首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 93 毫秒
1.
四川省森林植被碳储量的空间分异特征   总被引:8,自引:0,他引:8  
黄从德  张健  杨万勤  唐宵  张国庆 《生态学报》2009,29(9):5115-5121
森林植被碳储量的空间分异特征研究可为以减排增汇为目标的森林生态系统碳库管理提供重要的基础数据.根据实测的林分含碳量和区域生物量-蓄积量回归模型计算了四川省森林植被碳储量,使用ArcGIS软件绘制和分析了四川森林植被碳储量的空间分异特征.结果表明,四川省森林植被的平均碳密度为38.04 MgC·hm-2(12.15~59.51 MgC·hm-2).受青藏高原隆升和人类活动干扰及其叠加效应的影响,四川森林植被碳密度空间分异明显,总体上表现出随纬度、海拔高度和坡度的增加而增加,随经度的增加而减小,高海拔地区和陡坡地带具有较高的碳密度.减少人类活动对森林的破坏及采取森林分区经营管理是稳定和增强四川森林碳汇功能的有效途径.  相似文献   

2.
彭娓  董利虎  李凤日 《生态学杂志》2016,27(12):3749-3758
基于大兴安岭东部地区主要林型的生物量调查数据,建立了3个主要树种的一元可加性生物量模型,探讨了不同林型森林群落和乔木层、灌木层、草本层、凋落物层的碳储量及其分配规律.结果表明: 杜鹃-兴安落叶松林乔、灌、草、凋落物层碳储量分别为71.00、0.34、0.05和11.97 t·hm-2,杜香-兴安落叶松林各层碳储量分别为47.82、0.88、0和5.04 t·hm-2,杜鹃-兴安落叶松-白桦混交林分别为56.56、0.44、0.04、8.72 t·hm-2,杜香-兴安落叶松-白桦混交林分别为46.21、0.66、0.07、6.16 t·hm-2,杜鹃-白桦林分别为40.90、1.37、0.04、3.67 t·hm-2,杜香-白桦林分别为36.28、1.12、0.18、4.35 t·hm-2.林下植被为杜鹃的林分群落碳储量大于林下植被为杜香的林分;林下植被相似的情况下,森林群落碳储量大小顺序为:兴安落叶松林>兴安落叶松-白桦混交林>白桦林;不同林型群落碳储量不同,大小顺序为:杜鹃-兴安落叶松林(83.36 t·hm-2)>杜鹃-兴安落叶松-白桦混交林(65.76 t·hm-2)>杜香-兴安落叶松林(53.74 t·hm-2)>杜香-兴安落叶松-白桦混交林(53.10 t·hm-2)>杜鹃-白桦林(45.98 t·hm-2)>杜香-白桦林(41.93 t·hm-2),且不同林型森林群落碳储量垂直分配规律为:乔木层(85.2%~89.0%)>凋落物层(8.0%~14.4%)>灌木层(0.4%~2.7%)>草本层(0~0.4%).  相似文献   

