首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Discharge patterns of thoracic dorsal horn neurons are influenced by chemical activation of cell bodies in cervical spinal segments C(1)-C(2). The present aim was to examine whether such activation would specifically affect thoracic respiratory interneurons (TRINs) of the deep dorsal horn and intermediate zone in pentobarbital sodium-anesthetized, paralyzed, artificially ventilated rats. We also characterized discharge patterns and pathways of TRIN activation in rats. A total of 77 cells were classified as TRINs by location, continued burst activity related to phrenic discharge when the respirator was stopped, and lack of antidromic response from selected pathways. A variety of respiration-phased discharge patterns was documented whose pathways were interrupted by ipsilateral C(1) transection. Glutamate pledgets (1 M, 1 min) on the dorsal surface of the spinal cord inhibited 22/49, excited 15/49, or excited/inhibited 3/49 tested cells. Incidence of responses did not depend on whether the phase of TRIN discharge was inspiratory, expiratory, or biphasic. Phrenic nerve activity was unaffected by chemical activation of C(1)-C(2) in this preparation. Besides supraspinal input, TRIN activity may be influenced by upper cervical modulatory pathways.  相似文献   

2.
The purpose of this study was to identify central neuronal sites activated by stimulation of cardiac ischemia-sensitive afferent neurons and determine whether electrical stimulation of left vagal afferent fibers modified the pattern of neuronal activation. Fos-like immunoreactivity (Fos-LI) was used as an index of neuronal activation in selected levels of cervical and thoracic spinal cord and brain stem. Adult Sprague-Dawley rats were anesthetized with urethane and underwent intrapericardial infusion of an "inflammatory exudate solution" (IES) containing algogenic substances that are released during ischemia (10 mM adenosine, bradykinin, prostaglandin E2, and 5-hydroxytryptamine) or occlusion of the left anterior descending coronary artery (CoAO) to activate cardiac ischemia-sensitive (nociceptive) afferent fibers. IES and CoAO increased Fos-LI above resting levels in dorsal horns in laminae I-V at C2 and T4 and in the caudal nucleus tractus solitarius. Dorsal rhizotomy virtually eliminated Fos-LI in the spinal cord as well as the brain stem. Neuromodulation of the ischemic signal by electrical stimulation of the central end of the left thoracic vagus excited neurons at the cervical and brain stem level but inhibited neurons at the thoracic spinal cord during IES or CoAO. These results suggest that stimulation of the left thoracic vagus excites descending inhibitory pathways. Inhibition at the thoracic spinal level that suppresses the ischemic (nociceptive) input signal may occur by a short-loop descending pathway via signals from cervical propriospinal circuits and/or a longer-loop descending pathway via signals from the nucleus tractus solitarius.  相似文献   

3.
大鼠下丘脑室旁核神经元对电刺激迷走神经的反应   总被引:1,自引:0,他引:1  
用玻璃微电极记录了93只大鼠的1059个PVH单位的电活动,观察了电刺激颈部迷走神经对PVH单位自发放电的效应和所引起的PVH单位的诱发反应。电刺激迷走神经分别使46个及10个PVH单位呈诱发兴奋和抑制反应。给予迷走神经以不同强度的刺激时,发现PVH神经元对激活A和C两类纤维的强刺激反应,而对仅激活A类纤维的弱刺激则不反应。PVH单位对电刺激坐骨神经或迷走神经的反应有以下几种:对迷走神经和坐骨神经刺激均作出兴奋或抑制反应;仅对迷走刺激作出兴奋或兴奋-抑制反应,而对坐骨神经刺激不反应;对坐骨神经刺激作出兴奋反应,而对迷走神经刺激不反应。讨论了迷走神经到室旁核的中枢传导特点以及内脏传入和躯体传入信息在PVH单位会聚的可能意义。  相似文献   

