首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The human X chromosome-encoded protein kinase X (PrKX) belongs to the family of cAMP-dependent protein kinases. The catalytically active recombinant enzyme expressed in COS cells phosphorylates the heptapeptide Kemptide (LRRASLG) with a specific activity of 1.5 micromol/(min.mg). Using surface plasmon resonance, high affinity interactions were demonstrated with the regulatory subunit type I (RIalpha) of cAMP-dependent protein kinase (KD = 10 nM) and the heat-stable protein kinase inhibitor (KD = 15 nM), but not with the type II regulatory subunit (RIIalpha, KD = 2.3 microM) under physiological conditions. Kemptide and autophosphorylation activities of PrKX are strongly inhibited by the RIalpha subunit and by protein kinase inhibitor in vitro, but only weakly by the RIIalpha subunit. The inhibition by the RIalpha subunit is reversed by addition of nanomolar concentrations of cAMP (Ka = 40 nM), thus demonstrating that PrKX is a novel, type I cAMP-dependent protein kinase that is activated at lower cAMP concentrations than the holoenzyme with the Calpha subunit of cAMP-dependent protein kinase. Microinjection data clearly indicate that the type I R subunit but not type II binds to PrKX in vivo, preventing the translocation of PrKX to the nucleus in the absence of cAMP. The RIIalpha subunit is an excellent substrate for PrKX and is phosphorylated in vitro in a cAMP-independent manner. We discuss how PrKX can modulate the cAMP-mediated signal transduction pathway by preferential binding to the RIalpha subunit and by phosphorylating the RIIalpha subunit in the absence of cAMP.  相似文献   

2.
Regulation of the expression of cAMP-dependent protein kinase in cellular aging was studied using the IMR-90 diploid human lung fibroblasts. The level of cAMP-dependent protein kinase present in cell extracts was monitored by 1) photoactivated incorporation of 8-N3-[32P]cAMP into the 47,000- and 54,000-dalton regulatory subunits of the type I and type II cAMP-dependent protein kinases, respectively; 2) cAMP-dependent phosphorylation of histone II AS catalyzed by the catalytic subunit of the kinase; and 3) fractionation and analysis of the type I and type II cAMP-dependent protein kinase by DEAE-Sephacel column chromatography. Our results showed an approximately two- to threefold increase in the level of the type I cAMP-dependent protein kinase and a somewhat smaller increase in the type II kinase in extracts of the "old" IMR-90 cells (population doubling greater than 48) as compared to that of the "young" cells (PDL 22-27). The timing of the increase in cAMP-dependent protein kinase coincided with a significant decrease in the proliferative potential of the cells. This result together with previously demonstrated effects of cAMP in the control of cell growth and differentiation and the increased expression of cAMP-dependent protein kinase during terminal differentiation of the murine preadipocytes (3T3-L1) and myoblast (L-5, L-6, and C2C13) suggests that regulation of the levels of cAMP and cAMP-dependent protein kinase plays a significant role in the control of cell growth and differentiation.  相似文献   

3.
Two protein bands, present in cytosol fractions from each of seven rat tissues examined, specifically incorporated 32P-labeled 8-azidoadenosine 3':5'-monophosphate (8-N3-[32P]cAMP), a photoaffinity label for cAMP-binding sites. These proteins had apparent molecular weights of 47,000 and 54,000 on a sodium dodecyl sulfate-polyacrylamide gel electrophoresis system. These two proteins were characterized in three of the tissues, namely, heart, uterus, and liver, by the total amount of 8-N3-[32P]cAMP incorporation, by the dissociation constant (Kd) for 8-N3-[32P]cAMP, and by the nucleotide specific inhibition of 8-N3-[32P]cAMP incorporation. Several lines of evidence were obtained that the protein with an apparent molecular weight of 47,000 represents the regulatory subunit of a type I cAMP-dependent protein kinase, while the protein with an apparent molecular weight of 54,000 represents the regulatory subunit of a type II cAMP-dependent protein kinase. Almost all of the cAMP receptor protein found in the cytosol of these tissues, as measured by 8-N3-[32P]cAMP incorporation, was associated with these two protein kinases, in agreement with the idea that most effects of cAMP are mediated through protein kinases. The photoaffinity labeling with 8-N3-[32P]cAMP can be used to estimate quantitatively the amounts of regulatory subunit of type I and type II cAMP-dependent protein kinases in various tissues.  相似文献   

