首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As the result of the EUROIMAGE Consortium sequencing project, we have isolated and characterized a novel gene on chromosome 15, TM6SF1. It encodes a 370 amino acid product with enhanced expression in spleen, testis and peripheral blood leukocytes. We have identified another gene, paralogous to TM6SF1 on chromosome 19p12, TM6SF2, with an overall similarity of 68% and 52% identity at the protein level. This conservation has led us to uncover a series of eleven genes in 19p13.3-->p12 with close homology to genes in 15q24--> q26. The percentage of sequence similarity between each paralogous pair of genes at the protein level ranges between 43 and 89%. A partial conservation of synteny with mouse chromosomes 7, 8 and 9 is also observed. The corresponding orthologous genes in mouse of human TM6SF1 and TM6SF2 show a high degree of amino acid sequence conservation.  相似文献   

2.
3.
Gao J  Xia L  Lu M  Zhang B  Chen Y  Xu R  Wang L 《Molecular biology reports》2012,39(9):8883-8889
In the previous proteomic study of human placenta, transmembrane 7 superfamily member 1 (TM7SF1) was found enriched in lysosome compartments. TM7SF1 encodes a 399-amino acid protein with a calculated molecular mass of 45 kDa. Bioinformatic analysis of its amino acid sequence showed that it is a multipass transmembrane protein containing a potential dileucine-based lysosomal targeting signal and four putative N-glycosylation sites. By percoll-gradient centrifugation and further subfraction ways, the lysosomal solute and membrane compartments were isolated respectively. Immunoblotting analysis indicated that TM7SF1 was co-fractioned with lysosome associated membrane protein 2 (LAMP2), which was only detected in lysosomal membrane compartments whereas not detected in the solute compartments. Using specific anti-TM7SF1 antibody and double-immunofluorescence with lysosome membrane protein LAMP1 and Lyso-Tracker Red, the colocalisations of endogenous TM7SF1 with lysosome and late endosome markers were demonstrated. All of this indicated that TM7SF1 is an integral lysosome membrane protein. Rat ortholog of TM7SF1 was found to be strongly expressed in heart, liver, kidney and brain while not or low detected in other tissues. In summary, TM7SF1 was a lysosomal integral membrane protein that shows tissue-specific expression. As a G-protein-coupled receptor in lysosome membrane, TM7SF1 was predicted function as signal transduction across lysosome membrane.  相似文献   

4.
LBR (lamin B receptor) is an integral protein of the inner nuclear membrane encoded by a gene on human chromosome 1q42.1. LBR has a nucleoplasmic, amino-terminal domain of approximately 200 amino acids followed by a carboxyl-terminal domain similar in sequence to yeast and plant sterol reductases. We have determined the primary structures of two human proteins with strong sequence similarity to the carboxyl-terminal domain of LBR and sterol reductases. Their genes have recently been assigned the symbols TM7SF2 and DHCR7. TM7SF2 mRNA is most predominantly expressed in heart and DHCR7 mRNA mostly in liver and brain. Whereas LBR is localized to the inner nuclear membrane, these two related proteins are in the endoplasmic reticulum. TheTM7SF2gene contains 10 coding exons, and its intron positions are exactly conserved in the part of theLBRgene encoding its carboxyl-terminal domain. Intron positions in theDHCR7gene are also similar. Both of these new LBR-like genes are on chromosome 11q13. These results describe a human gene family encoding proteins of the inner nuclear membrane and endoplasmic reticulum that function in nuclear organization and/or sterol metabolism.  相似文献   

5.
BackgroundThe transmembrane 9 superfamily protein member 4, TM9SF4, belongs to the TM9SF family of proteins highly conserved through evolution. TM9SF4 homologs, previously identified in many different species, were mainly involved in cellular adhesion, innate immunity and phagocytosis. In human, the function and biological significance of TM9SF4 are currently under investigation. However, TM9SF4 was found overexpressed in human metastatic melanoma and in a small subset of acute myeloid leukemia (AMLs) and myelodysplastic syndromes, consistent with an oncogenic function of this gene.ConclusionsAltogether, our study reports for the first time the expression of TM9SF4 at the level of normal and leukemic hematopoietic cells and its marked expression at the level of AMLs displaying granulocytic differentiation.  相似文献   

