首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have recently reported that human neutrophils can be permeabilized with the cholesterol complexing agent saponin and that these cells can be induced to secrete the granule enzyme lysozyme in response to micromolar levels of free calcium. We now report that digitonin can be used in place of saponin and that it has several advantages. Permeabilization of human neutrophils was accomplished with 10 micrograms/ml digitonin in a high potassium medium. Normally impermeant solutes such as [14C]sucrose and inulin [14C]carboxylic acid gained access to one half of the intracellular water space marked with [3H]H2O. Between 30 and 100% of the cytoplasmic enzyme, lactate dehydrogenase, leaked from the intracellular space. The permeabilization process and calcium-triggered granule secretion were critically dependent upon temperature, time and digitonin concentration. Permeabilized neutrophils secreted beta-glucuronidase, lysozyme and vitamin B-12 binding-protein, constituents of both azurophil and specific granules, when exposed to micromolar levels of free calcium. Release of specific granule constituents appeared to be more sensitive to free calcium than release from azurophil granules. Although the amount of permeabilization varied considerably with each batch of cells, release of these granule markers was a consistent finding. Release of granule markers was accompanied by resealing of the cells to high-molecular-weight (Mr greater than 5000) solutes. Electron microscopic evidence also suggested that granule and plasma membranes were intact following digitonin treatment and that fusion of these membranes occurred in response to calcium. These results suggest that elevation of intracellular free-calcium levels is a sufficient condition for lysosomal enzyme release.  相似文献   

2.
Cytosolic free calcium concentration, [Ca2+]i, and exocytosis of azurophil granules (beta-glucuronidase), specific granules (vitamin B12-binding protein), and secretory vesicles (gelatinase) were measured concomitantly in intact human neutrophils under steady state [Ca2+]i. The cells were loaded with the fluorescent calcium indicator quin2 in the presence or absence of extracellular Ca2+, and steady state [Ca2+]i levels ranging from 20 to greater than 2,000 nM were obtained by adding the Ca2+ ionophore ionomycin at various concentrations of extracellular calcium. The extent of exocytosis from the three granule populations was found to be a function of [Ca2+]i. The minimal [Ca2+]i that caused significant release (threshold [Ca2+]i) was approximately 200-300 nM and was similar for all three compartments. Marked differences, however, were found when the [Ca2+]i for half-maximal exocytosis (EC50) was determined. In the absence of cytochalasin B the EC50 was 1,100 +/- 220 nM and 1,600 +/- 510 nM for specific granules and secretory vesicles, respectively, and approximately 6,000 nM for azurophil granules. Cytochalasin B did not affect the threshold [Ca2+]i but decreased the EC50 and enhanced the rate of exocytosis. In the presence of cytochalasin B the EC50 was approximately 600 nM both for secretory vesicles and specific granules, and approximately 2,600 nM for azurophil granules. The addition of the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine dramatically changed the [Ca2+]i dependency of granule secretion: It decreased the threshold [Ca2+]i to less than 20 and less than 50 nM, and the EC50 to 50 and 200 nM for specific and azurophil granules, respectively, and it significantly increased the rate of exocytosis. Thus, the additional signal(s) provided by receptor activation markedly lower(s) the Ca2+ requirement of the exocytotic process. Furthermore, these results indicate that the secretion from three different granule populations within the same cell type are differently modulated by [Ca2+]i.  相似文献   

3.
The sequential discharge of neutrophilic polymorphonuclear leukocyte (PMN) granules—azurophils and specifics—was investigated by electron microscopy and cytochemistry. Thus the enzyme content of PMN phagocytic vacuoles was determined at brief intervals after phagocytosis of bacteria, utilizing peroxidase as a marker enzyme for azurophil granules, and alkaline phosphatase for specifics. At 30 s, approximately half the phagocytic vacuoles were reactive for alkaline phosphatase, whereas none contained peroxidase. Peroxidase-containing vacuoles were rarely seen at 1 min, but by 3 min, vacuoles containing both enzymes were consistently present. Alkaline phosphatase was found in both small and large vacuoles, whereas peroxidase was visible only in large ones. By 10 min, very big phagocytic vacuoles containing considerable amounts of reaction product for both enzymes were evident. These observations indicate that the two types of PMN granules discharge in a sequential manner, specific granules fusing with the vacuole before azurophils. In an earlier paper, we reported that the pH of phagocytic vacuoles drops to 6.5 within 3 min and to ~4 within 7–15 min. Substances known to be present in specific granules (alkaline phosphatase, lysozyme, and lactoferrin) function best at neutral or alkaline pH, whereas most of those contained in azurophil granules (i.e., peroxidase and the lysosomal enzymes) have pH optima in the acid range. Hence the sequence of granule discharge roughly parallels the change in pH, thereby providing optimal conditions for coordinated activity of granule contents.  相似文献   