4.
Several methods were compared for estimating the amount of regulatory subunit of an 800-fold purified Type II cAMP-dependent protein kinase from bovine heart. These methods included a reversable binding assay using either cAMP, or 8-N3-[32P]cAMP, photoaffinity labeling with 8-N3-[32P]cAMP, and autophosphorylation of the regulatory subunit of the enzyme. Although the regulatory subunit had a slightly lower affinity for 8-N3-cAMP than for cAMP, the total amount of regulatory subunit could be determined by each of the procedures examined. The results indicate that the photoaffinity analog 8-N3-[32P]cAMP is able to label quantitatively all cAMP-binding sites of the regulatory subunit of this cAMP-dependent protein kinase.  相似文献   

5.
3',5'-Cyclic adenosine monophosphate (cAMP) modulates prostaglandin production in human amnion membranes. The major effects of cAMP are presumably mediated through the phosphorylation of specific regulatory phosphoproteins following cAMP activation of cAMP-dependent protein kinase. Cyclic AMP-dependent protein kinase and phosphoproteins have not previously been characterized in human amnion. Total homogenates, cytosol, and membrane fractions from human amnion were examined for [3H]cAMP binding activity and cAMP-dependent kinase activity. cAMP-dependent kinase activity was barely detectable in crude amnion fractions. Cytosol was therefore partially purified by DEAE column chromatography for further examination. Two peaks of coincident [3H]cAMP binding and cAMP-dependent kinase activity were demonstrated at 70 and 140 mM NaCl, characteristic of the Type I and Type II cAMP-dependent protein kinase isozymes. [3H]cAMP binding to the material from both peak fractions was saturable and reversible. Scatchard analysis of [3H]cAMP binding to the peak fractions was linear for peak I and curvilinear for peak II. Assuming a one-site model, [3H]cAMP binding to the Type I isozyme showed a KD = 4.17 x 10(-8) M and Bmax = 73 pmole/mg protein; using a two-site model, [3H]cAMP binding to the high-affinity site for the Type II isozyme had a KD = 3.94 x 10(-8) M and Bmax = 6.3 pmole/mg protein. Other cyclic nucleotides competed for these [3H]cAMP binding sites with a potency order of cAMP much greater than cGMP greater than (BU)2cAMP.cAMP caused a dose-dependent increase in cAMP-dependent kinase activity in the peak fractions; half-maximal activation was observed with 5.0 x 10(-8) M cAMP. The ability of cAMP to increase phosphorylation of endogenous proteins in both crude amnion cytosol and cytosol from cultures of amnion epithelial cells was assessed using [32P]ATP, SDS-polyacrylamide gel electrophoresis and autoradiography. cAMP stimulated 32P incorporation into three proteins having Mr = 80,000, 54,000, and 43,000 (P less than .01). Half-maximal 32P incorporation into these proteins occurred at 1.0 x 10(-7) M cAMP. cAMP-dependent kinase is present in human amnion; specific cAMP-enhanced phosphoproteins are also present. Hormones elevating cAMP levels in amnion may exert their effects by activating cAMP-dependent kinase and phosphorylating these phosphoproteins.  相似文献   

6.
We have characterized a cyclic AMP-resistant Chinese hamster ovary (CHO) cell mutant in which one of two major species of type I regulatory subunit (RI) of cyclic AMP-dependent protein kinase is altered. Wild-type CHO cell extracts contain two cyclic AMP-dependent protein kinase activities. As shown by DEAE-cellulose chromatography, there is a peak of type I protein kinase activity in mutant extracts, but the type II protein kinase activity is considerably reduced even though free type II regulatory subunit (RII) is present. The type I kinase from the mutant has an altered RI (RI*) whose KD for the binding of 8-N3[32P] cAMP (KD = 1.3 X 10(-5) M) is increased by more than 200-fold compared to RI from the wild-type enzyme (KD = 5.5 X 10(-8) M). No differences were found between the catalytic subunits from the wild-type and mutant type I kinases. A large portion of RI in mutant and wild-type extracts is present in the free form. The RI* derived from mutant type I protein kinase shows altered labeling by 8-N3[32P]cAMP (KD = 1.3 X 10(-5) M) whereas the free RI from the mutant is labeled normally by the photoaffinity label (KD = 7.2 X 10(-8) M), suggesting that the RI* which binds to the catalytic subunit is functionally different from the free form of RI. The decreased amount of type II kinase activity in the mutant appears to be due to competition of RI* with RII for binding to the catalytic subunit. Translation of mRNA from wild-type CHO cells results in the synthesis of two different charge forms of RI, providing biochemical confirmation of two different species of RI in CHO cells. Additional biochemical evidence based on isoelectric focusing behavior of 8-N3[32P]cAMP-labeled RI species and [35S]methionine-labeled RI from mutant and wild-type extracts confirms the charge heterogeneity of RI species in CHO cells. These genetic and biochemical data taken together are consistent with the conclusion that there are at least two different species of RI present in CHO cells and that one of these species is altered in the mutant analyzed in this work.  相似文献   

