首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Preliminary observations were made between October 1982 and May 1983 on the nature, taxonomic composition, spatial distribution, buoyancy behaviour and nutrient requirements of some unusual planktonic algal “jellies” in Oguta Lake in Southeastern Nigeria. These “jellies” are macroscopic, blue-green algal masses whose excessive mucilage of high consistency acts as substrata for other epiphytic components viz. diatoms and green algae. They are more abundant in the lentic areas of the lake, undergo diurnal vertical movements and have their growth enhanced by spikes of nitrogen and phosphorus salts into their aquatic medium. The effects of these “jellies” on the ecology and general water use of the lake are discussed. Speculations on the reasons for their occurrence are given and possible control measures outlined.  相似文献   

2.
Trace metals (Cd, Cu, Pb and Zn) were analysed in crustaceans collected on Polarstern cruises ANT XVI/2 (1999) and ANT XXI/2 (2003/04, BENDEX) to the Weddell Sea. Our study provides further evidence for the frequently reported “Cd anomaly” in polar crustaceans, with data ranging from 1.2 (Ceratoserolis trilobitoides) to 6.2 mg Cd kg–1 DW (Notocrangon antarcticus) in 1999 and from 1.2 (Waldeckia obesa) to 20.3 mg Cd kg–1 (Tryphosella murrayi) in 2003. Pb concentrations well below 1 mg kg–1 in most of the samples analysed might serve as a regional or even global background value for comparison in biomonitoring studies. Increasing Cu concentrations from eggs of decapods (e.g., 5 vs. 51 mg kg–1 in N. antarcticus) or juveniles in the brood pouch of an amphipod species to adult females indicate that the enzymatic requirements and haemocyanin component demand for Cu in early life‐history stages is probably not met without a distinct bioaccumulation of this essential element after hatching. Most interestingly, Cd also increases (<0.1 vs. 6.2 mg kg–1 in N. antarcticus). This could be the consequence of efficient uptake mechanisms for Cu that cannot discriminate between this element and Cd. Cu and Zn concentrations in decapods of this study are largely within the range reported worldwide (40–90 mg Cu kg–1 and 40–80 mg Zn kg–1), indicating that these elements are regulated. The enormous heterogeneity of Cd and Zn in many amphipod species investigated (e.g., from 0.6 in Gnathiphimedia mandibularis to 34.4 mg Cd kg–1 in Orchomenopsis acanthura and from 41 in Eusirus antarcticus to 1244 mg Zn kg–1 in Iphimediella bransfieldi) supports the hypothesis of the “Cd anomaly” and suggests that there is probably no consistent metabolic demand for the essential element Zn in this taxonomic group. The heterogeneity of Cu in amphipods is less pronounced. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The colorless, large sulfur bacteria are well known because of their intriguing appearance, size and abundance in sulfidic settings. Since their discovery in 1803 these bacteria have been classified according to their conspicuous morphology. However, in microbiology the use of morphological criteria alone to predict phylogenetic relatedness has frequently proven to be misleading. Recent sequencing of a number of 16S rRNA genes of large sulfur bacteria revealed frequent inconsistencies between the morphologically determined taxonomy of genera and the genetically derived classification. Nevertheless, newly described bacteria were classified based on their morphological properties, leading to polyphyletic taxa. We performed sequencing of 16S rRNA genes and internal transcribed spacer (ITS) regions, together with detailed morphological analysis of hand-picked individuals of novel non-filamentous as well as known filamentous large sulfur bacteria, including the hitherto only partially sequenced species Thiomargarita namibiensis, Thioploca araucae and Thioploca chileae. Based on 128 nearly full-length 16S rRNA-ITS sequences, we propose the retention of the family Beggiatoaceae for the genera closely related to Beggiatoa, as opposed to the recently suggested fusion of all colorless sulfur bacteria into one family, the Thiotrichaceae. Furthermore, we propose the addition of nine Candidatus species along with seven new Candidatus genera to the family Beggiatoaceae. The extended family Beggiatoaceae thus remains monophyletic and is phylogenetically clearly separated from other related families.  相似文献   

