首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intestinal epithelial cells are the initial sites of host response to Clostridium difficile infection and can play a role in signaling the influx of inflammatory cells. To further explore this role, the regulated expression and polarized secretion of CXC and CC chemokines by human intestinal epithelial cells were investigated. An expression of the CXC chemokines, including IL-8 and growth-related oncogene (GRO)-alpha, and the CC chemokine monocyte chemoattractant protein (MCP)-1 from HT-29 cells increased in the 1-6 hr following C. difficile toxin A stimulation, assessed by quantitative RT-PCR. In contrast, the expression of neutrophil activating protein-78 (ENA-78) was delayed for 18 hr. The up-regulated mRNA expression of chemokines was paralleled by the increase of protein levels. However, the expression of macrophage inflammatory protein (MIP)-1alpha, RANTES (regulated on activation normal T cells expressed and secreted), and interferon-gamma-inducible protein-10 (IP-10) was not changed in HT-29 or Caco-2 cells stimulated with toxin A. Upon stimulation of the polarized Caco-2 epithelial cells in a transwell chamber with toxin A, CXC and CC chemokines were released predominantly into the basolateral compartment. Moreover, the addition of IFN-gamma and TNF-alpha to toxin A stimulated Caco-2 cells increased the basolateral release of CC chemokine MCP-1. In contrast, IFN-gamma and TNF-alpha had no effect on the expression of the CXC chemokines IL-8 and GRO-alpha. These results suggest that a CXC and CC chemokine expression from epithelial cells infected with C. difficile may be an important factor in the mucosal inflammatory response.  相似文献   

2.
The chemokine monocyte chemoattractant protein-1 is a potent chemoattractant for monocytes. Monocyte chemoattractant protein-1 is produced by vascular endothelial cells during inflammatory diseases such as atherosclerosis. In this study, we examined the effects of a thiazolidinedione on monocyte chemoattractant protein-1 expression in human vascular endothelial cells. In human vascular endothelial cells, interleukin-1beta and tumor necrosis factor-alpha induced endogenous monocyte chemoattractant protein-1 protein secretion, mRNA expression and promoter activity. The thiazolidinedione inhibited these effects. In summary, our results indicated that the suppression of the expression of monocyte chemoattractant protein-1 can be accomplished by thiazolidinedione treatment, raising the possibility that thiazolidinedione may be of therapeutic value in the treatment of diseases such as atherosclerosis.  相似文献   

3.
The perivascular transmigration and accumulation of macrophages and T lymphocytes in the CNS of mice with experimental autoimmune encephalomyelitis (EAE) may be partly regulated by low m.w. chemotactic cytokines. Using the RNase protection assay and ELISA, we quantified expression of chemokines and chemokine receptors in the spinal cord (SC), brain, and lymph nodes of BV8S2 transgenic mice that developed or were protected from EAE by vaccination with BV8S2 protein. In paralyzed control mice, the SC had increased cellular infiltration and strong expression of the chemokines RANTES, IFN-inducible 10-kDa protein, and monocyte chemoattractant protein-1 and the cognate chemokine receptors CCR1, CCR2, and CCR5, with lower expression of macrophage-inflammatory protein (MIP)-1alpha, MIP-1beta, and MIP-2; whereas brain had less infiltration and a lower expression of a different pattern of chemokines and receptors. In TCR-protected mice, there was a decrease in the number of inflammatory cells in both SC and brain. In SC, the reduced cellular infiltrate afforded by TCR vaccination was commensurate with profoundly reduced expression of chemokines and their cognate chemokine receptors. In brain, however, TCR vaccination did not produce significant changes in chemokine expression but resulted in an increased expression of CCR3 and CCR4 usually associated with Th2 cells. In contrast to CNS, lymph nodes of protected mice had a significant increase in expression of MIP-2 and MIP-1beta but no change in expression of chemokine receptors. These results demonstrate that TCR vaccination results in selective reduction of inflammatory chemokines and chemokine receptors in SC, the target organ most affected during EAE.  相似文献   

