首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luminescent bacteria isolated from light organs of seven different species (3 genera) of fishes of the family Leiognathidae were subjected to taxonomic analysis. Of the 733 isolated all but seven were identified as Photobacterium leiognathi; the others are considered to be either chance contaminants of the sampling procedure or transients within the organ. In most fish, the luminous organ appeared to contain a single predominating strain of P. leiognathi with small numbers of one to three other strains of the same species, differing by only one or two characters.  相似文献   

2.
New information concerning the distribution and biology of anomalopid fishes is presented. There are five valid described species:Anomalops katoptron andPhotoblepharon palpebratus, widely distributed in the central and western Pacific Ocean;P. steinitzi from the Red Sea and Comoro Islands;Kryptophanaron alfredi from the Caribbean; andK. harveyi from Baja California.P. steinitzi differs fromP. palpebratus in coloration, head bone ornamentation, and pelvic ray number. The second known specimen ofK. harveyi is described in detail. The occurrence of large specimens ofAnomalops in deep water and small specimens in shallow water is discussed. Synonyms and a key to the species of anomalopids are provided.  相似文献   

3.
Flashlight fishes (family Anomalopidae) have light organs that contain luminous bacterial symbionts. Although the symbionts have not yet been successfully cultured, the luciferase genes have been cloned directly from the light organ of the Caribbean species, Kryptophanaron alfredi. The goal of this project was to evaluate the relationship of the symbiont to free-living luminous bacteria by comparison of genes coding for bacterial luciferase (lux genes). Hybridization of a luxAB probe from the Kryptophanaron alfredi symbiont to DNAs from 9 strains (8 species) of luminous bacteria showed that none of the strains tested had lux genes highly similar to the symbiont. The most similar were a group consisting of Vibrio harveyi, Vibrio splendidus and Vibrio orientalis. The nucleotide sequence of the luciferase subunit gene luxA of the Kryptophanaron alfredi symbiont was determined in order to do a more detailed comparison with published luxA sequences from Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi. The hybridization results, sequence comparisons and the mol% G+C of the Kryptophanaron alfredi symbiont luxA gene suggest that the symbiont may be considered as a new species of luminous Vibrio related to Vibrio harveyi.The nucleotide sequence reported in this article has been deposited in Genbank under accession number M36597  相似文献   

4.
Two genera of sepiolid squids—Euprymna, found primarily in shallow, coastal waters of Hawaii and the Western Pacific, and Sepiola, the deeper-, colder-water-dwelling Mediterranean and Atlantic squids—are known to recruit luminous bacteria into light organ symbioses. The light organ symbiont of Euprymna spp. is Vibrio fischeri, but until now, the light organ symbionts of Sepiola spp. have remained inadequately identified. We used a combination of molecular and physiological characteristics to reveal that the light organs of Sepiola affinis and Sepiola robusta contain a mixed population of Vibrio logei and V. fischeri, with V. logei comprising between 63 and 100% of the bacteria in the light organs that we analyzed. V. logei had not previously been known to exist in such symbioses. In addition, this is the first report of two different species of luminous bacteria co-occurring within a single light organ. The luminescence of these symbiotic V. logei strains, as well as that of other isolates of V. logei tested, is reduced when they are grown at temperatures above 20°C, partly due to a limitation in the synthesis of aliphatic aldehyde, a substrate of the luminescence reaction. In contrast, the luminescence of the V. fischeri symbionts is optimal above 24°C and is not enhanced by aldehyde addition. Also, V. fischeri strains were markedly more successful than V. logei at colonizing the light organs of juvenile Euprymna scolopes, especially at 26°C. These findings have important implications for our understanding of the ecological dynamics and evolution of cooperative, and perhaps pathogenic, associations of Vibrio spp. with their animal hosts.  相似文献   