4.
A novel type of cytoplasmic granule in bovine neutrophils   总被引:7,自引:2,他引:5       下载免费PDF全文
We obtained cell preparations containing greater than 95% neutrophils from freshly drawn bovine blood. The cells were suspended in sucrose and disrupted in a Dounce homogenizer, and the postnuclear supernate was fractionated by zonal differential sedimentation and by isopycnic equilibration. The subcellular fractions were characterized biochemically by testing for marker enzymes and other constituents known to occur in azurophil and specific granules of other species, and by electrophoretic analysis of extracts of the particulate material. In addition, each fraction was examined by random-sampling electron microscopy. We found that bovine neutrophils contain in addition to azurophil and specific granules a third type of granule, not known to occur in neutrophils of other species. These novel granules are larger, denser, and considerably more numerous than the two other types. Except for lactoferrin, they lack the characteristic constituents of azurophil granules (peroxidase, acid hydrolases, and neutral proteinases) and of specific granules (vitamin B12-binding protein). Instead, they contain a group of highly cationic proteins not found in the other granules, and they are the exclusive stores of powerful oxygen-independent bactericidal agents. We studied the fate of the large granules in bovine neutrophils exposed to opsonized particles, the ionophore A 23187, or phorbol myristate acetate. The appearance in the cell-free media of antibacterial activity and of the characteristic highly cationic proteins as revealed by electrophoresis was monitored and compared with the release of azurophil and specific granule markers. In addition, changes of the relative size of the large granule compartment induced by phagocytosis were assessed by morphometry. The results show that exocytosis of the large granules occurs following both phagocytosis and exposure to soluble stimuli. Like the specific granules, the large granules appear to be discharged by true secretion under conditions where the azurophil granules are fully retained.  相似文献   

5.
Pathogenic mycobacteria reside in, and are in turn controlled by, macrophages. However, emerging data suggest that neutrophils also play a critical role in innate immunity to tuberculosis, presumably by their different antibacterial granule proteins. In this study, we purified neutrophil azurophil and specific granules and systematically analyzed the antimycobacterial activity of some purified azurophil and specific granule proteins against M. smegmatis, M. bovis-BCG and M. tuberculosis H37Rv. Using gel overlay and colony forming unit assays we showed that the defensin-depleted azurophil granule proteins (AZP) were more active against mycobacteria compared to other granule proteins and cytosolic proteins. The proteins showing antimycobacterial activity were identified by MALDI-TOF mass spectrometry. Electron microscopic studies demonstrate that the AZP disintegrate bacterial cell membrane resulting in killing of mycobacteria. Exogenous addition of AZP to murine macrophage RAW 264.7, THP-1 and peripheral blood monocyte-derived macrophages significantly reduced the intracellular survival of mycobacteria without exhibiting cytotoxic activity on macrophages. Immunofluorescence studies showed that macrophages actively endocytose neutrophil granular proteins. Treatment with AZP resulted in increase in co-localization of BCG containing phagosomes with lysosomes but not in increase of autophagy. These data demonstrate that neutrophil azurophil proteins may play an important role in controlling intracellular survival of mycobacteria in macrophages.  相似文献   

6.
Degranulation of azurophil and specific granules after phagocytic challenge with E. coli for 5 sec to 10 min was investigated in the human polymorphonuclear neutrophil (PMN). PMN were stained simultaneously with fluorescein and rhodamine-labeled monospecific antisera to myeloperoxidase (MPO) and lactoferrin (LF) to identify azurophil and specific granules, respectively, within single cells. Fixation was designed to preserve or disrupt differential permeability of cell membrane to fluorescent conjugates in order to study granule translocation. Within 5 sec after phagocytic challenge, MPO and LF appeared on the cell surface coating the bacteria as granule contents leaked from the incompletely formed phagolysosomes. The phagocytic cup, shown by scanning electron microscopy as large and circular, appeared by immunofluorescent markers to be outlined by curvilinear staining for both granule markers, and was always coincident with bacterial localization. MPO and LF appeared singly or simultaneously on the cell surface, suggesting that degranulation to the surface was random. Sequential phagocytic events were demonstrated by comparing staining intensities for each granule marker on the surface and intracellularly within single cells. LF sometimes appeared on the cell surface independent of the nascent phagosome, suggesting that perturbation of the cell membrane by bacteria may cause some specific granule extrusion not limited to the phagosome. These results imply that bacteria make contact with granule-associated anti-microbial substances within 5 sec after phagocytosis is initiated and that free communication of granule constituents occurs between the newly forming phagolysosome and the extracellular space.  相似文献   

