首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Taurine is a sulphur-containing beta-amino acid found in high (millimolar) concentrations in excitable tissues such as brain and heart. Its suggested roles include osmoregulator, thermoregulator, neuromodulator, and potential neurotransmitter. This amino acid has also been shown to be released in large concentrations during ischaemia and excitotoxin-induced neuronal damage. Here we report a protective effect of taurine against MPP(+)-induced neurotoxicity in coronal slices from rat brain. Significant protective effects were observed at taurine concentrations of 20 and 1 mM, suggesting a potential role for taurine in cases of neuronal insult. Studies with the synthetic taurine analogues taurine phosphonate, guanidinoethane sulphonate, and trimethyltaurine suggested the observed effect to be mediated via an extracellular mechanism. The use of GABA receptor ligands muscimol and bicuculline indicated the effect to be mediated through activation of GABA(A) receptors.  相似文献   

2.
Taurine, glycine, glutamate, and gamma-aminobutyric acid (GABA) were all present in concentrations of greater than 1% of the total free amino acid content in the brain, thoracic, and abdominal ganglia of Leucophaea maderae. Hemolymph, subesophageal ganglia, and hindgut had substantial amounts of glutamate and glycine, but less than 0.3% taurine or GABA. Taurine, 3-aminopropanesulfonic acid (3-APS), cysteine-sulfinic acid (CSA), and GABA each had myotropic activity on the isolated cockroach hindgut, with 3-APS having the most consistent effect (ED50 = 0.63 mM), while taurine and CSA activities were similar to that of GABA on the hindgut. Both taurine and 3-APS had anti-arrhythmic effects on semi-isolated heart preparations of L. maderae, while GABA was inhibitory and induced arrhythmia. Bicuculline was antagonistic to the effects of GABA, taurine, and 3-APS on the hindgut, and induced arrhythmia in heart preparations; this arrhythmia was reversible by taurine, but not by GABA or 3-APS.  相似文献   

3.
Glycine and GABA are the primary inhibitory neurotransmitters in the spinal cord and brain stem, with glycine exerting its physiological roles by activating strychnine-sensitive ionotropic receptors. Glycine receptors are also expressed in the brain, including the cortex and hippocampus, but their physiological roles and pharmacological properties are largely unknown. Here, we report the pharmacological properties of functional glycine receptors in acutely isolated rat CA3 neurons using conventional whole-cell patch clamp techniques. Both glycine and taurine, which are endogenous agonists of glycine receptors, elicited Cl(-) currents in a concentration-dependent manner. The glycine-induced current (I(Gly)) was inhibited by strychnine, picrotoxin or cyclothiazide in a concentration-dependent manner. At lower concentrations (0.01-1 microM), ICS-205,930 potentiated I(Gly), but at higher concentrations (>10 microM) it inhibited I(Gly). These pharmacological properties strongly suggest that CA3 neurons express functional strychnine-sensitive glycine receptors containing alpha2 subunits. Furthermore, at lower concentrations (1-30 microM), Zn(2+) potentiated I(Gly), but at higher concentrations (>100 microM) it inhibited I(Gly). Considering that Zn(2+) is synaptically co-released with glutamate from mossy fiber terminals that make excitatory synapses onto CA3 neurons, these results suggest that endogenous Zn(2+) modulation of these glycine receptors may have an important role in the excitability of CA3 neurons.  相似文献   