4.
Chemokines and their receptors have been strongly implicated in the inflammatory process. However, their roles in excitotoxic brain injury are largely unknown. In this study we used C-C chemokine receptor 5 (CCR5) knockout (KO) mice to investigate the role of CCR5 in neurodegeneration induced by intranasal administration of the excitotoxin kainic acid (KA). Although KA treatment resulted in an increased CCR5 mRNA level in the hippocampi of wild-type mice, a CCR5 deficiency in KO mice did not affect either the clinical and pathological changes in vivo or the neuronal susceptibilities to KA insult in vitro. KA treatment stimulated mRNA expression of the monocyte chemoattractant protein-2 (MCP-2) in both the wild-type and KO mice. KA treatment did not affect mRNA levels for the macrophage inflammatory protein-1alpha (MIP-1alpha) or the regulated upon activation normal T cells expressed and secreted protein (RANTES) in either wild-type or CCR5 KO mice. CCR2 mRNA expression was undetectable in the hippocampi of wild-type mice regardless of KA treatment. In contrast, CCR5 KO mice showed CCR2 mRNA expression that was remarkably increased after KA treatment. KA treatment did not affect CCR3 mRNA expression in the wild-type mice, whereas KO mice showed both a higher basal level of CCR3 mRNA expression as well as a strong upregulation following KA treatment. These results indicate that CCR5 is not a necessary inflammatory mediator in KA induced neurodegeneration. The roles of CCR5 in excitotoxic injury in CCR5 deficient mice are compensated by increased CCR2 and CCR3 expression, which share the common MCP-2 ligand with CCR5.  相似文献   

5.

Aim

Atherosclerosis is the complex lesion that consists of endothelial inflammation, macrophage foam cell formation, vascular smooth muscle cell (VSMC) migration and proliferation, and extracellular matrix production. Human urocortin 1 (Ucn1), a 40-amino acid peptide member of the corticotrophin-releasing factor/urotensin I family, has potent cardiovascular protective effects. This peptide induces potent and long-lasting hypotension and coronary vasodilation. However, the relationship of Ucn1 with atherosclerosis remains unclear. The present study was performed to clarify the effects of Ucn1 on atherosclerosis.

Methods

We assessed the effects of Ucn1 on the inflammatory response and proliferation of human endothelial cells (ECs), human macrophage foam cell formation, migration and proliferation of human VSMCs, extracellular matrix expression in VSMCs, and the development of atherosclerosis in apolipoprotein E-deficient (Apoe −/−) mice.

Results

Ucn1 significantly suppressed cell proliferation without inducing apoptosis, and lipopolysaccharide-induced up-regulation of monocyte chemoattractant protein-1 and intercellular adhesion molecule-1 in human ECs. Ucn1 significantly reduced oxidized low-density lipoprotein-induced foam cell formation with a significant down-regulation of CD36 and acyl-CoA:cholesterol acyltransferase 1 in human monocyte-derived macrophages. Ucn1 significantly suppressed the migration and proliferation of human VSMCs and increased the activities of matrix metalloproteinase-2 (MMP2) and MMP9 in human VSMCs. Intraperitoneal injection of Ucn1 into Apoe −/− mice for 4 weeks significantly retarded the development of aortic atherosclerotic lesions.

Conclusions

This study provided the first evidence that Ucn1 prevents the development of atherosclerosis by suppressing EC inflammatory response and proliferation, macrophage foam cell formation, and VSMC migration and proliferation. Thus, Ucn1 could serve as a novel therapeutic target for atherosclerotic cardiovascular diseases.  相似文献   

6.
Shen Y  Xu W  Chu YW  Wang Y  Liu QS  Xiong SD 《Journal of virology》2004,78(22):12548-12556
Coxsackievirus group B type 3 (CVB3) is an important cause of viral myocarditis. The infiltration of mononuclear cells into the myocardial tissue is one of the key events in viral myocarditis. Immediately after CVB3 infects the heart, the expression of chemokine(s) by infected myocardial cells may be the first trigger for inflammatory infiltration and immune response. However, it is unknown whether CVB3 can induce the chemokine expression in cardiac myocytes. Monocyte chemoattractant protein 1 (MCP-1) is a potent chemokine that stimulates the migration of mononuclear cells. The objective of the present study was to investigate the effect of CVB3 infection on MCP-1 expression in murine cardiac myocytes and the role of MCP-1 in migration of mononuclear cells in viral myocarditis. Our results showed that the expression of MCP-1 was significantly increased in cardiac myocytes after wild-type CVB3 infection in a time- and dose-dependent manner, which resulted in enhanced migration of mononuclear cells in mice with viral myocarditis. The migration of mononuclear cells was partially abolished by antibodies specific for MCP-1 in vivo and in vitro. Administration of anti-MCP-1 antibody prevented infiltration of mononuclear cells bearing the MCP-1 receptor CCR2 in mice with viral myocarditis. Infection by UV-irradiated CVB3 induced rapid and transient expression of MCP-1 in cardiac myocytes. In conclusion, our results indicate that CVB3 infection stimulates the expression of MCP-1 in myocardial cells, which subsequently leads to migration of mononuclear cells in viral myocarditis.  相似文献   