7.
J Bubis  S S Taylor 《Biochemistry》1985,24(9):2163-2170
Reconstituted porcine cAMP-dependent protein kinase type I was labeled with 8-azidoadenosine 3',5'-monophosphate (8-N3cAMP) to study cyclic nucleotide binding and to identify amino acid residues that are either in or in close proximity to the cAMP binding sites. The photoaffinity analogue 8-N3cAMP behaved as cAMP itself with respect to cyclic nucleotide binding. For both cAMP and 8-N3cAMP, 2 mol of nucleotide was bound per mole of type I regulatory subunit monomer (RI), the apparent Kd's observed were approximately 10-17 nM on the basis of either Millipore filtration assays, equilibrium dialysis, or ammonium sulfate precipitation, Scatchard plots showed positive cooperativity, and (4) the Hill coefficients were approximately 1.5-1.6. After photolysis and addition of an excess of cAMP, approximately 1 mol of 8-N3cAMP/mol of RI monomer was covalently incorporated. Tryptic digestion of the labeled protein revealed that two unique tryptic peptides were modified. Proline-271 and tyrosine-371 were identified as the two residues that were covalently modified by 8-N3cAMP in RI. These results contrast with the type II regulatory subunit (RII) where 8-N3cAMP modified covalently a single tyrosine residue [Kerlavage, A. R., & Taylor, S. S. (1980) J. Biol. Chem. 255, 8483-8488]. RI contains two adjacent regions of sequence homology in the COOH-terminal fragment that binds two molecules of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We have isolated and partially characterized three mutants of the pheochromocytoma line PC12 by using dibutyryl cyclic AMP (cAMP) as a selective agent. Each of these variants, A126-1B2, A208-4, and A208-7, was resistant to both dibutyryl cAMP and cholera toxin when cell growth was measured. In comparison to wild-type PC12 cells, each of these mutants was deficient in the ability to induce ornithine decarboxylase (ODC) in response to agents that act via a cAMP-dependent pathway. In contrast, each of these mutants induced ODC in response to nerve growth factor. To understand the nature of the mutations, the cAMP-dependent protein kinases of the wild type and of each of these mutants were studied by measuring both histone kinase activity and 8-N3-[32P]cAMP labeling. Wild-type PC12 cells contained both cAMP-dependent protein kinase type I (cAMP-PKI) and cAMP-dependent protein kinase type II (cAMP-PKII). Regulatory subunits were detected in both soluble and particulate fractions. The mutant A126-1B2 contained near wild-type PC12 levels of cAMP-PKI but greatly reduced levels of cAMP-PKII. Furthermore, when compared with wild-type PC12 cells, this cell line had an altered distribution in ion-exchange chromatography of regulatory subunits of cAMP-PKI and cAMP-PKII. The mutant A208-4 demonstrated wild-type-level binding of 8-N3-[32P]cAMP to both type I and type II regulatory subunits, but only half the wild-type level of type II catalytic activity. The mutant A208-7 had type I and type II catalytic activities equivalent to those in wild-type cells. However, the regulatory subunit of cAMP-PKI occurring in A208-7 demonstrated decreased levels of binding 8-N3-[32P]cAMP in comparison with the wild type. Furthermore, all mutants were defective in their abilities to bind 8-N3-[32P]cAMP to the type II regulatory protein in the particulate fraction. Thus, cAMP-PK was altered in each of these mutants. We conclude that both cAMP-PKI and cAMP-PKII are apparently required to induce ODC in response to increases in cAMP. Finally, since all three mutants induced ODC in response to nerve growth factor, the nerve growth factor-dependent induction of OCD was not mediated by an increase in cAMP that led to an activation of cAMP-PK. These mutants will be useful in the elucidation of the many functions controlled by cAMP and nerve growth factor.  相似文献   