7.
Summary The development of the heterophil granulocyte in the bone marrow of the rat is described, and an electron-microscopical analysis of the changes in the cytoplasm as well as in the granule population in several stages of maturation is reported. Three types of granule originate in consecutive stages of heterophil maturation. Granules with an internal fine structure (nucleated granules) are the first to be formed, i.e., in early promyelocytes; azurophil granules are formed in late promyelocytes; and specific granules appear in myelocytes. Quantitative analysis showed that the granule population in mature cells, i.e., about 160 granules per electron micrograph, is composed of roughly 14% nucleated granules, 10% azurophil granules, and 76% specific granules. Three cell stages were observed in mitosis: the early promyelocyte, the late promyelocyte, and the myelocyte. Granule counts in non-dividing cells confirmed the occurrence of mitosis in the late promyelocyte and myelocyte.  相似文献   

8.
Summary The development of the heterophil granulocytes in the bone marrow of the guinea pig is described. During the maturation of these cells, three types of granule are formed, not only the azurophil and specific granules already described in other mammals but also a third type of granule referred to here as the nucleated granule. During the process of maturation of the cells, these three types of granule are formed successively. On this basis, two steps can be distinguished in the promyelocyte phase in which primary (nucleated and azurophil) granules are formed, i.e. an early and a late stage, nucleated granules being formed in early and azurophil granules in late promyelocytes. Secondary (specific) granules occur first in myelocytes. In mature heterophils of the guinea pig the granule population is composed of about 85% secondary granules, about 10% azurophil granules, and about 5% nucleated granules. The changes in the granule population during the maturation process were quantified. The observations and calculations point to the occurrence of three mitoses: one in the early and one in the late promyelocyte and the third in the myelocyte.  相似文献   

9.
Purified preparations of pancreatic zymogen granules have the peculiar property of lysing instantaneously at neutral pH, a property clearly irreconcilable with the cytoplasmic pH of the acinar cell. Two important factors known for regulating the stability of secretory granules are calcium and pH. Fluorescence microscopy of acinar cells in the presence of weak bases showed that zymogen granules have an acidic pH. In vivo, abolition of the delta pH by NH4Cl did not induce any lysis of the granules. In vitro, with purified granules, an acidic intragranular pH was measured. This delta pH was produced by a Donnan potential. The importance for granule stability of keeping the intragranular pH acidic has been confirmed in vitro by addition of K+ and nigericin to the suspension medium. These conditions produced alkalinization of the granule matrix and caused instantaneous solubilization of the granules. Concentrations of 15 mM total, and 10 mM free calcium were measured in purified granules. The importance of intragranular Ca2+ was evaluated by means of the ionophore A23187 which induced calcium efflux and granule lysis. The lysis induced by the calcium ionophore was in direct relation with the calcium efflux, since addition of Ca2+ to the medium, at concentrations corresponding to that measured in the granule, relieved the effect. The role of calcium-binding sites on the cytoplasmic surface of the granules was investigated with Ca2+, EGTA, and La3+. Calcium did not have any damaging effects; EGTA induced a slight lysis, while lanthanum yielded a strong and spontaneous lysis at micromolar concentrations. In addition to calcium-binding sites, La3+ would bind to specific sites on the granule that would be directly coupled to maintenance of its stability. These findings suggest that the intragranular acidic pH and calcium are both important for the in vitro stability of the zymogen granule and that purified granules have lost, in the course of purification, some cytoplasmic factors that in vivo, control the permeability of the membrane to protons, and chloride more particularly. Calcium-binding sites and other specific sites probed with La3+, presumably on proteins at the surface of the granule, are also believed to have key roles in preserving the integrity of the membrane and the resulting stability of the granule.  相似文献   