3.
《植物生态学报》2016,40(4):341
Aims
Forests represent the most important component of the terrestrial biological carbon pool and play an important role in the global carbon cycle. The regional scale estimation of carbon budgets of forest ecosystems, however, have high uncertainties because of the different data sources, estimation methods and so on. Our objective was to accurately estimate the carbon storage, density and sequestration rate in forest vegetation in Jilin Province of China, in order to understand the role of the carbon sink and to better manage forest ecosystems.
Methods
Vegetation survey data were used to determine forest distribution, size of area and vegetation types regionally. In our study, 561 plots were investigated to build volume-biomass models; 288 plots of shrubs and herbs were harvested to calculate the biomass of understory vegetation, and samples of trees, shrubs and herbs were collected to analyze carbon content. Carbon storage, density and sequestration rate were estimated by two forest inventory data (2009 and 2014), combined with volume-biomass models, the average biomass of understory vegetation and carbon content of vegetation. Finally, the distribution patterns of carbon pools were presented using ArcGIS soft ware.
Important findings
Understory vegetation biomass overall was less than 3% of the tree layer biomass, varying greatly among different forest types and even among the similar types. The carbon content of trees was between 45.80%-52.97%, and that of the coniferous forests was higher than that of the broadleaf forests. The carbon content of shrub and herb layers was about 39.79%-47.25% and 40%, respectively. Therefore, the vegetation carbon conversion coefficient was 0.47 or 0.48 in Jilin Province, and the conventional use of 0.50 or 0.45 would cause deviation of ±5.26%. The vegetation carbon pool of Jilin Province was at the upper range of regional carbon pool and had higher capacity of carbon sequestration. The value in 2009 and 2014 was 471.29 Tg C and 505.76 Tg C, respectively, and the total increase was 34.47 Tg C with average annual growth of 6.89 Tg C·a-1. The corresponding carbon sequestration rate was 0.92 t·hm-2·a-1. The carbon density rose from 64.58 t·hm-2 in 2009 to 66.68 t·hm-2 in 2014, with an average increase of 2.10 t·hm-2. In addition, the carbon storage of the Quercus mongolica forests and broadleaved mixed forests, accounted for 90.34% of that of all forests. The carbon increment followed the order of young > over-mature > near mature > middle-aged > mature forests. The carbon sequestration rate of followed the order of over-mature > young > near mature > middle-aged > mature forests. Both the carbon increment and the carbon sequestration rate of mature forests were negative. Furthermore, spatially the carbon storage and density were higher in the east than in the west of Jilin province, while the carbon increment was higher in northeast and middle east than in the west. The carbon sequestration rate was higher in Tonghua and Baishan in the south, followed by Jinlin in the middle and Yanbian in the east, while Baicheng and Songyuan, etc. in west showed negative values.  相似文献   

4.
吉林省森林植被固碳现状与速率   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对吉林省森林植被的普遍调查、典型调查以及植被样品含碳率测定, 结合吉林省2009年和2014年森林清查数据, 估算了区域森林植被的碳储量、碳密度及固碳速率。研究结果表明: 林下植被的生物量在不同林分和同类林分中存在较大的差异, 整体不足乔木层生物量的3%, 灌木植物的生物量略高于草本植物和幼树。不同林分类型的乔木含碳率介于45.80%-52.97%之间, 整体表现为针叶林高于阔叶林; 灌木和草本植物分别为39.79%-47.25%和40%左右。吉林省森林植被碳转换系数以0.47或0.48更为准确, 若以0.50或0.45作为植被的碳转换系数计算碳储量, 会造成±5.26%的偏差。吉林省森林植被不仅维持着较高的碳库水平, 而且极具碳汇能力; 2009年和2014年碳储量分别为471.29 Tg C和505.76 Tg C, 累计碳增量34.47 Tg C, 平均每年碳增量6.89 Tg C·a-1; 碳密度由64.58 t·hm-2增至66.68 t·hm-2, 平均增加2.10 t·hm-2, 固碳速率0.92 t·hm-2·a-1。森林植被碳储量的增长主体是蒙古栎(Quercus mongolica)林和阔叶混交林, 合计碳增量占总体的90.34%。受植被发育引起的生物量增长、林分龄组晋级以及森林经营所引起的面积变化影响, 各龄组植被碳增量为幼龄林>过熟林>近熟林>中龄林, 成熟林表现为负增长; 固碳速率为过熟林>幼龄林>近熟林>中龄林>成熟林。森林植被碳储量和碳密度的市/区分布整体表现为自东向西明显的降低变化; 碳增量以东北和中东部地区较高, 西部地区较低; 固碳速率整体以南部的通化地区和白山地区相对较高, 中部的吉林地区和东部的延边地区次之, 西部的白城地区、松原地区等地呈负增长。  相似文献   

