitamin D(3)- or 1alpha,25-dihydroxyvitamin D(3)-24R-hydroxylase (cytochromeP450C24 or CYP24) has a dual role of removing 25-OH-D(3) from circulation and excess 1,25(OH)(2)D(3) from kidney. As a result, CYP24 is an important multifunctional regulatory enzyme that maintains essential tissue-levels of Vitamin D hormone. As a part of our continuing interest in structure-function studies characterizing various binding proteins in the Vitamin D endocrine system, we targeted recombinant rat CYP24 with a radiolabeled 25-OH-D(3) affinity analog, and showed that the 25-OH-D(3)-binding site was specifically labeled by this analog. An affinity labeled sample of CYP24 was subjected to MS/MS analysis, which identified Ser57 as the only amino acid residue in the entire length of the protein that was covalently modified by this analog. Site-directed mutagenesis was conducted to validate the role of Ser57 towards substrate-binding. S57A mutant displayed significantly lower binding capacity for 25-OH-D(3) and 1,25(OH)(2)D(3). On the other hand, S57D mutant strongly enhanced binding for the substrates and conversion of 1,25(OH)(2)D(3) to calcitroic acid. The affinity probe was anchored via the 3-hydroxyl group of 25-OH-D(3). Therefore, these results suggested that the 3-hydroxyl group (of 25-OH-D(3) and 1,25(OH)(2)D(3)) in the S57D mutant could be stabilized by hydrogen bonding or a salt bridge leading to enhanced substrate affinity and metabolism.  相似文献   

15.
Cloning and characterization of the rat cytochrome P450 4F5 (CYP4F5) gene   总被引:1,自引:0,他引:1  
Cui X  Strobel HW 《Gene》2002,300(1-2):179-187
The analysis of a non-redundant set of human proteins, for which both the crystallographic structures and the corresponding gene sequences are available, show that bases at third codon position are non-uniformly distributed along the coding sequences. Significant compositional differences are found by comparing the gene regions corresponding to the different secondary structures of the proteins. Inter-and intra-structure differences were most pronounced in the GC-richest genes. These results are not compatible with any proposed hypotheses based on a neutral process of formation/maintenance of the high GC3 levels of the genes localized in the GC-richest isochores of the human genome.  相似文献   

16.
The contribution of ligand dynamics to CYP allosterism has not been considered in detail. On the basis of a previous study, we hypothesized that CYP2A6 and CYP2E1 accommodate multiple xylene ligands. As a result, the intramolecular ( k H/ k D) obs values observed for some xylene isomers are expected to be dependent on ligand concentration with contributions from [CYP.xylene] and [CYP.xylene.xylene], etc. To explore this possibility and the utility of kinetic isotope effects in characterizing allosteric CYP behavior, steady state kinetics, product ratios, and ( k H/ k D) obs values for CYP2E1 and CYP2A6 oxidation of m-xylene-alpha- (2)H 3 and p-xylene-alpha- (2)H 3 were determined. Evidence is presented that CYP2A6 accommodates multiple ligands and that intramolecular isotope effect experiments can provide insight into the mechanisms of multiple-ligand binding. CYP2A6 exhibited cooperative kinetics for m-xylene-alpha- (2)H 3 oxidation and a concentration-dependent decrease in the m-methylbenzylalcohol:2,4-dimethylphenol product ratio (9.8 +/- 0.1 and 4.8 +/- 0.3 at 2.5 microM and 1 mM, respectively). Heterotropic effects were observed as well, as incubations containing both 15 microM m-xylene-alpha- (2)H 3 and 200 microM p-xylene resulted in further reduction of the product ratio (2.4 +/- 0.2). When p-xylene (60 microM) was replaced with deuterium-labeled d 6- p-xylene (60 microM), an intermolecular competitive inverse isotope effect on 2,4-dimethylphenol formation [( k H/ k D) obs = 0.49] was observed, indicating that p-xylene exerts heterotropic effects by residing in the active site simultaneously with m-xylene. The data indicate that there is a concentration-dependent decrease in the reorientation rate of m-xylene, as no increase in ( k H/ k D) obs was observed in the presence of an increased level of metabolic switching. That is, the accommodation of a second xylene molecule in the active site leads to a decrease in substrate dynamics.  相似文献   