7.
CD8(+) T cells contribute to the pathophysiology of Pneumocystis pneumonia (PcP) in a murine model of AIDS-related disease. The present studies were undertaken to more precisely define the mechanisms by which these immune cells mediate the inflammatory response that leads to lung injury. Experimental mice were depleted of either CD4(+) T cells or both CD4(+) and CD8(+) T cells and then infected with Pneumocystis: The CD4(+)-depleted mice had significantly greater pulmonary TNF-alpha levels than mice depleted of both CD4(+) and CD8(+) T cells. Elevated TNF-alpha levels were associated with increased lung concentrations of the chemokines RANTES, monocyte chemoattractant protein 1, macrophage-inflammatory protein 2, and cytokine-induced neutrophil chemoattractant. To determine whether TNFR signaling was involved in the CD8(+) T cell-dependent chemokine response, TNFRI- and II-deficient mice were CD4(+) depleted and infected with Pneumocystis: TNFR-deficient mice had significantly reduced pulmonary RANTES, monocyte chemoattractant protein 1, macrophage-inflammatory protein 2, and cytokine-induced neutrophil chemoattractant responses, reduced inflammatory cell recruitment to the alveoli, and reduced histological evidence of PcP-related alveolitis as compared with infected wild-type mice. Diminished pulmonary inflammation correlated with improved surfactant activity and improved pulmonary function in the TNFR-deficient mice. These data indicate that TNFR signaling is required for maximal CD8(+) T cell-dependent pulmonary inflammation and lung injury during PcP and also demonstrate that CD8(+) T cells can use TNFR signaling pathways to respond to an extracellular fungal pathogen.  相似文献   

8.
Extravascular fibrin deposition is an early and persistent hallmark of inflammatory responses. Fibrin is generated from plasma-derived fibrinogen, which escapes the vasculature in response to endothelial cell retraction at sites of inflammation. Our ongoing efforts to define the physiologic functions of extravasated fibrin(ogen) have led to the discovery, reported here, that fibrinogen stimulates macrophage chemokine secretion. Differential mRNA expression analysis and RNase protection assays revealed that macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta, MIP-2, and monocyte chemoattractant protein-1 are fibrinogen inducible in the RAW264.7 mouse macrophage-like cell line, and ELISA confirmed that both RAW264.7 cells and primary murine thioglycolate-elicited peritoneal macrophages up-regulate the secretion of monocyte chemoattractant protein-1 >100-fold upon exposure to fibrinogen. Human U937 and THP-1 precursor-1 (THP-1) monocytic cell lines also secreted chemokines in response to fibrinogen, upon activation with IFN-gamma and differentiation with vitamin D(3), respectively. LPS contamination could not account for our observations, as fibrinogen-induced chemokine secretion was sensitive to heat denaturation and was unaffected by the pharmacologic LPS antagonist polymyxin B. Nevertheless, fibrinogen- and LPS-induced chemokine secretion both apparently required expression of functional Toll-like receptor 4, as each was diminished in macrophages derived from C3H/HeJ mice. Thus, innate responses to fibrinogen and bacterial endotoxin may converge at the evolutionarily conserved Toll-like recognition molecules. Our data suggest that extravascular fibrin(ogen) induces macrophage chemokine expression, thereby promoting immune surveillance at sites of inflammation.  相似文献   