5.
Previous studies of the luminescence system of Siphamia versicolor (Perciformes: Apogonidae) identified a ventral light organ, reflector, lens, duct, and a ventral diffuser extending from the throat to the caudal peduncle. The control and function of luminescence in this and other species of Siphamia, however, have not been defined. Morphological examination of fresh and preserved specimens identified additional components of the luminescence system involved in control and ventral emission of luminescence, including a retractable shutter over the ventral face of the light organ, contiguity of the ventral diffuser from the caudal peduncle to near the chin, and transparency of the bones and other tissues of the lower jaw. The shutter halves retract laterally, allowing the ventral release of light, and relax medially, blocking ventral light emission; topical application of norepinephrine to the exposed light organ resulted in retraction of the shutter halves, which suggests that operation of the shutter is under neuromuscular control. The extension of the diffuser to near the chin and transparency of the lower jaw allow a uniform emission of luminescence over the entire ventrum of the fish. The live aquarium‐held fish were found to readily and consistently display ventral luminescence. At twilight, the fish left the protective association with their longspine sea urchin, Diadema setosum, and began to emit ventral luminescence and to feed on zooplankton. Ventral luminescence illuminated a zone below and around the fish, which typically swam close to the substrate. Shortly after complete darkness, the fish stopped feeding and emitting luminescence. These observations suggest that S. versicolor uses ventral luminescence to attract and feed on zooplankton from the reef benthos at twilight. Ventral luminescence may allow S. versicolor to exploit for feeding the gap at twilight in the presence of potential predators as the reef transitions from diurnally active to nocturnally active organisms. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc  相似文献   

6.
A phylogeny was generated for Leiognathidae, an assemblage of bioluminescent, Indo‐Pacific schooling fishes, using 6175 characters derived from seven mitochondrial genes (16S, COI, ND4, ND5, tRNA‐His, tRNA‐Ser, tRNA‐Leu), two nuclear genes (28S, histone H3), and 15 morphological transformations corresponding to features of the fishes' sexually dimorphic light‐organ system (LOS; e.g., circumesophageal light organ, lateral lining of the gas bladder, transparent flank and opercular patches). Leiognathidae comprises three genera, Gazza, Leiognathus, and Secutor. Our results demonstrate that Leiognathidae, Gazza, and Secutor are monophyletic, whereas Leiognathus is not. The recovered pattern of relationships reveals that a structurally complex, strongly sexually dimorphic and highly variable species‐specific light organ is derived from a comparatively simple non‐dimorphic structure, and that evolution of other sexually dimorphic internal and external features of the male LOS are closely linked with these light‐organ modifications. Our results demonstrate the utility of LOS features, both for recovering phylogeny and resolving taxonomic issues in a clade whose members otherwise exhibit little morphological variation. We diagnose two new leiognathid genera, Photopectoralis and Photoplagios, on the basis of these apomorphic LOS features and also present derived features of the LOS to diagnose several additional leiognathid clades, including Gazza and Secutor. Furthermore, we show that five distinct and highly specialized morphologies for male‐specific lateral luminescence signaling, which exhibit species‐specific variation in structure, have evolved in these otherwise outwardly conservative fishes. Leiognathids inhabit turbid coastal waters with poor visibility and are often captured in mixed assemblages of several species. We hypothesize that the species‐specific, sexually dimorphic internal and external modifications of the leiognathid LOS provide compelling evidence for an assortative mating scheme in which males use species‐specific patterns of lateral luminescence signaling to attract mates, and that this system functions to maintain reproductive isolation in these turbid coastal environments. © The Willi Hennig Society 2005.  相似文献   

7.
The anatomy of bioluminescent organs and mode of light production in 18 species of pony fish have been investigated using fresh and preserved material. The luminescent systems are similarly arranged in all. Basically, the system consists of a light organ located at the distal end of the esophagus, and a series of abdominal accessory structures positioned in tandem for controlling light intensity and for directing and dispersing the light. Light is produced by numerous symbiotic luminous bacteria in the light organ. A simple classification of the luminescent systems is proposed. The light organs of Leiognathus elongatus and L. rivulatus show marked sexual dimorphism. The bacteria present in the light organs of many pony fishes are easily culturable, but not those from L. elongatus. Electron micrographs of the light organs of L. elongatus and L. rivulatus show the presence of numerous rod-shaped bacteria measuring approximately 0.8 µ x 2.4 µ and 0.8 µ x 7.3 µ, respectively. It is concluded that the light organ of L. elongatus contains another example of a type of non-culturable luminous bacteria that have been found elsewhere. Such bacteria appear to require from the host some special factor for growth and luminescence.  相似文献   