4.
5.
Biophysical considerations allow estimates of the mechanical stresses on self-bearing vertical stems of plants. Even at moderate wind velocities the stresses induced by aerodynamic forces dominate over those induced by the own weight. Using polar coordinates, analytical expressions of cross-sectional area and axial second moment of area for centrisymmetric structures with symmetries threefold or higher are derived. Calculating the relative section modulus for various (centrisymmetric) arrangements of stabilizing structures leads to an estimate of the “mechanical effectivity” of these structures. If for plant stems, seen as composite materials, the second moments of area and the elastic moduli are known, the contribution of the different tissues to mechanical stability can be determined quantitatively. The mechanical design of early “vascular” land plants and of stems of (fossil) trees and lianas in different ontogenetic stages can be assessed.  相似文献   

6.
Seed treatment with non-sterilized powdered straws from 39 crops was tested for the control of Pythium damping-off of sugar beet. Four straws, including flax, coriander, pea, and lentil were effective in controlling the disease in soil artificially infested with Pythium sp. “group G.” Sterilizing flax and pea straws eliminated the efficacy of these straws. Wheat straw powder coated on sugar beet seeds increased the incidence of Pythium damping-off but this effect was reversed by the co-inoculation of wheat straws with the biocontrol agent Pseudomonas fluorescens 708. Coating sugar beet seeds with P. fluorescens 708 and flax or pea straws also increased the efficiency of the bacterial strain for the control of Pythium damping-off. Pea straws and to a lesser extent lentil straws produced volatile substances that affected mycelial growth of Pythium sp. “group G” on potato dextrose agar in Petri plates when the straws were mixed with water and left to ferment for two days. Fermentation of pea straws led to the accumulation of volatile ammonia, which was produced by the reduction of the large amount of nitrate stored in the straw. Reduction of nitrate and therefore the release of volatile ammonia did not occur in sterilized pea straws. However, fermenting sterile pea straws with bacteria from different genera restored nitrate reduction and the release of volatile ammonia, suggesting that microorganisms associated with pea straws are responsible for the conversion of nitrate into volatile ammonia which in turn control Pythium damping-off disease in sugar beet.  相似文献   

7.
Despite the recognition that the capacity to acquire N is critical in plant response to CO2 enrichment, there is little information on how elevated CO2 affects root N uptake kinetics. The few available data indicate a highly variable pattern of response to elevated CO2, but it is presently unclear if the observed inconsistencies are caused by differences in experimental protocols or by true species differences. Furthermore, if there are interspecific variations in N uptake responses to elevated CO2, it is not clear whether these are associated with different functional groups. Accordingly, we examined intact root‐system NH4+ and NO3 uptake kinetic responses to elevated CO2 in seedlings of six temperate forest tree species, representing (i) fast‐ vs. slow‐growers and (ii) broad‐leaves vs. conifers, that were cultured and assayed in otherwise similar conditions. In general, the species tested had a higher uptake capacity (Vmax) for NH4+ than for NO3. Species substantially differed in their NO3 and NH4+ uptake capacities, but the interspecific differences were markedly greater for NO3 than NH4+ uptake. Elevated CO2 had a species‐dependent effect on root uptake capacity for NH4+ ranging from an increase of 215% in Acer negundo L. to a decrease of about 40% in Quercus macrocarpa Michx. In contrast, NO3 uptake capacity responded little to CO2 in all the species except A. negundo in which it was significantly down‐regulated at elevated CO2. Across species, the capacity for NH4+ uptake was positively correlated with the relative growth rate (RGR) of species; however, the CO2 effect on NH4+ uptake capacity could not be explained by changes in RGR. The observed variation in NH4+ uptake response to elevated CO2 was also inconsistent with life‐form differences. Other possible mechanisms that may explain why elevated CO2 elicits a species‐specific response in root N uptake kinetics are discussed. Despite the fact that the exact mechanism(s) for such interspecific variation remains unresolved, these differences may have a significant implication for competitive interactions and community responses to elevated CO2 environment. We suggest that differential species responses in nutrient uptake capacity could be one potential mechanism for the CO2‐induced shifts in net primary productivity and species composition that have been observed in experimental communities exposed to elevated levels of CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号