9.
10.
CC chemokine ligand-2 (CCL2)/monocyte chemoattractant protein (MCP)-1 expression is upregulated during pulmonary inflammation, and the CCL2-CCR2 axis plays a critical role in leukocyte recruitment and promotion of host defense against infection. The role of CCL2 in mediating macrophage subpopulations in the pathobiology of noninfectious lung injury is unknown. The goal of this study was to examine the role of CCL2 in noninfectious acute lung injury. Our results show that lung-specific overexpression of CCL2 protected mice from bleomycin-induced lung injury, characterized by significantly reduced mortality, reduced neutrophil accumulation, and decreased accumulation of the inflammatory mediators IL-6, CXCL2 (macrophage inflammatory protein-2), and CXCL1 (keratinocyte-derived chemokine). There were dramatic increases in the recruitment of myosin heavy chain (MHC) II IA/IE(int)CD11c(int) cells, exudative macrophages, and dendritic cells in Ccl2 transgenic mouse lungs both at baseline and after bleomycin treatment compared with levels in wild-type mice. We further demonstrated that MHCII IA/IE(int)CD11c(int) cells engulfed apoptotic cells during acute lung injury. Our data suggested a previously undiscovered role for MHCII IA/IE(int)CD11c(int) cells in apoptotic cell clearance and inflammation resolution.  相似文献   

11.
The signaling mechanism that mediates inflammatory responses in remote non-ischemic myocardium following regional ischemia/reperfusion (I/R) remains incompletely understood. Myocardial Toll-like receptor 4 (TLR4) can be activated by multiple proteins released from injured cells and plays a role in myocardial inflammation and injury expansion. We tested the hypothesis that TLR4 occupies an important role in mediating the inflammatory responses and matrix protein remodeling in the remote non-ischemic myocardium following regional I/R injury. Methods and results: TLR4-defective (C3H/HeJ) and TLR4-competent (C3H/HeN) mice were subjected to coronary artery ligation (30 min) and reperfusion for 1, 3, 7 or 14 days. In TLR4-competent mice, levels of monocyte chemoattractant protein -1 (MCP-1), keratinocyte chemoattractant (KC), intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) were elevated in the remote non-ischemic myocardium at day 1, 3, and 7 of reperfusion. Levels of collagen I, collagen IV, matrix metalloproteinase (MMP) 2 and MMP 9 were increased in the remote non-ischemic myocardium at day 7 and 14 of reperfusion. MMP 2 and MMP 9 activities were also increased. TLR4 deficiency resulted in a moderate reduction in myocardial infarct size. However, it markedly downgraded the changes in the levels of chemokines, adhesion molecules and matrix proteins in the remote non-ischemic myocardium. Further, left ventricular function at day 14 was significantly improved in TLR4-defective mice. In conclusion, TLR4 mediates the inflammatory responses and matrix protein remodeling in the remote non-ischemic myocardium following regional myocardial I/R injury and contributes to the mechanism of adverse cardiac remodeling.  相似文献   

12.
Obesity is considered a chronic inflammatory disease, the inflammatory factors, such as interleukin 6 (IL‐6), monocyte chemoattractant protein 1 (MCP‐1) and small inducible cytokine A5 (RANTES), are elevated in obese individuals. Pituitary adenylate cyclase‐activating polypeptide (PACAP) suppresses anti‐inflammatory cytokines and ameliorates glucose and lipid metabolism. Our previous study showed that Fas apoptosis inhibitory molecule (FAIM) is a new mediator of Akt2 signalling, increases the insulin signalling pathway and lipid metabolism. In this study, we found that PACAP promoted the expression of FAIM protein in a human hepatocyte cell line (L02). Overexpression of FAIM with lentivirus suppressed the expression of the inflammatory factor interleukin 6 (IL‐6), monocyte chemoattractant protein 1 (MCP‐1) and tumour necrosis factor alpha (TNF‐α). Following treatment of obese mice with FAIM or PACAP for 2 weeks, inflammation was alleviated and the bodyweight and blood glucose levels were decreased. Overexpression of FAIM down‐regulated the expression of adipogenesis proteins, including SREBP1, SCD1, FAS, SREBP2 and HMGCR, and up‐regulated glycogen synthesis proteins, including Akt2 (Ser474) phosphorylation, GLUT2 and GSK‐3β, in the liver of obese mice. However, down‐regulation of FAIM with shRNA promotes obesity. Altogether, our data identified that FAIM mediates the function of PACAP in anti‐inflammation, glucose regulation and lipid metabolism in obese liver.  相似文献   