9.
The levels of cAMP-dependent protein kinases were measured in developing rat brain by a variety of methods. The regulatory subunit (R) was measured both by [3H]cAMP binding and by 8-N3-[32P]cAMP incorporation. The catalytic subunit (C) was measured by an assay of histone kinase activity. Data were calculated per mg protein. Neither R nor C levels changed significantly in either membranes or cytosol during development. The ratio of R to C was essentially unity in the cerebra of both newborn (2-day-old) and adult (40-day-old) rats. Polyacrylamide-gel electrophoresis resolved two regulatory subunits (R-I) and (R-II) which were derived from the Type I and Type II cAMP-dependent protein kinases, respectively. 8-N3-[32P]cAMP incorporation into Proteins R-I and R-II indicated that the amounts of Proteins R-I and R-II did not change significantly in either membranes or cytosol during development.  相似文献   

10.
cAMP-dependent protein kinase was compared in normal and Rous Sarcoma Virus transformed chicken embryo fibroblasts. Total cAMP binding activity and cAMP-dependent histone kinase activity were unaltered by RSV transformation. The apparent Km for activation of histone kinase activity by cAMP was 35 nM in both normal and transformed cells. Using 8-N3-cAMP photoaffinity labeling, normal and transformed cells were also found to contain equal quantities of a single 42,000 Mr regulatory sub-unit isoenzyme of A-kinase. This isoenzyme corresponded to the lower molecular weight isoenzyme of the two enzymes found in normal chicken skeletal muscle. Both avian isoenzymes were about 4,000 Mr smaller than the corresponding bovine type I and type II regulatory subunits. Rous Sarcoma Virus transformation does not directly alter the amount or activity of cAMP-dependent protein kinase.  相似文献   

11.
Cardiac cAMP-dependent protein kinases were compared between the spontaneously hypertensive rat and the age-matched normotensive Wistar-Kyoto rat by DEAE-cellulose chromatography, photoaffinity labeling with 8-N3[32P]cAMP, and Western blots using the antiregulatory and 125I-anticatalytic subunit antibodies. DEAE-cellulose chromatography revealed that the ratio of type I to type II cAMP-dependent protein kinase was 3:1 in the cytoplasmic soluble proteins from the heart of normotensive rat. In contrast, the ratio of type I to type II was 1:1 in the heart of hypertensive rat. Type I protein kinase was reduced by 3-fold in hypertensive rat compared to normotensive rat. The levels of type II protein kinase were similar in both normotensive and hypertensive rats. The ratio of regulatory subunits of type I (RI) to type II (RII) cAMP-dependent protein kinase was 2.5 in the soluble proteins from the heart of normotensive rat compared to a ratio of 0.62 for hypertensive rat. RI was reduced by 4-fold in hypertensive rat compared to normotensive rat. The decrease in RI from hypertensive rat was also demonstrated by photoaffinity labeling with 8-N3[32P] cAMP. Western blot analysis of the catalytic subunit revealed a 2-fold decrease in catalytic subunit (C) in the soluble proteins from the hypertensive rat compared to normotensive rat. These results show that the reduced level of activity of cardiac type I protein kinase in hypertensive rat was the result of a decrease in both the RI and C subunits, thus reducing the number of type I cAMP-dependent protein kinase holoenzyme molecules. Comparison of type I protein kinase from "prehypertensive" and "hypertensive" stages of hypertensive rat indicated that the type I protein kinase was reduced by 3-fold before an increase in the blood pressure was detectable. Cardiac type I protein kinase is predominantly associated with the cytoplasmic proteins in both the normotensive and hypertensive rats. The levels of RI, RII, and C associated with the membrane-solubilized proteins were not affected in the hypertensive rat. The levels of RII were similar in the brain tissue of normotensive and hypertensive rats, suggesting that the decrease in type I protein kinase is specific in hypertensive rat. In conclusion, a decrease in cardiac type I cAMP-dependent protein kinase may affect the degree of phosphorylation of cardiac regulatory proteins, thus impairing normal cardiac physiology in hypertensive rat.  相似文献   