6.
Nonaspanins constitute a family of proteins, also called TM9SF, characterized by a large non-cytoplasmic domain and nine putative transmembrane domains. This family is highly conserved through evolution and comprises three members in Saccharomyces cerevisiae, Dictyostelium discoideum, and Drosophila melanogaster, and four members are reported in mammals (TM9SF1–TM9SF4). Genetic studies in Dictyostelium and Drosophila have shown that TM9SF members are required for adhesion and phagocytosis in innate immune response, furthermore, human TM9SF1 plays a role in the regulation of autophagy and human TM9SF4 in tumor cannibalism. Here we report that the zebrafish genome encodes five members of this family, TM9SF1–TM9SF5, which show high level of sequence conservation with the previously reported members. Expression analysis in zebrafish showed that all members are maternally expressed and continue to be present throughout embryogenesis to adults. Gene expression could not be regulated by pathogen-associated molecular patterns such as LPS, CpG, or Poly I:C. By bioinformatic analyses of 80 TM9SF protein sequences from yeast, plants, and animals, we confirmed a very conserved protein structure. An evolutionary conserved immunoreceptor tyrosine-based inhibition motif has been detected in the cytoplasmic domain between transmembrane domain (TM) 7 and TM8 in TM9SF1, TM9SF2, TM9SF4 and TM9SF5, and at the extreme C-terminal end of TM9SF4. Finally, a conserved TRAF2 binding domain could also be predicted in the cytoplasmic regions of TM9SF2, TM9SF3, TM9SF4, and TM9SF5. This confirms the hypothesis that TM9SF proteins may play a regulatory role in a specific and ancient cellular mechanism that is involved in innate immunity.  相似文献   

7.
Biosynthesis of cholesterol represents one of the fundamental cellular metabolic processes. Sterol Delta 14-reductase (Delta 14-SR) is a microsomal enzyme involved in the conversion of lanosterol to cholesterol in mammals. Amino-acid sequence analysis of a 38-kDa protein purified from bovine liver in our laboratory revealed > 90% similarity with a human sterol reductase, SR-1, encoded by the TM7SF2 gene, and with the C-terminal domain of human lamin B receptor. A cDNA encoding the 38-kDa protein, similar to human TM7SF2, was identified by analysis of a bovine expressed sequence tag (EST) database. The cDNA was synthesized by RT-PCR, cloned, and sequenced. The cDNA encodes a 418 amino-acid polypeptide with nine predicted transmembrane domains. The deduced amino-acid sequence exhibits high similarity with Delta 14-SR from yeasts, fungi, and plants (55-59%), suggesting that the bovine cDNA encodes Delta 14-SR. Northern blot analysis of bovine tissues showed high expression of mRNA in liver and brain. The polypeptide encoded by the cloned cDNA was expressed in COS-7 cells. Immunofluorescence analysis of transfected cells revealed a distribution of the protein throughout the ER. COS-7 cells expressing the protein exhibited Delta 14-SR activity about sevenfold higher than control cells. These results demonstrate that the cloned bovine cDNA encodes Delta 14-SR and provide evidence that the human TM7SF2 gene encodes Delta 14-SR.  相似文献   

8.
Han W  Ding P  Xu M  Wang L  Rui M  Shi S  Liu Y  Zheng Y  Chen Y  Yang T  Ma D 《Genomics》2003,81(6):609-617
TM4SF11 is only 102 kb from the chemokine gene cluster composed of SCYA22, SCYD1, and SCYA17 on chromosome 16q13. CKLF maps on chromosome 16q22. CKLFs have some characteristics associated with the CCL22/MDC, CX3CL1/fractalkine, CCL17/TARC, and TM4SF proteins. Bioinformatics based on CKLF2 cDNA and protein sequences in combination with experimental validation identified eight novel genes designated chemokine-like factor superfamily members 1-8 (CKLFSF1-8). CKLFSF1-8 form gene clusters; the sequence identities between CKLF2 and CKLFSF1-8 are from 12.5 to 39.7%. Most of the CKLFSFs have alternative RNA splicing forms. CKLFSF1 has a CC motif and higher sequence similarity with chemokines than with any of the other CKLFSFs. CKLFSF8 shares 39.3% amino acid identity with TM4SF11. CKLFSF1 links the CKLFSF family with chemokines, and CKLFSF8 links it with TM4SF. The characteristics of CKLFSF2-7 are intermediate between CKLFSF1 and CKLFSF8. This indicates that CKLFSF represents a novel gene family between the SCY and the TM4SF gene families.  相似文献   