8.
We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory.  相似文献   

9.
Abstract

Momonatira globosus, a new monotypic genus and species of Moridae, is described from five specimens taken in 1153–1184 m from South Canterbury Bight, New Zealand. Spindle shaped otoliths indicate affinities with genera within the Physiculus group. Momonatira is distinctive in having broad fleshy bases to the dorsal and anal fins; a very large globular head; no light organ or barbel; 5–6 rays in the ventral fin; the lower jaw included and in other characters.  相似文献   

10.
The cottid genus Radulinopsis Soldatov and Lindberg is recognized as a valid taxon including two species, R. derjavini Soldatov and Lindberg and R. taranetzi sp. nov., both distributed in shallow waters around Hokkaido, Japan, and the Russian Far East. Radulinopsis taranetzi differs from R. derjavini in having an almost naked body, teeth on the prevomer, and higher meristic counts. Radulinopsis derjugini Soldatov is synonymized with R. derjavini. A key to species of Radulinopsis and related genera is given. Based on a cladistic analysis of 18 morphological characters, Radulinopsis is the sister group of the Japanese genus Astrocottus, and the monophyletic eastern North Pacific group comprising Radulinus plus Asemichthys is the sister group of the western North Pacific group of Radulinopsis plus Astrocottus. Triglops, having a wide distribution throughout the North Pacific and North Atlantic, is putatively the sister group of a monophyletic group including these four genera. Bolin's genus Radulinus (including Radulinopsis as a subgenus) and Taranetz's subfamily Radulinae (including only Radulinus and Radulinopsis) are polyphyletic and therefore invalid. Received: September 7, 1999 / Revised: April 28, 2000 / Accepted: August 29, 2000  相似文献   

11.
Flashlight fishes (Beryciformes: Anomalopidae) harbor luminous symbiotic bacteria in subocular light organs and use the bacterial light for predator avoidance, feeding, and communication. Despite many attempts anomalopid symbionts have not been brought into laboratory culture, which has restricted progress in understanding their phylogenetic relationships with other luminous bacteria, identification of the genes of their luminescence system, as well as the nature of their symbiotic interactions with their fish hosts. To begin addressing these issues, we used culture-independent analysis of the bacteria symbiotic with the anomalopid fish, Anomalops katoptron, to characterize the phylogeny of the bacteria and to identify the genes of their luminescence system including those involved in the regulation of luminescence. Analysis of the 16S rRNA, atpA, gapA, gyrB, pyrH, recA, rpoA, and topA genes resolved the A. katoptron symbionts as a clade nested within and deeply divergent from other members of Vibrionaceae. The bacterial luminescence (lux) genes were identified as a contiguous set (luxCDABEG), as found for the lux operons of other luminous bacteria. Phylogenetic analysis based on the lux genes confirmed the housekeeping gene phylogenetic placement. Furthermore, genes flanking the lux operon in the A. katoptron symbionts differed from those flanking lux operons of other genera of luminous bacteria. We therefore propose the candidate name Candidatus Photodesmus (Greek: photo = light, desmus = servant) katoptron for the species of bacteria symbiotic with A. katoptron. Results of a preliminary genomic analysis for genes regulating luminescence in other bacteria identified only a Vibrio harveyi-type luxR gene. These results suggest that expression of the luminescence system might be continuous in P. katoptron.  相似文献   

12.
Summary

A key to the British species of the genus Suillus based on habitat, microscopic and macroscopic characters is discussed. Some species as yet unrecorded for the British Isles are included for completeness. Also included in the key are the only W. European member of Fuscoboletinus, the single British species of Bolentis, and two Xerocomus spp., X. badius and X. rubinus, both of which are superficially similar (in some characters) to members of the genus Suillus. The genera Chalciporus and Fuscoboletinus are reviewed and the taxonomic status of Boletus grevillei is discussed in detail.  相似文献   