17.
The cytochrome P450c17 isoforms from various animal species have different substrate selectivity, especially for 17,20-lyase activity. In particular, the human P450c17 selectively produces dehydroepiandrosterone with little androstenedione (AD). Hamster P450c17, on the other hand, produces both of these steroids at comparable rates. We thus investigated if computational analysis could explain the difference in activity profiles. Therefore, we inserted the four P450c17 substrates-pregnenolone, progesterone, and their 17alpha-hydroxylated forms-inside our hamster P450c17 model, which we derived from our human P450c17 model based on the crystal structure of P450BMP. We performed molecular dynamics (MD) simulations on the complexes and analyzed the resultant trajectories to identify amino acids that interact with substrates. Starting with substrates in two different orientations, we obtained two sets of binding trajectories in each case. The first set of trajectories reveal structural rearrangements that occur during binding, whereas the second set of trajectories reflects substrate orientations during catalysis. Our modeling suggests that three distinct steps are required for substrate selectivity and binding to the hamster P450c17: (1) recognition of the substrate at the putative substrate entrance, characterized by a pocket at the surface of the hamster P450c17 containing charged residues R96 and D116; (2) entry of the substrate into the active site, in an intermediate position directed by possible hydrogen bonding of the substrates with the heme D-ring propionate group, R96, R440, and T306; followed by (3) 90 degrees counterclockwise rotation of the substrates, positioning them in optimal position for reactivity, a process that may be directed by hydrogen bonding to the 110-112 region of the hamster P450c17. With some substrates, we obtained trajectories which suggest that major distortions in the I-helix and opening of the H-I loop occur during substrate binding. In conclusion, these modeling exercises provide insight to possible structural reorganizations that occur during substrate binding and suggest that amino acids that participate in three distinct steps of this process may all contribute to substrate binding and activity.  相似文献   

18.
Drug metabolizing enzymes participate in the neutralizing of xenobiotics and biotransformation of drugs. Human cytochrome P450, particularly CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5, play an important role in drug metabolism. The genes encoding the CYP enzymes are polymorphic, and extensive data have shown that certain alleles confer reduced enzymatic function. The goal of this study was to determine the frequencies of important allelic variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5 in the Jordanian population and compare them with the frequency in other ethnic groups. Genotyping of CYP1A1(m1 and m2), CYP2C9 (*2 and *3), CYP2C19 (*2 and *3), CYP3A4*5, CYP3A5 (*3 and *6), was carried out on Jordanian subjects. Different variants allele were determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). CYP1A1 allele frequencies in 290 subjects were 0.764 for CYP1A1*1, 0.165 for CYP1A1*2A and 0.071 for CYP1A1*2C. CYP2C9 allele frequencies in 263 subjects were 0.797 for CYP2C9*1, 0.135 for CYP2C9*2 and 0.068 for CYP2C9*3. For CYP2C19, the frequencies of the wild type (CYP2C19*1) and the nonfunctional (*2 and *3) alleles were 0.877, 0.123 and 0, respectively. Five subjects (3.16?%) were homozygous for *2/*2. Regarding CYP3A4*1B, only 12 subjects out of 173 subjects (6.9?%) were heterozygote with none were mutant for this polymorphism. With respect to CYP3A5, 229 were analyzed, frequencies of CYP3A5*1,*3 and *6 were 0.071, 0.925 and 0.0022, respectively. Comparing our data with that obtained in several Caucasian, African-American and Asian populations, Jordanians are most similar to Caucasians with regard to allelic frequencies of the tested variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5.  相似文献   

19.
Summary We have studied the genetic linkage of two markers, the apolipoprotein C1 (APOC1) gene and a cytochrome P450 (CYP2A) gene, in relation to the gene for myotonic dystrophy (DM). A peak lod score of 9.29 at 2 cM was observed for APOC1-DM, with a lod score of 8.55 at 4cM for CYP2A-DM. These two markers also show close linkage to each other ( max = 0.05, Z max = 9.09). From examination of the genotypes of the recombinant individuals, CYP2A appears to map proximal to DM because in one recombinant individual CYP2A, APOC2 and CKMM had all recombined with DM. Evidence from another CYP2A-DM recombinant individual places CYP2A proximal to APOC2 and CKMM. Localisation of CYP2A on a panel of somatic cell hybrids also suggests that it is proximal to DM and APOC2/C1/E gene cluster.  相似文献   

20.
《Phytomedicine》2014,21(12):1645-1650
This study was designed to investigate eight herbal active constituents (andrographolide, asiaticoside, asiatic acid, madecassic acid, eupatorin, sinensetin, caffeic acid, and rosmarinic acid) on their potential inhibitory effects on human cytochrome P450 1A2 (CYP1A2) activity. A fluorescence-based enzyme assay was performed by co-incubating human cDNA-expressed CYP1A2 with its selective probe substrate, 3-cyano-7-ethoxycoumarin (CEC), in the absence or presence of various concentrations of herbal active constituents. The metabolite (cyano-hydroxycoumarin) formed was subsequently measured in order to obtain IC50 values. The results indicated that only eupatorin and sinensetin moderately inhibited CYP1A2 with IC50 values of 50.8 and 40.2 μM, while the other active compounds did not significantly affect CYP1A2 activity with IC50 values more than 100 μM. Ki values further determined for eupatorin and sinensetin were 46.4 and 35.2 μM, respectively. Our data indicated that most of the investigated herbal constituents have negligible CYP1A2 inhibitory effect. In vivo studies however may be warranted to ascertain the inhibitory effect of eupatorin and sinensetin on CYP1A2 activity in clinical situations  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号