12.
The regulatory subunit of cAMP-dependent protein kinase II (RII) from porcine heart was modified specifically and covalently using the photoaffinity reagent, 8-azidoadenosine 3':5'-monophosphate (8-N3cAMP). In the presence of excess cAMP, the photo-dependent incorporation of 8-N3cAMP was abolished whereas excess AMP and ATP had no effect. A maximum incorporation of 0.5 mol of 8-N3cAMP was achieved/mol of regulatory subunit monomer (Mr = 55,000). This level of incorporation was obtained when the purified regulatory subunit was treated with urea prior to labeling to remove residual bound cAMP. When the regulatory subunit was labeled with radioactive 8-N3cAMP, cleaved with trypsin, and the tryptic peptides mapped in two dimensions, a single major radioactive peptide was observed. Chemical cleavage of the radioactively labeled RII with cyanogen bromide and subsequent chromatography on Sephadex G-50 also yielded a single major peak of radioactivity. The covalently modified cyanogen bromide peptide subsequently was purified to homogeneity using high performance liquid chromatography. Greater than 90% of the radioactivity that was incorporated into the regulatory subunit was recovered in this cyanogen bromide peptide which had the following sequence: Lys-Arg-Asn-Ile-Ser-His-Tyr (cAMP)-Glu-Glu-Cln-Leu-Val-Lys-Hse. When the Edman degradation of this peptide was carried out, the radioactivity derived from the 8-N3cAMP was released with the tyrosine residue at Step 7 identifying this residue as the specific site of attachment of the photoaffinity reagent.  相似文献   

13.
The photoaffinity probe (32P) 8-N3 cAMP was used to label the cAMP binding proteins in washed ejaculated human sperm. Three saturable binding proteins were photolabeled in both intact and disrupted cells with apparent molecular weights of 55,000, 49,000 and 40,000 daltons corresponding to the regulatory subunits of type II and type I cAMP-dependent protein kinase (cAMP-PK) and to an endogenous proteolytic product of the regulatory subunits, respectively. Photoincorporation in the three proteins could be totally blocked by preincubating the cells with cAMP. Cell-free seminal plasma was found to be free of detectable (32P) 8-N3 cAMP-binding proteins. The 8-N, cAMP was also effective in stimulating endogenous cAMP-PK activity in intact and disrupted sperm. A substantial amount of (32P) 8-N3 cAMP binding to types I and II regulatory subunits and cAMP-PK activity was detected on washed intact cells. Intact cells bound 1.80 pmol of (32P) 8-N3 cAMP/mg protein and had cAMP-PK activity of 824 units/10(8) cells. Disrupted cells bound 3.95 pmol (32P) 8-N3 cAMP/mg protein and had a cAMP-PK activity of 2,206 units/10(8) cells. The data presented support the concept of two classes of cAMP receptors being differentially available to externally added (32P) 8-N3 cAMP and proteases. Cellular membrane integrity and membrane sidedness are discussed as possible explanations for the observation reported.  相似文献   

14.
The photoaffinity reagent 8-azidoadenosine 3':5'-monophosphate (8-N3cAMP) was previously shown to modify a single tyrosine residue on the type II regulatory subunit of cAMP-dependent protein kinase (Kerlavage, A.R., and Taylor, S.S. (1980) J. Biol. Chem, 255, 8483-8488). In the present studies, the binding stoichiometries of type II holoenzyme for cAMP and 8-N3cAMP were determined using Millipore filtration assays in the absence (Assay A) and presence (Assay B) of 2 M NaCl and histone. The binding stoichiometry of holoenzyme for cAMP was 2 mol/mol with Assay A, and 4 mol/mol with assay B. The binding stoichiometry for 8-N3cAMP was 2 mol/mol with Assay B or with Assay A following photolysis of the holoenzyme:8-N3cAMP mixture. In the absence of photolysis, the binding stoichiometry for 8-N3cAMP was 0.4 mol/mol with Assay A. Both 8-N3cAMP and cAMP fully dissociated the holoenzyme. Holoenzyme, labeled with 8-N3[3H]cAMP on a preparative scale, incorporated 1 mol of 8-N3[3H]cAMP/mol of regulatory subunit (RII) monomer. The labeled RII was separated from catalytic subunit, cleaved with cyanogen bromide, and the resultant peptides were separated by high performance liquid chromatography. A single radioactive peptide was observed which had the same NH2 terminal residue and amino acid composition as the peptide obtained when dissociated RII was labeled with 8-N3cAMP.  相似文献   