5.
《植物生态学报》2016,40(4):304
Aims
Carbon sequestration is the basic function and most primary service of forest ecosystems, and plays a vital role in mitigating the global climate change. However, carbon storage and allocation in forest ecosystems have been less studied at regional scales than at forest stand levels, and the results are subject to uncertainty due to inconsistent methodologies. In this study we aim to obtain relatively accurate estimates of forest carbon stocks and sequestration rate at a provincial scale (regional) based on plot surveys of plants and soils.
Methods
In consideration of the areas and distributions of major forest types, 212 sampling plots, covering different age classes and origins (natural forests vs. planted forests), were surveyed in Gansu Province in northern China. Field investigations were conducted for vegetation layers (trees, shrubs, herbs and litter), soil profiles, and sampling of both plant materials and soils for laboratory analyses. Regional carbon stocks were calculated by up-scaling the carbon densities of all forest types with their corresponding areas. Carbon sequestration rate was estimated by referencing the reports of national forest inventory data for different periods.
Important findings Forest carbon stocks at the provincial scale were estimated at 612.43 Tg C, including 179.04 Tg C in biomass and 433.39 Tg C in soil organic materials. Specifically, natural forests stored 501.42 Tg C, approximately 4.52 times than that of the plantations. Biomass carbon density in both natural forests and plantations showed an increasing trend with stand age classes, and was greater in natural forests than in plantations within the same age classes. Soil carbon density also increased with stand age classes in natural forests, but the highest value occurred at the pre-mature stage in plantations. The weighted average of regional biomass carbon density was at 72.43 Mg C·hm-2, with the average value of 90.52 Mg C·hm-2 in natural forests and 33.79 Mg C·hm-2 in plantations, respectively. In 1996, vegetation stored 132.47 Tg C in natural forests and 12.81 Tg C in plantations, respectively, and the values increased to 152.41 and 26.63 Tg C in 2011, with the mean carbon sequestration rates of 1.33 and 0.92 Tg C·a-1. Given that young and middle-aged forests account for a large proportion (62.28%) of the total forest areas, the region is expected to have substantial potential of carbon sequestration.  相似文献   

6.
甘肃省森林碳储量现状与固碳速率   总被引:1,自引:0,他引:1       下载免费PDF全文
针对森林碳平衡再评估的重要性和区域尺度森林生态系统碳库量化分配的不确定性, 该研究依据全国森林资源连续清查结果中甘肃省各森林类型分布的面积与蓄积比重以及林龄和起源等要素, 在甘肃省布设212个样地, 经野外调查与采样、室内分析, 并对典型样地信息按照面积权重进行尺度扩展, 估算了甘肃省森林生态系统碳储量及其分布特征。结果表明: 甘肃省森林生态系统总碳储量为612.43 Tg C, 其中植被生物量碳为179.04 Tg C, 土壤碳为433.39 Tg C。天然林是甘肃省碳储量的主要贡献者, 其值为501.42 Tg C, 是人工林的4.52倍。天然林和人工林的植被碳密度均表现为随林龄的增加而增加的趋势, 同一龄组天然林植被碳密度高于人工林。天然林土壤碳密度从幼龄林到过熟林逐渐增加, 但人工林土壤碳密度最大值主要为近熟林。全省森林植被碳密度均值为72.43 Mg C·hm-2, 天然林和人工林分别为90.52和33.79 Mg C·hm-2。基于森林清查资料和标准样地实测数据, 估算出全省天然林和人工林在1996年的植被碳储量为132.47和12.81 Tg C, 2011年分别为152.41和26.63 Tg C, 平均固碳速率分别为1.33和0.92 Tg C·a-1。甘肃省幼、中龄林面积比重较大, 占全省的62.28%, 根据碳密度随林龄的动态变化特征, 预测这些低龄林将发挥巨大的碳汇潜力。  相似文献   

7.
六盘山四种森林生态系统的碳氮储量、组成及分布特征   总被引:2,自引:0,他引:2  
碳和氮是森林生态系统的重要组成元素,其含量有很大时空差异,并和立地及森林特征关系很大,需做大量的积累性调查才能得到其变化规律,尤其是加强在过去较少研究的西北地区的调查。在宁夏六盘山区选择华北落叶松(Larix principisrupprechtii)人工林、华山松(Pinus armandii)次生林、桦木(Betula platyphylla)次生林和野李子(Prunus salicina)灌丛4种典型森林,测定了乔木层(分不同器官)、灌木层、草本层、枯落物层、根系层(0—100 cm土壤)的碳、氮含量,分析了生态系统的碳、氮储量及成分组成和层次分布特征。结果表明,碳含量在不同乔木树种及其不同器官之间的差异不明显;但氮含量存在显著的树种差别和器官差异,以树叶的最高、树干的最低。灌木层和草本层的碳氮含量均表现为地上部分地下部分。各森林样地的乔木层、灌木层、草本层的碳含量依次降低,但氮含量依次增高;枯落物层的碳含量低于各植被层,但氮含量高于各植被层;根系层土壤的碳、氮含量则随土层增深而递减。包括活植被层、枯落物层和根系层土壤在内的华北落叶松人工林、华山松次生林、桦木次生林、野李子灌丛的生态系统碳储量依次为364.56、450.98、640.02、196.55 t/hm2,氮储量依次为27.86、36.19、47.02、15.99 t/hm2。所有4种森林生态系统的根系层土壤的碳氮储量均占整个生态系统总储量的绝大部分,其比例对碳储量为84.69%—93.92%,氮储量为98.09%—98.64%。从乔木层、灌木层、草本层、枯落物层到根系层(土壤),呈现出C/N比依次减小的趋势;根系层土壤和整个生态系统的C/N比分别为华北落叶松林的11.84和13.12、华山松林的10.76和12.56、桦木林的12.48和13.52、野李子灌丛的11.70和12.29。  相似文献   