4.
Effect of taurine on the properties of guanylate cyclase (GC) of the guinea-pig cardiac sarcoplasmic reticulum was studied. The enzymatic activity increased in the presence of Mn+2 at a concentration of 0.05 mM, reaching the maximal level at a concentration of 7 mM. Mg2+ (0.25-1 mM) did not alter the activity of GC in the absence of Mn2+, but stimulated it in the presence of Mn2+ at a concentration ranging within 0.1 to 1 mM. Taurine activated GC in the presence of Mn2+ (10 mM) and produced no effect on its activity at 0.5-3 mM of Mn2+ without Mg+2. Taurine (0.4-10 mM) potentiated the activity of GC stimulated with Mg+2. The structural analog of taurine, beta-alanine, suppressed the activity of GC 2-2.5-fold both in the absence and presence of Mg+2. Ca2+ (10(-9)--10(-4) mM) stimulated GC. Effect of Mg+2 and taurine on GC activity rose proportionally to an increase in Ca+2 concentration in the incubation medium. The data obtained evidence in favour of potential monitoring of the activity of GC through changes in the intracellular content of Ca+2, Mg+2 and taurine in the presence of Mn+2 at concentrations close to the physiological ones. The effect of taurine on GC is mediated via Mg+2 and Ca+2.  相似文献   

5.
The sulfur-containing amino acid taurine is an inhibitory neuromodulator in the brain of mammals, as well as a key substance in the regulation of cell volumes. The effect of Ca(2+) on extracellular taurine concentrations is of special interest in the context of the regulatory mechanisms of taurine release. The aim of this study was to characterize the basal release of taurine in Ca(2+)-free medium using in vivo microdialysis of the striatum of anesthetized rats. Perfusion of Ca(2+)-free medium via a microdialysis probe evoked a sustained release of taurine (up to 180 % compared to the basal levels). The Ca(2+) chelator EGTA (1mM) potentiated Ca(2+) depletion-evoked taurine release. The substitution of CaCl(2) by choline chloride did not alter the observed effect. Ca(2+)-free solution did not significantly evoke release of taurine from tissue loaded with the competitive inhibitor of taurine transporter guanidinoethanesulfonate (1mM), suggesting that in Ca(2+) depletion taurine is released by the transporter operating in the outward direction. The volume-sensitive chloride channel blocker diisothiocyanostilbene-2,2'-disulfonate (1mM) did not attenuate the taurine release evoked by Ca(2+) depletion. The non-specific blocker of voltage-sensitive Ca(2+) channels NiCl(2) (0.65 mM) enhanced taurine release in the presence of Ca(2+). CdCl(2) (0.25 mM) had no effect under these conditions. However, both CdCl(2) and NiCl(2) attenuated the effect of Ca(2+)-free medium on the release of taurine. The data obtained imply the involvement of both decreased influx of Ca(2+) and increased non-specific influx of Na(+) through voltage-sensitive calcium channels in the regulation of transporter-mediated taurine release in Ca(2+) depletion.  相似文献   

6.
Acamprosate (AC), N-acetyl-homotaurine, has recently been introduced for treating alcohol craving and reducing relapses in weaned alcoholics. AC may exert its action through the taurine system rather than the glutamatergic or GABAergic system. This conclusion is based on the observations that AC strongly inhibits the binding of taurine to taurine receptors while it has little effect on the binding of glutamate to glutamate receptors or muscimol to GABA(A) receptors. In addition, AC was found to be neurotoxic, at least in neuronal cultures, triggering neuronal damage at 1 mM. The underlying mechanism of AC-induced neuronal injury appears to be due to its action in increasing the intracellular calcium level, [Ca2+](i). Both AC-induced neurotoxicity and elevation of [Ca2+](i) can be prevented by taurine suggesting that AC may exert its effect through its antagonistic interaction with taurine receptors.  相似文献   