13.
The little‐known and rarely collected alga Exophyllum wentii Weber‐van Bosse is re‐described in detail from the type material, as well as from new collections from Indonesia, which for the first time reveal in detail the structure of cystocarpic and spermatangial plants and the development of tetrasporangial stichidia under culture conditions. New morphological reproductive information confirms placement of the genus Exophyllum within the Rhodomelaceae. Exophyllum is distinguished from other related genera within the Rhodomelaceae by its cartilaginous, non‐trichoblastic decumbent thallus with multiple holdfasts and its discoid spermatangial organs. Some Pacific material earlier attributed to E. wentii was found to be misidentified and re‐assigned to the Dasyaceae.  相似文献   

14.
The Nes subgroup of the Gobiosomatini (Teleostei: Gobiiformes: Gobiidae) is an ecologically diverse clade of fishes endemic to the tropical western Atlantic and eastern Pacific oceans. It has been suggested that morphological characters in gobies tend to evolve via reduction and loss associated with miniaturization, and this, coupled with the parallel evolution of adaptations to similar microhabitats, may lead to homoplasy and ultimately obscure our ability to discern phylogenetic relationships using morphological characters alone. This may be particularly true for the Nes subgroup of gobies, where several genera that are diagnosed by ‘reductive characters’ have been shown to be polyphyletic. Here we present the most comprehensive phylogeny to date of the Nes subgroup using mitochondrial and nuclear sequence data. We then evaluate the congruence between the distribution of morphological characters and our molecular tree using maximum‐likelihood ancestral state reconstruction, and test for phylogenetic signal in characters using Pagel's λ tree transformations (Nature, 401 , 1999 and 877). Our results indicate that all of the characters previously used to diagnose genera of the Nes subgroup display some degree of homoplasy with respect to our molecular tree; however, many characters display considerable phylogenetic signal and thus may be useful in diagnosing genera when used in combination with other characters. We present a new classification for the group in which all genera are monophyletic and in most cases diagnosed by combinations of morphological characters. The new classification includes four new genera and nine new species described here, many of which were collected from rarely sampled deep Caribbean reefs using manned submersibles. The group now contains 38 species in the genera Carrigobius gen. nov., Chriolepis, Eleotrica, Gobulus, Gymneleotris, Nes, Paedovaricus gen. nov., Pinnichthys gen. nov., Psilotris, and Varicus. Lastly, we provide a key to all named species of the Nes subgroup along with photographs and illustrations to aid in identification.  相似文献   

15.
The morphology of both the main nasal cavity and the vomeronasal organ differs among species representing six families of caecilians. The main nasal cavity is either divided or undivided. The vomeronasal organ differs in position (mediolateral, lateral), size (large vomeronasal organ in the aquatic species), and shape (mediolateral extension, vomeronasal organ with a lateral rostral projection). The great amount of respiratory epithelium of the main nasal cavity, the large vomeronasal organ, and its extensive innervation in typhlonectids may reflect both phylogeny and habitat adaptation, for these taxa are secondarily aquatic or semiaquatic and have several concomitant morphological and physiological modifications. The vomeronasal organ is associated with the caecilian tentacle as the tentacular ducts open into it. This association is further evidence for the involvement of the caecilian tentacle in vomeronasal chemoperception and may represent the mechanism by which these animals smell though the main nasal cavity is closed during burrowing or swimming. Labelings of primary olfactory and vomeronasal projections by means of horseradish peroxidase reaction reveal that the pattern of vomeronasal projections is similar in Ichthyophis kohtaoensis, Dermophis mexicanus, and Typhlonectes natans, even though T. natans possess stronger vomeronasal projections relative to olfactory projections than I. kohtaoensis and D. mexicanus. However, there are differences with respect to the patterns of olfactory projections. The olfactory projection of I. kohtaoensis is characterized by many displaced glomeruli. T. natans has the smallest olfactory projection. The nervus terminalis is associated with the olfactory system as shown by selective labelings of olfactory projections. Six characters potentially useful for phylogenetic analysis emerge from this study of comparative morphology. The characters were subjected to analysis using PAUP to see (1) if any resolution occurred and (2) if any groups were distinguished, whether they corresponded to phylogenetic arrangements based on other morphological characters. The characters are too few to produce nested dichotomous sets for all cases, but they do support the two typhlonectid genera examined and Dermophis and Gymnopis as sister taxa discrete from other groups, and they show that species within genera cluster together.  相似文献   