10.
The origin, nature, and distribution of polymorphonuclear leukocyte (PMN) granules were investigated by examining developing granulocytes from normal rabbit bone marrow which had been fixed in glutaraldehyde and postfixed in OsO4. Two distinct types of granules, azurophil and specific, were distinguished on the basis of their differences in size, density, and time and mode of origin. Both types are produced by the Golgi complex, but they are formed at different stages of maturation and originate from different faces of the Golgi complex. Azurophil granules are larger (~800 mµ) and more dense. They are formed only during the progranulocyte stage and arise from the proximal or concave face of the Golgi complex by budding and subsequent aggregation of vacuoles with a dense core. Smaller (~500 mµ), less dense specific granules are formed during the myelocyte stage; they arise from the distal or convex face of the Golgi complex by pinching-off and confluence of vesicles which have a finely granular content. Only azurophil granules are found in progranulocytes, but in mature PMN relatively few (10 to 20%) azurophils are seen and most (80 to 90%) of the granules present are of the specific type. The results indicate that inversion of the azurophil/specific granule ratio occurs during the myelocyte stage and is due to: (a) reduction of azurophil granules by multiple mitoses; (b) lack of new azurophil granule formation after the progranulocyte stage; and (c) continuing specific granule production. The findings demonstrate the existence of two distinct granule types in normal rabbit PMN and their separate origins from the Golgi complex. The implications of the observations are discussed in relationship to previous morphological and cytochemical studies on PMN granules and to such questions as the source of primary lysosomes and the concept of polarity within the Golgi complex.  相似文献   

11.
The differential effects of phagocytic and chemical stimuli on neutrophil enzyme and specific protein release were compared. Phorbol myristate acetate (PMA) stimulated release of the specific granule matrix marker, vitamin B-12-binding protein in a dose-dependent manner. Subcellular fractionation by sucrose density gradient centrifugation indicated that the residual vitamin B-12-binding protein is associated with the specific granule fraction. In contrast, neutral α-glucosidase and adenosine diphosphatase, associated with specific granule membranes, were not released by PMA. Subcellular fractionation studies suggest that fusion of the specific granule membrane and plasma membrane occurs, thus translocating the adenosine diphosphatase to the cell surface. The relevance of this finding to the possible role of nucleoside phosphatases in limiting platelet aggregation is discussed. Serum-treated zymosan particles also caused a selective released of vitamin B-12-binding protein from the specific granule without release of α-glucosidase and adenosine diphosphatase. Neither PMA nor opsonized zymosan caused significant release of azurophil, tertiary granule or cytosol marker enzymes.  相似文献   

12.
The various granule subtypes of the human neutrophil differ in propensity for exocytosis. As a rule, granules formed at late stages of myelopoiesis have a higher secretory potential than granules formed in more immature myeloid cells. Neutrophils contain four closely related alpha-defensins, which are stored in a subset of azurophil granules. These defensin-rich azurophil granules (DRG) are formed later than defensin-poor azurophil granules, near the promyelocyte/myelocyte transition. In order to characterize the secretory properties of DRG, we developed a sensitive and accurate ELISA for detection of the neutrophil alpha-defensins HNP 1-3. This allowed us to quantify the exocytosis of alpha-defensins and markers of azurophil (myeloperoxidase), specific (lactoferrin) and gelatinase (gelatinase) granules from neutrophils stimulated with different secretagogues. The release pattern of alpha-defensins correlated perfectly with the release of myeloperoxidase and showed no resemblance to the exocytosis of lactoferrin or gelatinase. This finding was substantiated through subcellular fractionation experiments. In conclusion, despite a distinct profile of biosynthesis, DRG are indistinguishable from defensin-poor azurophil granules with respect to exocytosis. Thus, in contrast to peroxidase-negative granules, azurophil granules display homogeneity in their availability for extracellular release.  相似文献   