9.
《Gene》1998,208(1):25-30
In a previous large-scale screening for differentially expressed genes in pancreatic cancer, a gene was identified that was highly overexpressed in pancreatic cancer encoding a novel putative tetraspan transmembrane protein highly homologous to the tumour-associated antigen L6. Using a radiation hybrid panel the identified human gene named TM4SF5 (transmembrane 4 superfamily member 5) was localized to chromosome 17 in the region 17p13.3. The cloned TM4SF5 cDNA has a 32 bp 5′-untranslated region (UTR), a 591 bp openreading frame (ORF) and a 85 bp 3′UTR. The predicted TM4SF5 protein with 197 amino acids contains three NH2-terminal hydrophobic transmembrane regions, followed by an extracellular hydrophilic domain containing two potential N-linked glycosylation sites and a COOH-terminal hydrophobic transmembrane region. These structural features are shared by the L6 antigen and a number of related cell surface proteins associated with cell growth. TM4SF5 was overexpressed in pancreatic cancer tissues as compared to both normal pancreas and chronic pancreatitis tissues, and was detected at high levels in other tumour tissues. Although the precise function of TM4SF5 remains to be elucidated it may be useful in a clinical setting for tumour diagnosis and/or therapy. This hypothesis is supported by the strong homology to the L6 antigen, which has proved promising in immunological, therapeutic and diagnostic approaches.  相似文献   

10.
The role of transmembrane 4 superfamily (TM4SF) proteins during muscle cell fusion has not been investigated previously. Here we show that the appearance of TM4SF protein, CD9, and the formation of CD9-beta1 integrin complexes were both regulated in coordination with murine C2C12 myoblast cell differentiation. Also, anti-CD9 and anti-CD81 monoclonal antibodies substantially inhibited and delayed conversion of C2C12 cells to elongated myotubes, without affecting muscle-specific protein expression. Studies of the human myoblast-derived RD sarcoma cell line further demonstrated that TM4SF proteins have a role during muscle cell fusion. Ectopic expression of CD9 caused a four- to eightfold increase in RD cell syncytia formation, whereas anti-CD9 and anti-CD81 antibodies markedly delayed RD syncytia formation. Finally, anti-CD9 and anti-CD81 monoclonal antibodies triggered apoptotic degeneration of C2C12 cell myotubes after they were formed. In summary, TM4SF proteins such as CD9 and CD81 appear to promote muscle cell fusion and support myotube maintenance.  相似文献   

11.
九次跨膜超家族蛋白成员1(transmembrane 9 superfamily protein member 1,TM9SF1)在进化过程中高度保守,在人体组织和多种细胞系广泛表达。目前,关于该蛋白质的功能研究十分有限和初步。本研究采用慢病毒介导的TM9SF1表达系统,研究了重组TM9SF1蛋白的生化特点及其对细胞生长的调控作用。慢病毒感染的293T全细胞裂解液的蛋白质免疫印迹结果揭示,TM9SF1蛋白具有表观分子质量约为70 kD的单体及寡聚体两种主要形式;在室温及加热37℃时蛋白质相对稳定,随变性温度升高(56 ℃以上)逐渐失去其稳定性。CCK8法显示,与慢病毒空载体感染的293T细胞比较,TM9SF1慢病毒表达载体感染的293T细胞在感染2 d后增殖明显减缓(P<0.001)。Western印迹结果证明,过表达TM9SF1引起LC3Ⅱ表达明显上调,LC3Ⅱ/LC3Ⅰ比例升高,说明TM9SF1可引起293T细胞发生自噬。荧光实时定量PCR结果显示,过表达TM9SF1的293T细胞内质网应激标志分子CHOP、GADD34和XBP1(S)表达水平是对照细胞的3~4倍,提示发生了内质网应激反应。以上结果提示,TM9SF1具有抑制293T细胞生长的功能,该功能可能与其引起的内质网应激和自噬有关。这一结论将进一步加深对TM9SF1在细胞生长调控中的功能的认识。  相似文献   