15.
Liver post-mitochondrial supernatant from diabetic rats showed a decrease in the [3H] cAMP binding activity which was associated with a decrease in the number of cAMP binding sites. On the other hand, the cAMP binding activity of nuclear fractions from diabetic rat liver was not significantly different than that of control. The cAMP binding activity of post-mitochondrial supernatant was further analyzed by using 8-azido-[32P] cAMP, a photoaffinity probe for cAMP binding sites. The diabetic supernatants showed a selective reduction in the photolabeling of a protein band representing the regulatory subunit of type I cAMP-dependent protein kinase without any appreciable change in the photolabeling of regulatory subunit of type II cAMP-dependent protein kinase.  相似文献   

16.
Retinoylation (retinoic acid acylation) is a post-translational modification of proteins occurring in a variety of eukaryotic cell lines. There are at least 20 retinoylated proteins in the human myeloid leukemia cell line HL60 (N. Takahashi and T.R. Breitman (1990) J. Biol. Chem. 265, 19, 158-19, 162). Here we found that some retinoylated proteins may be cAMP-binding proteins. Five proteins, covalently labeled by 8-azido-[32P]cAMP which specifically reacts with the regulatory subunits of cAMP-dependent protein kinase, comigrated on two-dimensional polyacrylamide gel electrophoresis with retinoylated proteins of Mr 37,000 (p37RA), 47,000 (p47RA), and 51,000 (p51RA) labeled by [3H]retinoic acid treatment of intact cells. Furthermore, p47RA coeluted on Mono Q anion exchange chromatography with the type I cAMP-dependent protein kinase holoenzyme and p51RA coeluted on Mono Q anion exchange chromatography with the type II cAMP-dependent protein kinase holoenzyme. An antiserum specific to RI, the cAMP-binding regulatory subunit of type I cAMP-dependent protein kinase, immunoprecipitated p47RA. An antiserum specific to RII, the cAMP-binding regulatory subunit of type II cAMP-dependent protein kinase, immunoprecipitated p51RA. These results indicate that both the RI and the RII regulatory subunits of cAMP-dependent protein kinase are retinoylated. Thus, an early event in RA-induced differentiation of HL60 cells may be the retinoylation of subpopulations of both RI and RII.  相似文献   

17.
Adenylate cyclase and cAMP-dependent protein kinase activities in gametocytogenic (LE5) and nongametocytogenic (T9/96) clones of Plasmodium falciparum were compared to explore the role of cAMP in sexual differentiation of the parasite. Basal adenylate cyclase levels were equivalent in the 2 clones. However, cAMP-dependent histone II-A kinase activity was significantly higher in LE5 than in T9/96 over a range of cAMP concentrations. This difference was due to a decreased Vmax for the enzyme in the nongametocytogenic clone and not to an increased Ka for cAMP. Examination of parasite cAMP-binding proteins, likely to be kinase regulatory subunits, by both photoaffinity labeling with [32P]8-N3-cAMP and affinity chromatography of metabolically [35S]methionine-labeled cytosol of cAMP-agarose revealed a 53-kDa cAMP binding protein in both clones and a 49-kDa cAMP-binding protein in T9/96 that was absent in LE5. Our results suggest that T9/96 has lost the ability to undergo gametocytogenesis due to a substantial decrease in cAMP-dependent protein kinase activity rendering the parasite unable to respond to increased intracellular cAMP levels. Moreover, the reduction in cAMP-dependent protein kinase activity may be due to the presence of an alternative regulatory subunit of the kinase.  相似文献   