16.
Bacteria forming light-organ symbiosis with deep-sea chlorophthalmid fishes (Aulopiformes: Chlorophthalmidae) are considered to belong to the species Photobacterium phosphoreum. The identification of these bacteria as P. phosphoreum, however, was based exclusively on phenotypic traits, which may not discriminate between phenetically similar but evolutionarily distinct luminous bacteria. Therefore, to test the species identification of chlorophthalmid symbionts, we carried out a genomotypic (repetitive element palindromic PCR genomic profiling) and phylogenetic analysis on strains isolated from the perirectal light organ of Chlorophthalmus albatrossis. Sequence analysis of the 16S rRNA gene of 10 strains from 5 fish specimens placed these bacteria in a cluster related to but phylogenetically distinct from the type strain of P. phosphoreum, ATCC 11040(T), and the type strain of Photobacterium iliopiscarium, ATCC 51760(T). Analysis of gyrB resolved the C. albatrossis strains as a strongly supported clade distinct from P. phosphoreum and P. iliopiscarium. Genomic profiling of 109 strains from the 5 C. albatrossis specimens revealed a high level of similarity among strains but allowed identification of genomotypically different types from each fish. Representatives of each type were then analyzed phylogenetically, using sequence of the luxABFE genes. As with gyrB, analysis of luxABFE resolved the C. albatrossis strains as a robustly supported clade distinct from P. phosphoreum. Furthermore, other strains of luminous bacteria reported as P. phosphoreum, i.e., NCIMB 844, from the skin of Merluccius capensis (Merlucciidae), NZ-11D, from the light organ of Nezumia aequalis (Macrouridae), and pjapo.1.1, from the light organ of Physiculus japonicus (Moridae), grouped phylogenetically by gyrB and luxABFE with the C. albatrossis strains, not with ATCC 11040(T). These results demonstrate that luminous bacteria symbiotic with C. albatrossis, together with certain other strains of luminous bacteria, form a clade, designated the kishitanii clade, that is related to but evolutionarily distinct from P. phosphoreum. Members of the kishitanii clade may constitute the major or sole bioluminescent symbiont of several families of deep-sea luminous fishes.  相似文献   

17.
Recent molecular analyses have challenged the traditional classification of scleractinian corals at all taxonomic levels suggesting that new morphological characters are needed. Here we tackle this problem for the family Mussidae, which is polyphyletic. Most of its members belong to two molecular clades composed of: (1) Atlantic Mussidae and Faviidae (except Montastraea) and (2) Pacific Mussidae (Cynarina, Lobophyllia, Scolymia, Symphyllia) and Pectiniidae. Other Pacific mussids (e.g. Acanthastrea) belong to additional clades. To discover new characters that would better serve as phylogenetic markers, we compare the skeletal morphology of mussid genera in different molecular‐based clades. Three sets of characters are considered: (1) macromorphology (budding; colony form; size and shape of corallites; numbers of septal cycles), (2) micromorphology (shapes and distributions of septal teeth and granules), and (3) microstructure (arrangement of calcification centres and thickening deposits within costosepta). Although most traditional macromorphological characters exhibit homoplasy, several new micromorphological characters are effective at distinguishing clades, including the shapes and distribution of septal teeth and granules, the area between teeth, and the development of thickening deposits. Arrangements of calcification centres and fibres differ among clades, but the fine‐scale structure of thickening deposits does not.  相似文献   

18.
19.
The spider crab Platymaia wyvillethomsoni was reared in the laboratory, from hatching to the megalopal stage at 20°C. The larval development comprises two zoeal stages and a megalopa. The zoeal stages are described for the first time and compared with those of the four known species of the family Inachidae from the northern Pacific. The zoeal characters (carapace spines, antenna, mouthpart appendages, pleon and telson fork) of P. wyvillethomsoni are significantly different from those of two Achaeus species from northern Pacific and other inachid genera (Inachus and Macropodia) from the Atlantic. Therefore, this species should not be placed in the family Inachidae based on zoeal morphology. A provisional key for the identification of known zoeae of the family from the northern Pacific is provided.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号