12.
Band 3, the major transmembrane protein of erythrocytes, mediates the exchange of anions across the membrane and anchors the erythroid membrane skeleton. Proteins immunologically related to Band 3 have been detected in a variety of nonerythroid cells. We have isolated a human cDNA clone that encodes a protein related to but distinct from the erythroid form of Band 3, based on the comparison of the amino acid sequence for the two proteins. The presence of the gene for the Band 3-like protein in a panel of mouse-human somatic cell hybrids containing subsets of human chromosomes correlated with the presence of human chromosome 7. In situ hybridization analysis using the c-DNA for this nonerythroid Band 3 gene further localized the gene to region 7q35----7q36 of human metaphase chromosomes.  相似文献   

13.
14.
3Beta-hydroxysterol Delta(14)-reductase operates during the conversion of lanosterol to cholesterol in mammalian cells. Besides the endoplasmic reticulum 3beta-hydroxysterol Delta(14)-reductase (C14SR) encoded by TM7SF2 gene, the lamin B receptor (LBR) of the inner nuclear membrane possesses 3beta-hydroxysterol Delta(14)-reductase activity, based on its ability to complement C14SR-defective yeast strains. LBR was indicated as the primary 3beta-hydroxysterol Delta(14)-reductase in human cholesterol biosynthesis, since mutations in LBR gene were found in Greenberg skeletal dysplasia, characterized by accumulation of Delta(14)-unsaturated sterols. This study addresses the issue of C14SR and LBR role in cholesterol biosynthesis. Both human C14SR and LBR expressed in COS-1 cells exhibit 3beta-hydroxysterol Delta(14)-reductase activity in vitro. TM7SF2 mRNA and C14SR protein expression in HepG2 cells grown in delipidated serum (LPDS) plus lovastatin (sterol starvation) were 4- and 8-fold higher, respectively, than in LPDS plus 25-hydroxycholesterol (sterol feeding), resulting in 4-fold higher 3beta-hydroxysterol Delta(14)-reductase activity. No variations in LBR mRNA and protein levels were detected in the same conditions. The induction of TM7SF2 gene expression is turned-on by promoter activation in response to low cell sterol levels and is mediated by SREBP-2. The results suggest a primary role of C14SR in human cholesterol biosynthesis, whereas LBR role in the pathway remains unclear.  相似文献   

15.
16.
TM4SF10 [transmembrane tetra(4)-span family 10] is a claudin-like cell junction protein that is transiently expressed during podocyte development where its expression is downregulated in differentiating podocytes coincident with the appearance of nephrin at the slit diaphragm. In a yeast two-hybrid screen, we identified adhesion and degranulation-promoting adaptor protein (ADAP), a well-known Fyn substrate and Fyn binding partner, as a TM4SF10 interacting protein in mouse kidney. Using coimmunoprecipitation and immunohistochemistry experiments in cultured human podocytes, we show that TM4SF10 colocalizes with Fyn and ADAP but does not form a stable complex with Fyn. Cytoskeletal changes and phosphorylation events mediated by Fyn activity were reversed by TM4SF10 overexpression, including a decrease in the activating tyrosine phosphorylation of Fyn (Y(421)), suggesting TM4SF10 may have a regulatory role in suppressing Fyn activity. In addition, TM4SF10 was reexpressed following podocyte injury by puromycin aminonucleoside treatment, and its expression enhanced the abundance of high-molecular-weight forms of nephrin indicating it may participate in a mechanism controlling nephrin's appearance at the plasma membrane. Therefore, these studies have identified ADAP as another Fyn adapter protein expressed in podocytes, and that TM4SF10, possibly through ADAP, may regulate Fyn activity. Since TM4SF10 expression is temporally regulated during kidney development, these studies may help define a mechanism by which the slit diaphragm matures as a highly specialized cell junction during podocyte differentiation.  相似文献   