13.
Activation of the aryl hydrocarbon receptor (AhR) by TCDD may lead to the induction of proinflammatory cytokines in various cell types and organs such as liver leading to active chronic inflammation. Here we studied the expression of the chemokines keratinocyte chemoattractant (KC) and monocyte chemoattractant protein 1 (MCP-1) in different organs of mice after exposure to TCDD. TCDD exposure led to an early and clear induction of KC in liver and spleen on day 1 which was sustained over a period of 10 days. The level of MCP-1 mRNA was induced by TCDD on day 1 in spleen, lung, kidney, and liver, which was further increased at day 7. Increase of KC and MCP-1 at day 7 in liver, thymus, kidney, adipose, and heart was associated with elevated levels of the macrophage marker F4/80, indicating the infiltration of macrophages in these organs. Induction of KC requires a functional AhR since mice with a mutation in the AhR nuclear localization domain (AhR(nls)) were found to be resistant to TCDD-induced expression of KC. These results are the first showing the induction of the chemokines KC and MCP-1 in multiple organs of mice associated with an increase of the macrophage marker F4/80 indicating the involvement in TCDD's inflammatory response like infiltration of macrophages.  相似文献   

14.
The epithelial cell response to rotavirus infection.   总被引:14,自引:0,他引:14  
Rotavirus is the most important worldwide cause of severe gastroenteritis in infants and young children. Intestinal epithelial cells are the principal targets of rotavirus infection, but the response of enterocytes to rotavirus infection is largely unknown. We determined that rotavirus infection of HT-29 intestinal epithelial cells results in prompt activation of NF-kappaB (<2 h), STAT1, and ISG F3 (3 h). Genetically inactivated rotavirus and virus-like particles assembled from baculovirus-expressed viral proteins also activated NF-kappaB. Rotavirus infection of HT-29 cells induced mRNA for several C-C and C-X-C chemokines as well as IFNs and GM-CSF. Mice infected with simian rotavirus or murine rotavirus responded similarly with the enhanced expression of a profile of C-C and C-X-C chemokines. The rotavirus-stimulated increase in chemokine mRNA was undiminished in mice lacking mast cells or lymphocytes. Rotavirus induced chemokines only in mice <15 days of age despite documented infection in older mice. Macrophage inflammatory protein-1beta and IFN-stimulated protein 10 mRNA responses occurred, but were reduced in p50-/- mice. Macrophage inflammatory protein-1beta expression during rotavirus infection localized to the intestinal epithelial cell in murine intestine. These results show that the intestinal epithelial cell is an active component of the host response to rotavirus infection.  相似文献   

15.
16.
Acute and lethal ileitis can be elicited in certain strains of inbred mice after oral infection with the intracellular protozoan parasite Toxoplasma gondii. The development of this inflammatory process is dependent upon the induction of a robust Th1 response, including overproduction of IFN-gamma, TNF-alpha, and NO, as has been reported in other experimental models of human inflammatory bowel disease. In this study we have investigated the role of CD4(+) T cells from the lamina propria (LP) in the early inflammatory events after T. gondii infection using isolated and primary cultured intestinal cells from infected mice and immortalized mouse mIC(cl2) intestinal epithelial cells. Primed LP CD4(+) T cells isolated from parasite-infected mice produce substantial quantities of both IFN-gamma and TNF-alpha. IFN-gamma- and TNF-alpha-producing LP CD4(+) T cells synergize with infected mIC(cl2) and enhance the production of several inflammatory chemokines including macrophage-inflammatory protein-2, monocyte chemoattractant protein-1, monocyte chemoattractant protein-3, macrophage-inflammatory protein-1alphabeta, and IFN-gamma-inducible protein-10. Furthermore, primed LP CD4(+) T cells cocultured with infected mIC(cl2) inhibited replication of the parasite in the intestinal epithelial cells. Thus, LP CD4(+) T cells can interact with parasite-infected intestinal epithelial cells and alter the expression of several proinflammatory products that have been associated with the development of intestinal inflammation. The interaction between these two components of the gut mucosal compartment (CD4(+) T cells and enterocytes) may play a role in the immunopathogenesis of this pathogen-driven experimental inflammatory bowel disease model.  相似文献   