7.
The releases of endogenous glutamate, aspartate, GABA and taurine from hippocampal slices from 7-day-, 3-, 12-, and 18-month-old mice were investigated under cell-damaging conditions using a superfusion system. The slices were superfused under hypoxic conditions in the presence and absence of glucose and exposed to hydrogen peroxide. In the adult hippocampus under normal conditions the basal release of taurine was highest, with a response only about 2-fold to potassium stimulation (50 mM). The low basal releases of glutamate, aspartate, and GABA were markedly potentiated by K+ ions. In general, the release of the four amino acids was enhanced under all above cell-damaging conditions. In hypoxia and ischemia (i.e., hypoxia in the absence of glucose) the release of glutamate, aspartate and GABA increased relatively more than that of taurine, and membrane depolarization by K+ markedly potentiated the release processes. Taurine release was doubled in hypoxia and tripled in ischemia but K+ stimulation was abolished. In both the mature and immature hippocampus the release of glutamate and aspartate was greatly enhanced in the presence of H2O2, that of aspartate particularly in developing mice. In the immature hippocampus the increase in taurine release was 10-fold in hypoxia and 30-fold in ischemia, and potassium stimulation was partly preserved. The release processes of the four amino acids in ischemia were all partially Ca2+-dependent. High concentrations of excitatory amino acids released under cell-damaging conditions are neurotoxic and contribute to neuronal death during ischemia. The substantial amounts of the inhibitory amino acids GABA and taurine released simultaneously may constitute an important protective mechanism against excitatory amino acids in excess, counteracting their harmful effects. In the immature hippocampus in particular, the massive release of taurine under cell-damaging conditions may have a significant function in protecting neural cells and aiding in preserving their viability.  相似文献   

8.
We have evaluated GABA(A)receptor function during treatment of 1-methyl-4-phenylpridinium (MPP+) using patch-clamp perforated whole-cell recording techniques in acutely dissociated dopaminergic (DAergic) neurons from rat substantia nigra compacta (SNc). Gamma-aminobutyric acid (GABA), glutamate or glycine induced inward currents (I(GABA), I(Glu), I(Gly)) at a holding potential (VH) of -45 mV. The I(GABA) was reversibly blocked by the GABA(A) receptor antagonist, bicuculline, suggesting that I(GABA) is mediated through the activation of GABA(A) receptors. During extracellular perfusion of MPP+ (1-10 microm), I(GABA) , but neither I(Glu) nor I(Gly), declined (termed run-down) with repetitive agonist applications, indicating that the MPP+-induced I(GABA) run-down occurred earlier than I(Gly) or I(Glu) under our experimental conditions. The MPP+-induced I(GABA) run-down can be prevented by a DA transporter inhibitor, mazindol, and can be mimicked by a metabolic inhibitor, rotenone. Using conventional whole-cell recording with different concentrations of ATP in the pipette solution, I(GABA) run-down can be induced by decreasing intracellular ATP concentrations, or prevented by supplying intracellular ATP, indicating that I(GABA) run-down is dependent on intracellular ATP concentrations. A GABA(A) receptor positive modulator, pentobarbital (PB), potentiated the declined I(GABA) and eliminated I(GABA) run-down. Corresponding to these patch-clamp data, tyrosine hydroxylase (TH) immunohistochemical staining showed that TH-positive cell loss was protected by PB during MPP+ perfusion. It is concluded that extracellular perfusion of MPP+ induces a functional run-down of GABA(A) receptors, which may cause an imbalance of excitation and inhibition of DAergic neurons.  相似文献   

9.
Along with the inositol trisphosphate-induced release of stored Ca(2+), a receptor-enhanced entry of Ca(2+) is a critical component of intracellular Ca(2+) signals generated by agonists acting at receptors coupled to the activation of phospholipase C. Although the simple emptying of the intracellular Ca(2+) stores is known to be capable of activating Ca(2+) entry via the so-called "capacitative" mechanism, recent evidence suggests that Ca(2+) entry at physiological agonist concentrations, where oscillatory Ca(2+) signals are typically observed, does not conform to such a model. Instead, a noncapacitative Ca(2+) entry pathway regulated by arachidonic acid appears to be responsible for Ca(2+) entry under these conditions. Using whole-cell patch clamp techniques we demonstrate that low concentrations of arachidonic acid activate a Ca(2+)-selective current that is superficially similar to the store-operated current I(CRAC), but which also demonstrates certain distinct features. We have named this novel current I(ARC) (for arachidonate-regulated calcium current). Importantly, I(ARC) can be readily activated in cells whose Ca(2+) stores have been maximally depleted. I(ARC) represents a novel Ca(2+) entry pathway that is entirely separate from those activated by store depletion and is specifically activated at physiological levels of stimulation.  相似文献   