17.
White matter hyperintensities (WMHs) of the brain are important markers of aging and small-vessel disease. WMHs are rare in healthy children and, when observed, often occur with comorbid neuroinflammatory or vasculitic processes. Here, we describe a complex 4 kb deletion in 2q36.3 that segregates with early childhood communication disorders and WMH in 15 unrelated families predominantly from Southeast Asia. The premature brain aging phenotype with punctate and multifocal WMHs was observed in ∼70% of young carrier parents who underwent brain MRI. The complex deletion removes the penultimate exon 3 of TM4SF20, a gene encoding a transmembrane protein of unknown function. Minigene analysis showed that the resultant net loss of an exon introduces a premature stop codon, which, in turn, leads to the generation of a stable protein that fails to target to the plasma membrane and accumulates in the cytoplasm. Finally, we report this deletion to be enriched in individuals of Vietnamese Kinh descent, with an allele frequency of about 1%, embedded in an ancestral haplotype. Our data point to a constellation of early language delay and WMH phenotypes, driven by a likely toxic mechanism of TM4SF20 truncation, and highlight the importance of understanding and managing population-specific low-frequency pathogenic alleles.  相似文献   

18.
Polytopic protein topology is established in the endoplasmic reticulum (ER) by sequence determinants encoded throughout the nascent polypeptide. Here we characterize 12 topogenic determinants in the cystic fibrosis transmembrane conductance regulator, and identify a novel mechanism by which a charged residue is positioned within the plane of the lipid bilayer. During cystic fibrosis transmembrane conductance regulator biogenesis, topology of the C-terminal transmembrane domain (TMs 7-12) is directed by alternating signal (TMs 7, 9, and 11) and stop transfer (TMs 8, 10, and 12) sequences. Unlike conventional stop transfer sequences, however, TM8 is unable to independently terminate translocation due to the presence of a single charged residue, Asp(924), within the TM segment. Instead, TM8 stop transfer activity is specifically dependent on TM7, which functions both to initiate translocation and to compensate for the charged residue within TM8. Moreover, even in the presence of TM7, the N terminus of TM8 extends significantly into the ER lumen, suggesting a high degree of flexibility in establishing TM8 transmembrane boundaries. These studies demonstrate that signal sequences can markedly influence stop transfer behavior and indicate that ER translocation machinery simultaneously integrates information from multiple topogenic determinants as they are presented in rapid succession during polytopic protein biogenesis.  相似文献   

19.
We have identified a novel 3845 bp cDNA differentially expressed in a human melanoma metastasis model. Northern blot analysis showed expression in the poorly and intermediately metastasizing cell lines and a marked downregulation in the highly metastatic cell lines. Using RT-PCR expression was also seen in several other tumor cell lines and normal cell types of human origin. cDNA sequence analysis revealed an ORF of 687 amino acids containing seven putative transmembrane domains C-terminally and a long N-terminus. The gene was mapped to 16q13. Highest homology was observed with members of the EGF-TM7 subfamily of the secretin/calcitonin receptor family. We propose the delineation of a subfamily of TM7 proteins, LN-TM7, containing seven transmembrane proteins with a long N-terminal extracellular part.  相似文献   

20.
Kwon S  Kim D  Park BK  Cho S  Kim KD  Kim YE  Park CS  Ahn HJ  Seo JN  Choi KC  Kim DS  Lee Y  Kwon HJ 《PloS one》2012,7(3):e33121
Although peptide vaccines have been actively studied in various animal models, their efficacy in treatment is limited. To improve the efficacy of peptide vaccines, we previously formulated an efficacious peptide vaccine without carriers using the natural phosphodiester bond CpG-DNA and a special liposome complex (Lipoplex(O)). Here, we show that immunization of mice with a complex consisting of peptide and Lipoplex(O) without carriers significantly induces peptide-specific IgG2a production in a CD4(+) cells- and Th1 differentiation-dependent manner. The transmembrane 4 superfamily member 5 protein (TM4SF5) has gained attention as a target for hepatocellular carcinoma (HCC) therapy because it induces uncontrolled growth of human HCC cells via the loss of contact inhibition. Monoclonal antibodies specific to an epitope of human TM4SF5 (hTM4SF5R2-3) can recognize native mouse TM4SF5 and induce functional effects on mouse cancer cells. Pre-immunization with a complex of the hTM4SF5R2-3 epitope and Lipoplex(O) had prophylactic effects against tumor formation by HCC cells implanted in an mouse tumor model. Furthermore, therapeutic effects were revealed regarding the growth of HCC when the vaccine was injected into mice after tumor formation. These results suggest that our improved peptide vaccine technology provides a novel prophylaxis measure as well as therapy for HCC patients with TM4SF5-positive tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号