8.
黑龙江省森林植被碳储量及其动态变化   总被引:27,自引:3,他引:27  
焦燕  胡海清 《应用生态学报》2005,16(12):2248-2252
黑龙江省的森林资源在全国森林资源中占有较为重要的位置.利用我国第一次(1973~1976年)至第六次(1999~2003年)森林资源清查资料,以及不同树种生物量和蓄积量之间的线性关系,对黑龙江省近30年来森林碳储量进行了求和推算.结果表明,黑龙江省6次森林资源清查中森林的总碳储量分别是7.916×108 t、.413×108 t、.661×108 t、.880×108 t、6.216×108 t和6.011×108 t,总体呈先下降后上升的趋势,说明30年间黑龙江省的森林是CO2的"汇";特别是1977~1981年后,黑龙江省森林碳储量呈逐渐上升趋势,说明近20年来黑龙江省森林CO2"汇"的作用在增强.如果对现有森林进行更好地抚育和管理,黑龙江省森林作为CO2"汇"的潜力很大.  相似文献   

9.
兴安落叶松(Larix gmelini)幼中龄林的生物量与碳汇功能   总被引:3,自引:0,他引:3  
兴安落叶松是我国的主要用材林,由于传统上对木材的长期依赖,使得其资源受到破坏,年龄结构发生改变,成过熟的原始林日渐减少,绝大部分是次生的幼中龄林。因此,研究其幼中龄林的生物量及碳汇功能很重要。森林生物量与森林生态系统的固碳能力密切相关,生物量与碳储量的多少直接影响到森林生态系统的功能,因而生物量与碳储量问题成为不同尺度生态学研究的热点。以我国大兴安岭兴安落叶松林为研究对象,通过样地调查,并结合我国森林资源清查资料对内蒙古大兴安岭地区兴安落叶松林的幼中龄林的生物量转换因子(BEF)、生物量及碳储量、碳密度、碳汇功能等进行了估算。通过实测数据及模型分析,得出以下基本结论:研究对象的BEF在0.4557与0.6988之间变动,平均值为0.5332。干、皮、枝、叶各组分生物量的分配比为:68.74:14.86:10.54:5.86。分别树干、树皮、枝、叶等组分,对其生物量与蓄积量的关系进行了拟合,建立了多组分生物量蓄积量的相关模型,分别是:干:y=0.4683x-11.291;皮:y=0.0472x+3.5674;枝:y=0.0415x+1.6787;叶:y=0.0197x+1.3405,均有很好的线性关系。地上生物量随蓄积量的增加而增加,其线性关系为:B=0.5767V-4.7042。利用近期清查数据,按材积源生物量法推算总生物量为9.49×10^7t,按0.5097的含碳率计算,得出兴安落叶松林幼中龄林总的碳储量为4.84×10^7t,碳密度为19.616t/hm^2。通过两期数据对比分析,5a间所研究林分的碳储量增加0.89×10^7t,碳密度增加0.404t/hm^2,说明其发挥着一定的碳汇作用。尽管近年来大兴安岭兴安落叶松林表现出了明显的碳汇功能,但整体上碳固定能力还不强,碳密度低于我国平均森林碳密度。应通过科学经营,挖掘潜力,使大兴安岭地区的森林生态系统在全球碳循环中发挥更大的作用。  相似文献   