10.
1. Taurine, but not GABA, beta-alanine and glycine, inhibited Na(+)-dependent Ca2+ uptake in bovine cardiac sarcolemmal membrane vesicles in a dose-dependent manner. 2. The inhibition of Na(+)-dependent Ca2+ uptake was noncompetitive with respect to Ca2+ concentration. 3. The inhibitory effect of taurine on the exchange was also observed in cardiac sarcolemmal vesicles prepared from guinea pig, but not from rat. 4. Taurine did not affect Na(+)-dependent Ca2+ efflux nor ATP-dependent Ca2+ uptake in the bovine cardiac membranes.  相似文献   

11.
The K+-stimulated efflux of endogenous taurine from primary rat cerebellar astrocyte cultures prepared from 7-9-day-old rats was studied at 16-18 days in vitro using HPLC analysis. Taurine efflux was dose-dependent at K+ concentrations between 10 mM and 80 mM, with an EC50 of approximately 50 mM. Maximum stimulation of efflux above basal levels ranged from 56% at 10 mM K+ (204 pmol/min/mg protein) to 470% at 80 mM K+ (960 pmol/min/mg protein). Removal of Ca2+ from the buffer and the addition of either 1 mM EGTA or 10 mM Mg2+ abolished K+-stimulated efflux. Taurine efflux peaked and fell in parallel with the K+ concentration, but with an approximate lag of 3-5 min. The time course and amount of preloaded [3H]taurine released did not differ significantly from that seen for endogenous efflux. Basal taurine efflux varied inversely with the extracellular concentration of Ca2+ over the concentration range 0-5.0 mM. The observed Ca2+ dependence is consistent with a role for Ca2+ in the regulation of taurine release. Furthermore, taurine release from astrocytes in response to elevated K+ may reflect a neuromodulatory role for this amino acid in the CNS.  相似文献   

12.
Microfluorometric recordings showed that the inhibitory neurotransmitters gamma-aminobutyric acid (GABA) and glycine activated transient increases in the intracellular Cl- concentration in neurons of the inferior colliculus (IC) from acutely isolated slices of the rat auditory midbrain. Current recordings in gramicidin-perforated patch mode disclosed that GABA and glycine mainly evoked inward or biphasic currents. These currents were dependent on HCO3- and characterized by a continuous shift of their reversal potential (E(GABA/gly)) in the positive direction. In HCO3- -buffered saline, GABA and glycine could also evoke an increase in the intracellular Ca2+ concentration. Ca2+ transients occurred only with large depolarizations and were blocked by Cd2+, suggesting an activation of voltage-gated Ca2+ channels. However, in the absence of HCO3-, only a small rise, if any, in the intracellular Ca2+ concentration could be evoked by GABA or glycine. We suggest that the activation of GABAA or glycine receptors results in an acute accumulation of Cl- that is enhanced by the depolarization owing to HCO3- efflux, thus shifting E(GABA/gly) to more positive values. A subsequent activation of these receptors would result in a strenghtened depolarization and an enlarged Ca2+ influx that might play a role in the stabilization of inhibitory synapses in the auditory pathway.  相似文献   

13.
Isolated squid olfactory receptor neurons respond to dopamine and betaine with hyperpolarizing conductances. We used Ca(2+) imaging techniques to determine if changes in intracellular Ca(2+) were involved in transducing the hyperpolarizing odor responses. We found that dopamine activated release of Ca(2+) from intracellular stores while betaine did not change internal Ca(2+) concentrations. Application of 10 mM caffeine also released Ca(2+) from intracellular stores, suggesting the presence of ryanodine-like receptors. Depletion of intracellular stores with 100 microM thapsigargin revealed the presence of a Ca(2+) store depletion-activated Ca(2+) influx. The influx of Ca(2+) through the store-operated channel was reversibly blocked by 10 mM Cd(2+). Taken together, these data suggest a novel odor transduction system in squid olfactory receptor neurons involving Ca(2+) release from intracellular stores. Copyright Copyright 1999 S. Karger AG, Basel  相似文献   