13.
We previously reported a specific stimulation of polymorphonuclear leukocyte (PMN) tubulin tyrosinolation as induced by the peptide chemoattractant N-formyl-methionyl-leucyl-phenylalanine (fmet-leu-phe) and the Ca2+ ionophore A23187 that is coupled to the NADPH oxidase-mediated stimulation of the PMN respiratory burst. The present study demonstrates that the presence of extracellular Ca2+ is necessary for fmet-leu-phe- and A23187-induced stimulation of PMN tubulin tyrosinolation, as indicated by the complete inhibition of the response by the addition of 1 mM EGTA to the extracellular medium. Methoxyverapamil (10(-5) M), a putative calcium channel blocker, completely inhibited the fmet-leu-phe-induced stimulation of tubulin tyrosinolation in PMN, but did not inhibit the A23187-induced response. Moreover, the calmodulin-binding drugs, trifluoperazine, fluphenazine, or chlorpromazine, at concentrations of 1 to 10 microM, caused significant inhibition of fmet-leu-phe- or A23187-induced stimulation of tubulin tyrosinolation. In related studies, enzymatic [14C]-tyrosinolation in isolated subcellular fractions of PMN revealed the presence of native tubulin in PMN fractions that were enriched in plasma membranes, the specific granules, or the azurophil granules. Most interestingly, tubulin tyrosine ligase (ligase), primarily a cytoplasmic enzyme, was detected in association with the PMN azurophil granule-rich fraction. Immunoautoradiography with the alpha-tubulin antibody YL 1/2 of isolated PMN subcellular fractions demonstrated a preferential stimulation of tyrosinolation of tubulin associated with the plasma membrane-rich fraction of fmet-leu-phe-stimulated cells. A significant stimulation was also observed in the cytoplasmic tubulin fraction. Consistent with the findings of in vitro tyrosinolation studies with PMN subcellular fractions, tyrosinolated tubulin was detected in the azurophil granule-enriched fractions isolated from both resting and fmet-leu-phe-stimulated cells. The antibody YL 1/2, which reacts with tyrosinolated alpha-tubulin and not with the detyrosinolated form, showed significant cross-reaction with several nontubulin PMN proteins.  相似文献   

14.
Separation of granule subpopulations in human polymorphonuclear leukocytes   总被引:1,自引:0,他引:1  
Human polymorphonuclear leukocytes were isolated, disrupted by sonification and the nuclei and unbroken cells removed by centrifugation. The supernatant was applied on top of an optimised discontinuous Percoll gradient. After centrifugation we found nine gradient bands of distinct density. Both the nine bands and the whole fractionated gradient material were assayed for granule marker enzymes. Granule fractions of distinct density, enclosing different enzyme concentrations demonstrated the existence of granule subpopulations. There were three subpopulations of azurophil granules, about four subpopulations of specific granules, one granule fraction perhaps representing the C-particles, and a fraction of plasma membrane vesicles.  相似文献   

15.
The subcellular distribution of nine glycosidases were studied in fractions of homogenized human polymorphonuclear leucocytes (neutrophils) obtained by isopycnic centrifugation through linear sucrose density gradients. The substrates were 4-methylumbelliferyl glycosides. All nine glycosides were hydrolysed by enzymes in neutrophil cytosol fractions, and by enzymes in at least one granule population. alpha-Glucosidase activity sedimented in sucrose density gradients to a point (p = 1.180 g/ml) just above the specific granules, possibly the 'tertiary' granule population. The peak corresponding to alpha-glucosidase did not co-sediment with, but considerably overlapped, the peak corresponding to lactoferrin, a marker for specific granules (p = 1.187 g/ml). alpha-Galactosidase activity was found primarily in heavy azurophil granules (p = 1.222 g/ml). alpha-Mannosidase activity was found primarily in light azurophil granules (p = 1.206 g/ml), following the distribution of myeloperoxidase, the commonly used azurophil granule marker. beta-Glucosidase activity was concentrated in mitochondrial fractions (p = 1.160 g/ml). All other glycosidases presented complex distributions, with activities not restricted to one granule class. Granule-associated glycosidase activities were increased 2--38 times when measured in the presence of 0.05% Triton X-100, indicating latency of the enzymes within granules.  相似文献   