18.
Whether or not various cytosolic protein kinases (and especially the type I cAMP-dependent protein kinase) of rat ventral prostate are specifically regulated with respect to total activity or specific activity by androgen has been investigated. Following androgen deprivation, the total activity per prostate of cAMP-dependent protein kinase (with histone as substrate) changed little at 24 h, declining by about 20% at 96 h. Under these conditions, its specific activity remained unaltered at 24 h, but was markedly enhanced at 96 h postorchiectomy. Type II cAMP-dependent protein kinase in rat ventral prostate cytosol was the only form of cAMP-dependent protein kinases present as determined by measurement of catalytic activity as well as [32P]-8-N3-cAMP binding to the regulatory subunits. There was no alteration in the distribution of the isoenzymes of cAMP-dependent protein kinases or the response of these kinase activities to cAMP owing to castration of animals. The prostatic cytosol also contains free regulatory subunit (with molecular weight similar to that of regulatory subunit R1) which coelutes with type II cAMP-dependent protein kinase. This finding was confirmed by using [32P]-8-N3-cAMP photoaffinity labeling of cAMP-binding proteins. With respect to cAMP-independent protein kinase (measured with dephosphophosvitin as substrate), a decline of 31% in its specific activity was observed in cytosol of prostates from rats castrated for a period of 24 h without significant further change at later periods following castration. However, there was a marked progressive reduction in total activity of this enzyme per prostate (loss of 72% at 96 h postorchiectomy). The increase in specific activity of cAMP-dependent, but not cAMP-independent, protein kinase in the face of decreasing total activity in the cytosol at later periods of castration (e.g., at 96 h) may reflect a slower loss of the former enzyme protein than the bulk of the cytosolic proteins. Administration of testosterone to castrated animals prevented these changes. These data do not indicate a specific regulation by steroid of the type I cAMP-dependent protein kinase in the prostate. Rather, the cAMP-independent protein kinase (with dephosphophosvitin as substrate) appears to be modulated by the androgenic status of the animal.  相似文献   

19.
A novel method for rapidly determining the amount and degree of association-dissociation of the Type I and Type II cAMP-dependent protein kinases has been developed and validated. Antibodies directed against the regulatory subunits of Type I and Type II cAMP-dependent protein kinases were used. The antibodies formed complexes with holoenzymes and regulatory subunits which were precipitated by goat anti-rabbit IgG (immunoglobulin G). These complexes bound [3H]cAMP with an apparent Kb of 20 nM for protein kinase I and 80 nM for protein kinase II. Immunoprecipitated protein kinases I and II were catalytically active when incubated with cAMP, [gamma-32P]ATP, and histone H2B. When mixtures of the two kinase isoenzymes or cytosol were incubated with various amounts of [3H]cAMP and the isoenzymes were separated by precipitation with antisera specific for each isoenzyme, the amount of [3H]cAMP associated with immunoprecipitates was proportional to the concentration of [3H]cAMP. In contrast, the catalytic activity that was immunoprecipitated varied inversely with the concentration of [3H]cAMP, showing that the activation of protein kinase could be assessed by the disappearance of catalytic activity from the immunoprecipitates. In the absence of MgATP protein kinase I was activated by a 10-fold lower concentration of cAMP than protein kinase II. However, when MgATP was added to the incubation, there was no significant difference in the binding of [3H]cAMP or dissociation of catalytic subunits of the two isoenzymes. The anti-R antibodies were also used to rapidly quantitate the concentration of regulatory subunits and the relative ratio of protein kinases I and II in tissue cytosols.  相似文献   

20.
Cyclic AMP-dependent protein kinase and 3H-cAMP-binding activities were determined in normal Balb 3T3 cells and compared with the same preparations from SV40, chemical, and spontaneous transformants of 3T3 cells. The cytosolic protein kinase activities and protein kinase activity ratios were similar in all cell lines, although when the normal 3T3 cytosol was prepared by homogenization it contained less 3H-cAMP binding activity than the transformed 3T3 cytosols. The Triton X-100 treated particulate fractions from the normal and transformed 3T3 cells contained similar protein kinase and binding activities. The isozymic profile of cAMP-dependent protein kinases was examined by DEAE-chromatography. The 3T3 cells contained only type II isozyme in either cytosolic or membrane fractions. All transformants of the 3T3 cells contained both type I and type II isozymes. Other cell cultures, including chicken embryo fibroblasts, rat kidney cells, and human or calf endothelial cells contained type I and type II isozymes. Binding of the photoaffinity analogue of cAMP, 8-N3 cAMP, to the regulatory subunits of protein kinases in sonicates obtained from Balb 3T3 and SV 3T3 cells followed by separation on SDS polyacrylamide electrophoresis showed that the amount of RII subunit was approximately equal in the two cell lines. RI in Balb 3T3 cells was detectable but in a much lower quantity than in SV 3T3 cells. The cyclic AMP dependent-protein kinases from Balb 3T3 cells appears to be different from SV 3T3 cells by three criteria: 3H-cAMP binding in homogenates, DEAE chromatographic separation of isozymes, and 8-N3 cAMP binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号