14.
Saransaari P  Oja SS 《Amino acids》2003,24(1-2):213-221
Taurine is an inhibitory amino acid acting as an osmoregulator and neuroromodulator in the brain, with neuroprotective properties. The ionotropic glutamate receptor agonist N-methyl-D-aspartate (NMDA) greatly potentiates taurine release from brain preparations in both normal and ischemic conditions, the effect being particularly marked in the developing hippocampus. We now characterized the regulation of NMDA-stimulated taurine release from hippocampal slices from adult (3-month-old) and developing (7-day-old) mouse using a superfusion system. The NMDA-stimulated taurine release was receptor-mediated in both adult and developing mouse hippocampus. In adults, only NO-generating compounds, sodium nitroprusside, S-nitroso-N-acetylpenicillamine and hydroxylamine reduced the release, as did also NO synthase inhibitors, 7-nitroindazole and nitroarginine, indicating that the release is mediated by the NO/cGMP pathway. On the other hand, the regulation of the NMDA-evoked taurine release proved to be somewhat complex in the immature hippocampus. It was not affected by the NOergic compounds, but enhanced by the protein kinase C activator 4 beta-phorbol 12-myristate 13-acetate and adenosine receptor A(1) agonists, N(6)-cyclohexyladenosine and R(-)N(6)-(2-phenylisopropyl)adenosine in a receptor-mediated manner. The activation of both ionotropic 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors and metabotropic glutamate group I receptors also enhanced the evoked release. The NMDA-receptor-stimulated taurine release could be a part of the neuroprotective properties of taurine, being important particularly under cell-damaging conditions in the developing hippocampus and hence preventing excitotoxicity.  相似文献   

15.
Taurine modulates ion influx through cardiac Ca2+ channels   总被引:1,自引:0,他引:1  
The effects of taurine on the inward Ca2+ current (ICa) were investigated by means of the whole-cell voltage-clamp technique in isolated single guinea pig ventricular myocytes. ICa were elicited by 200-ms test pulses from a conditioning holding potential of -45 mV to various test potentials at a rate of 0.5 Hz. Taurine (10-20 mM) had different effects on ICa, depending on the extracellular Ca2+ concentration [( Ca]o). A small stimulatory effect of taurine was found in low [Ca]o (0.8 mM), and a small inhibitory effect was found in high [Ca]o (3.6 mM). Taurine had no significant effect on ICa in normal [Ca]o (1.8 mM). Such dual effects on ICa may explain the various effects reported for taurine especially its dual inotropic actions on cardiac muscle depending upon [Ca]o. Thus, taurine acts in a manner to keep ICa relatively constant. Taurine increased the resting potential irrespective of [Ca]o, suggesting that, in addition, taurine increased K+ conductance and/or ion exchange systems such as the Na/Ca and Na/K exchange.  相似文献   

16.
17.
GABA transporters accumulate GABA to inactivate or reutilize it. Transporter-mediated GABA release can also occur. Recent findings indicate that GABA transporters can perform additional functions. We investigated how activation of GABA transporters can mediate release of glycine. Nerve endings purified from mouse cerebellum were prelabeled with [(3)H]glycine in presence of the glycine GlyT1 transporter inhibitor NFPS to label selectively GlyT2-bearing terminals. GABA was added under superfusion conditions and the mechanisms of the GABA-evoked [(3)H]glycine release were characterized. GABA stimulated [(3)H]glycine release in a concentration-dependent manner (EC(50) = 8.26 μM). The GABA-evoked release was insensitive to GABA(A) and GABA(B) receptor antagonists, but it was abolished by GABA transporter inhibitors. About 25% of the evoked release was dependent on external Ca(2+) entering the nerve terminals through VSCCs sensitive to ω-conotoxins. The external Ca(2+)-independent release involved mitochondrial Ca(2+), as it was prevented by the Na(+)/Ca(2+) exchanger inhibitor CGP37157. The GABA uptake-mediated increases in cytosolic Ca(2+) did not trigger exocytotic release because the [(3)H]glycine efflux was insensitive to clostridial toxins. Bafilomycin inhibited the evoked release likely because it reduced vesicular storage of [(3)H]glycine so that less [(3)H]glycine can become cytosolic when GABA taken up exchanges with [(3)H]glycine at the vesicular inhibitory amino acid transporters shared by the two amino acids. The GABA-evoked [(3)H]glycine efflux could be prevented by niflumic acid or NPPB indicating that the evoked release occurred essentially by permeation through anion channels. In conclusion, GABA uptake into GlyT2-bearing cerebellar nerve endings triggered glycine release which occurred essentially by permeation through Ca(2+)-dependent anion channels. Glial GABA release mediated by anion channels was proposed to underlie tonic inhibition in the cerebellum; the present results suggest that glycine release by neuronal anion channels also might contribute to tonic inhibition.  相似文献   