17.
The host response to Gram-negative LPS is characterized by an influx of inflammatory cells into host tissues, which is mediated, in part, by localized production of chemokines. The expression and function of chemokines in vivo appears to be highly selective, though the molecular mechanisms responsible are not well understood. All CXC (IFN-gamma-inducible protein (IP-10), macrophage inflammatory protein (MIP)-2, and KC) and CC (JE/monocyte chemoattractant protein (MCP)-1, MCP-5, MIP-1alpha, MIP-1beta, and RANTES) chemokine genes evaluated were sensitive to stimulation by LPS in vitro and in vivo. While IL-10 suppressed the expression of all LPS-induced chemokine genes evaluated in vitro, treatment with IFN-gamma selectively induced IP-10 and MCP-5 mRNAs, but inhibited LPS-induced MIP-2, KC, JE/MCP-1, MIP-1alpha, and MIP-1beta mRNA and/or protein. Like the response to IFN-gamma, LPS-mediated induction of IP-10 and MCP-5 was Stat1 dependent. Interestingly, only the IFN-gamma-mediated suppression of LPS-induced KC gene expression was IFN regulatory factor-2 dependent. Treatment of mice with LPS in vivo also induced high levels of chemokine mRNA in the liver and lung, with a concomitant increase in circulating protein. Hepatic expression of MIP-1alpha, MIP-1beta, RANTES, and MCP-5 mRNAs were dramatically reduced in Kupffer cell-depleted mice, while IP-10, KC, MIP-2, and MCP-1 were unaffected or enhanced. These findings indicate that selective regulation of chemokine expression in vivo may result from differential response of macrophages to pro- and antiinflammatory stimuli and to cell type-specific patterns of stimulus sensitivity. Moreover, the data suggest that individual chemokine genes are differentially regulated in response to LPS, suggesting unique roles during the sepsis cascade.  相似文献   

18.
Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease of the central nervous system (CNS) that is a model for multiple sclerosis. Previously, we showed that depletion of gamma delta T cells significantly reduced clinical and pathological signs of disease, which was associated with reduced expression of IL-1 beta, IL-6, TNF-alpha, and lymphotoxin at disease onset and a more persistent reduction in IFN-gamma. In this study, we analyzed the effect of gamma delta T cell depletion on chemokine and chemokine receptor expression. In the CNS of control EAE mice, mRNAs for RANTES, eotaxin, macrophage-inflammatory protein (MIP)-1 alpha, MIP-1 beta, MIP-2, inducible protein-10, and monocyte chemoattractant protein-1 were detected at disease onset, increased as disease progressed, and fell as clinical signs improved. In gamma delta T cell-depleted animals, all of the chemokine mRNAs were reduced at disease onset; but at the height of disease, expression was variable and showed no differences from control animals. mRNA levels then fell in parallel with control EAE mice. ELISA data confirmed reduced expression of MIP-1 alpha and monocyte chemoattractant protein-1 at disease onset in gamma delta T cell-depleted mice, and total T cell numbers were also reduced. In normal CNS mRNAs for CCR1, CCR3, and CCR5 were observed, and these were elevated in EAE animals. mRNAs for CCR2 were also detected in the CNS of affected mice. Depletion of gamma delta T cells reduced expression of CCR1 and CCR5 at disease onset only. We conclude that gamma delta T cells contribute to the development of EAE by promoting an inflammatory environment that serves to accelerate the inflammatory process in the CNS.  相似文献   

19.
20.
There is evidence that strongly suggests that inflammation plays an important role in diabetes and cardiovascular diseases. The high glucose-induced inflammatory process is characterised by the cooperation of a complex network of inflammatory molecules such as cytokines, adhesion molecules, growth factors, and chemokines. Among the chemokine family, monocyte chemoattractant protein (MCP-1) is a potent chemotactic factor, which is upregulated at sites of inflammation being in control of leukocytes trafficking. Here, we review the current knowledge on MCP-1 and its regulation by high glucose level in vascular cells involved in diabetes-induced accelerated atherosclerosis. The signalling pathways involved in MCP-1 modulation by high glucose, the proximal signalling events that stimulate downstream effects and the role of this chemokine in the pathophysiology of diabetes and its complications, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号