10.
基于广西喀斯特地区45块1000 m2样地的调查,研究幼龄林、中龄林、近熟林、成熟林、过熟林5个林龄阶段喀斯特森林植被与土壤碳储量的分配格局.结果表明: 广西不同林龄喀斯特森林总碳储量表现为幼龄林(86.03 t·hm-2)<近熟林(110.63 t·hm-2)<中龄林(112.11 t·hm-2)<成熟林(149.1 t·hm-2)<过熟林(244.38 t·hm-2);各林龄阶段植被不同层碳储量分配均不同,乔木层所占比例占绝对优势,达到92.3%~98.7%,随林龄的增加而增长,灌木层、草本层、凋落物层所占比例分别为0.3%~1.9%、0.3%~1.2%和0.3%~2.5%,细根所占比例为0.3%~3.3%.土壤有机碳密度随土层深度的增加而递减,土壤层碳储量为51.75~81.21 t·hm-2,所占生态系统比例为33.2%~66.2%,其随林龄的增大呈减小趋势.生态系统地上、地下部分碳储量分别为22.80~141.72和62.30~102.66 t·hm-2,除过熟林外均为地下部分>地上部分,地上碳储量随林龄的增大呈逐渐增加的趋势,地下碳储量的变化规律与土壤碳储量变化趋势一致.土壤层和乔木层为生态系统的主要碳库,二者所占比例达到了96%以上.  相似文献   

11.
余蓉  项文化  宁晨  罗赵慧 《生态学报》2016,36(12):3499-3509
采用标准地调查和生物量实测方法,研究了长沙市区4种人工林生态系统生物量、碳储量及其分布特征。结果表明:马尾松林、杉木林、毛竹林和杨树林生态系统生物量分别为135.390、100.578、64.497、63.381 t/hm~2;林下植被及死地被物层分别为18.374、22.321、1.847 t/hm~2和2.602 t/hm~2。乔木层林木各器官含碳率为0.405—0.551 g C/g,林下植被层为0.421—0.518 g C/g,死地被物层为0.230—0.545 g C/g,土壤层有机碳含量为15.669—19.163 g C/kg。4种人工林生态系统总碳储量为208.671、176.723、149.168 t/hm~2和164.735 t/hm~2,其中植被层为32.789—67.8661 t/hm~2;死地被物层为0.394—6.163 t/hm~2;土壤层为134.642、116.911、115.985 t/hm~2和126.860 t/hm~2。4种森林年净固碳量为15.167 t hm-2a-1,固定CO_2量55.602 t hm-2a-1。研究结果可为深入研究城市森林碳平衡提供基础数据。  相似文献   

12.
《植物生态学报》2016,40(4):354
Aims
The concentration of CO2 and other greenhouse gases in the atmosphere has considerably increased over last century and is set to rise further. Forest ecosystems play a key role in reducing CO2 concentration in the atmosphere and mitigating global climate change. Our objective is to understand carbon storage and its distribution in forest ecosystems in Zhejiang Province, China.
Methods
By using the 8th forest resource inventory data and 2011-2012 field investigation data, we estimated carbon storage, density and its distribution in forest ecosystems of Zhejiang Province.
Important findings
The carbon storage of forest ecosystems in Zhejiang Province was 602.73 Tg, of which 122.88 Tg in tree layer, 16.73 Tg in shrub-herb layer, 11.36 Tg in litter layer and 451.76 Tg in soil layer accounting for 20.39%, 2.78%, 1.88% and 74.95% of the total carbon storage, respectively. The carbon storage of mixed broadleaved forests was 138.03 Tg which ranked the largest (22.90%) among all forest types. The young and middle aged forests which accounted for 70.66% of the total carbon storage were the main body of carbon storage in Zhejiang Province. The carbon density of forest ecosystems in Zhejiang Province was 120.80 t·hm-2 and that in tree layer, shrub-herb layer, litter layer and soil layer were 24.65 t·hm-2, 3.36 t·hm-2, 2.28 t·hm-2 and 90.51 t·hm-2, respectively. The significant relationship between soil organic carbon storage and forest ecosystem carbon storage indicated that soil carbon played an important role in shaping forest ecosystem carbon density. Carbon density of tree layer increased with age in natural forests, but decreased in the order over-mature > near-mature > mature > middle-aged > young forest in plantations. The proportions of young and middle aged forests were larger than any other age classes. Thereby, the carbon storage of forest ecosystems in Zhejiang Province could be increased through a proper forest management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号