18.
Glycine release provoked by ion dysregulations typical of some neuropathological conditions was analyzed in cerebellar synaptosomes selectively pre-labelled with [3H]glycine through GlyT2 transporters and exposed in superfusion to KCl, 4-aminopyridine (4-AP) or veratridine. The overflows caused by relatively low concentrations of the releasers were largely external Ca2?-dependent. Higher concentrations of KCl (50 mM) or veratridine (10 μM), but not of 4-AP (1 mM), involved also external Ca2?-independent mechanisms. GlyT1-mediated release could not be observed; only the external Ca2?-independent veratridine-evoked overflow occurred significantly by GlyT2 reversal. None of the three depolarizing agents activated store-operated or transient receptor potential or L-type Ca2? channels. The overflows caused by KCl or 4-AP occurred in part by N- and P/Q-type voltage-sensitive calcium channel-dependent exocytosis. Significant portions of the external Ca2?-dependent overflow evoked by KCl or 4-AP (and all that caused by veratridine) were mediated by reverse plasmalemmal Na?/Ca2? exchangers. Significant contribution to the overflows evoked by KCl or veratridine came from Ca2? originated through mitochondrial Na?/Ca2? exchangers. Ca2?-induced Ca2? release (CICR) mediated by inositoltrisphosphate receptors (InsP?Rs) represents the final trigger of the glycine release evoked by high KCl. The overflows evoked by 4-AP or, less so, by veratridine also involved InsP?R-mediated CICR and, in part, CICR mediated by ryanodine receptors. To conclude, ionic dysregulations typical of ischemia and epilepsy caused glycine release in cerebellum by multiple differential mechanisms that may represent potential therapeutic targets.  相似文献   

19.
Chavas J  Forero ME  Collin T  Llano I  Marty A 《Neuron》2004,44(4):701-713
Intracellular calcium concentration rises have been reported following activation of GABA(A) receptors in neonatal preparations and attributed to activation of voltage-dependent Ca(2+) channels. However, we show that, in cerebellar interneurons, GABA(A) agonists induce a somatodendritic Ca(2+) rise that persists at least until postnatal day 20 and is not mediated by depolarization-induced Ca(2+) entry. A local Ca(2+) elevation can likewise be elicited by repetitive stimulation of presynaptic GABAergic afferent fibers. We find that, following GABA(A) receptor activation, bicarbonate-induced Cl(-) entry leads to cell depolarization, Cl(-) accumulation, and osmotic tension. We propose that this tension induces the intracellular Ca(2+) rise as part of a regulatory volume decrease reaction. This mechanism introduces an unexpected link between activation of GABA(A) receptors and intracellular Ca(2+) elevation, which could contribute to activity-driven synaptic plasticity.  相似文献   

20.
<正> 牛磺酸(Taurine,Tau.2-氨基乙磺酸)为体内一种β-氨基酸,属于非蛋白质氨基酸。主要分布在兴奋性较高的组织如神经系统、肌肉组织、视网膜及血小板中。近年来研究认为牛磺酸不仅参与合成胆汁酸、调节渗透压、阻断神经冲动的功能,还有抗氧化及维持膜稳定性等方面作用。自从  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号