16.
The properties of the calcium efflux system in the yeast Saccharomyces cerevisiae were investigated. After growing the cells overnight in medium containing 45Ca, the cells were transferred to medium containing glucose, Hepes buffer (pH 5.2) and monovalent cations. The presence of potassium or sodium in the medium induced efflux of calcium from the cells. The magnitude of the efflux was dependent on the concentration of these cations in the medium. The time course of calcium efflux was analyzed, and two types of exchangeable calcium pools, which turned over at different rates, were detected: ‘Fast turnover’ and ‘slow turnover’. Increase in the concentration of monovalent cations in the medium caused an increase in the fraction of cellular calcium which turned over at a fast rate, and activation of calcium efflux from the ‘slow turnover’ calcium pool. The specific changes in the parameters of calcium efflux induced by monovalent cations were different from those reported previously to be induced by divalent cations. Both processes, i.e. activation of calcium efflux by monovalent and by divalent cations, were found to be additive, indicating that they operate via different mechanisms. Experiments using the respiratory inhibitor Antimycin A, showed that stimulation of calcium efflux by monovalent cations is energy dependent. Lanthanum ions which are known to inhibit calcium influx into yeast cells, inhibitted the activation of calcium efflux by both divalent and monovalent cations. Determination of the cationic composition of the cells indicated that the stimulation of calcium efflux was accompanied by influx of potassium or sodium into the cells.  相似文献   

17.
PMA enhanced release of the azurophil granule enzyme, beta-glucuronidase, as well as lysozyme, from cytochalasin B-treated PMN's exposed to either zymosan particles or C5a. PMA was active at nanomolar concentrations, was not toxic to the cells, and was most effective when present for brief durations (0-1 min) before exposure of the cells to the stimuli. Beta-glucuronidase was not released in significant amounts from PMN's exposed to PMA alone, in the absence of stimuli such as zymosan or C5a. In contrast, only the specific granule enzyme, lysozyme, was released from unstimulated cells. Electron micrographs of cells exposed to PMA revealed an increase in the number of visible cytoplasmic microtubules as compared to control cells. Enhancement of lysosomal enzyme (beta-glucuronidase) release by PMA appears to be independent of effects on release of specific granule enzymes (lysozyme), but rather is likely due to PMA-induced elevations of cellular cGMP.  相似文献   

18.
We examined the role of mobilization of intracellular calcium in the ability of human neutrophils to discharge specific granule constituents upon stimulation with the synthetic chemotactic factor, N-formyl-met-leu-phe. Extracellular calcium was not required for optimal secretion of the specific granule markers lactoferrin and vitamin B12-binding protein. Depletion and chelation of intracellular calcium, as well as reconstitution experiments, however, revealed different calcium requirements for stimulated secretion of these markers. N-formyl-met-leu-phe-induced secretion of vitamin B12-binding protein required half-maximal change in intracellular calcium of greater than 20 nM, while lactoferrin requirements were approximately 140 nM. Thus, it appears that cytosolic free calcium modulates fusion of subpopulations of specific granules which with the neutrophil plasma membrane.  相似文献   

19.
The role of specific granules and cytochrome b in superoxide (O(2)) release was studied by comparing the effects of three different stimuli on normal human neutrophils, neutrophils congenitally deficient in specific granules, and granule-free normal neutrophil cytoplasts. Phorbol myristate acetate (PMA) stimulated normal neutrophils to release more O(2) than did N-formylmethionylleucylphenylalanine (fMet-Leu-Phe), which stimulated greater release than the calcium ionophore A23187. Neutrophils lacking specific granules produced variable amounts of O(2) in response to all stimuli. Stimulation with PMA, fMet-Leu-Phe, and A23187 produced maximal rates of O(2) release that were 32, 55, and 21% of that by normal cells. Likewise, granule-free neutrophil cytoplasts released 24, 20, and 0% of the O(2) released by intact cells. These data suggest that the stimuli require different mechanisms for activation. Three subcellular fractions (azurophil granule rich, specific granule rich, and plasma membrane rich) were separated by Percoll gradients from normal resting and stimulated neutrophils. In resting neutrophils, the cytochrome b content in the plasma membrane was 31% of the total, with the rest in the specific granule-rich fraction. Ten minutes after stimulation, PMA, fMet-Leu-Phe, and A23187 induced translocation of 27, 8, and 49%, respectively, of the cytochrome b from the specific granule-rich fraction to the plasma membrane. Although our data support a role for specific granule factors in A23187-induced O(2) release, there is no correlation between the amount of cytochrome b incorporated into the plasma membrane and the extent of O(2) production activated by the different stimuli.  相似文献   

20.
Membranes were prepared from rabbit polymorphonuclear leukocyte azurophil and specific granules separated by zonal differential centrifugation. The two types of granule membranes were quite similar in ultrastructural appearance, but they showed distinct differences in cholesterol-phospholipid ratios and in protein components demonstrable in polyacrylamide gels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号