4.
Stimulation of cardiopulmonary receptors with phenylbiguanide (PBG) elicits depressor cardiovascular reflex responses, including decreases in blood pressure and heart rate mediated in part by the brain stem parasympathetic cardiac neurons in the nucleus ambiguus (NAmb). The present study examined NAmb neurotransmitter mechanisms underlying the influence of electroacupuncture (EA) on the PBG-induced hypotension and bradycardia. We hypothesized that somatic stimulation during EA modulates PBG responses through opioid and γ-aminobutyric acid (GABA) modulation in the NAmb. Anesthetized and ventilated cats were studied during repeated stimulation with PBG or cardiac vagal afferents while low-frequency EA (2 Hz) was applied at P5-6 acupoints overlying the median nerve for 30 min and NAmb neuronal activity, heart rate, and blood pressure were recorded. Microinjection of kainic acid into the NAmb attenuated the PBG-induced bradycardia from -60 ± 11 to -36 ± 11 beats/min. Likewise, EA reduced the PBG-induced depressor and bradycardia reflex by 52 and 61%, respectively. Cardiac vagal afferent evoked preganglionic cellular activity in the NAmb was reduced by EA for about 60 min. Blockade of opioid or GABA(A) receptors using naloxone and gabazine reversed the EA-related modulation of the evoked cardiac vagal activity by 73 and 53%, respectively. Similarly, naloxone and gabazine reversed EA modulation of the negative chronotropic responses from -11 ± 5 to -23 ± 6 and -13 ± 4 to -24 ± 3 beats/min, respectively. Thus EA at P5-6 decreases PBG evoked hypotension and bradycardia as well as the NAmb PBG-sensitive preganglionic cardiac vagal outflow through opioid and GABA neurotransmitter systems.  相似文献   

5.
The effects of hypercapnia and hypocapnia on the activities of the cardiac and pulmonary vagal single fibers were examined in the decerebrated, unanesthetized, paralyzed, and vagotomized cats. The animals breathed 100% O2. Fractional end tidal CO2 concentration was raised to 9% by adding CO2 into the O2 inlet. Average discharge rate of efferent cardiac vagal units (n=10) increased from 1.0+/-0.3 to 2.2+/-0.3 Hz. Hypocapnia apnea was produced by hyperventilation. Activities of cardiac vagal units tested (n = 4) showed dramatic decrease (0.1+/-0.0 Hz). Mean arterial blood pressure did not change significantly under these conditions. In contrast, only instantaneous firing rate during inspiration was significantly increased for efferent pulmonary vagal units (n = 11) during hypercapnia. The activities of the 3 pulmonary vagal units tested with hypocapnia decreased significantly. We concluded that cardiac and pulmonary vagal neurons were excited by chemoreceptor input.  相似文献   

6.
The possible interactions between inhibitory vagal control of the heart and circulating levels of catecholamines in dogfish (Squalus acanthias) were studied using an in situ preparation of the heart, which retained intact its innervation from centrally cut vagus nerves. The response to peripheral vagal stimulation typically consisted of an initial cardiac arrest, followed by an escape beat, leading to renewed beating at a mean heart rate lower than the prestimulation rate (partial recovery). Cessation of vagal stimulation led to a transient increase in heart rate, above the prestimulation rate. This whole response was completely abolished by 10(-4) M atropine (a muscarinic cholinergic antagonist). The degree of vagal inhibition was evaluated in terms of both the initial, maximal cardiac interval and the mean heart rate during partial recovery, both expressed as a percentage of the prestimulation heart rate. The mean prestimulation heart rate of this preparation (36+/-4 beats min(-1)) was not affected by noradrenaline but was significantly reduced by 10(-4) M nadolol (a beta-adrenergic receptor antagonist), suggesting the existence of a resting adrenergic tone arising from endogenous catecholamines. The degree of vagal inhibition of heart rate varied with the rate of stimulation and was increased by the presence of 10(-8) M noradrenaline (the normal in vivo level in routinely active fish), while 10(-7) M noradrenaline (the in vivo level measured in disturbed or deeply hypoxic fish) reduced the cardiac response to vagal stimulation. In the presence of 10(-7) M noradrenaline, 10(-4) M nadolol further reduced the vagal response, while 10(-4) M nadolol + 10(-4) M phentolamine had no effect, indicating a complex interaction between adrenoreceptors, possibly involving presynaptic modulation of vagal inhibition.  相似文献   

7.
Synaptic responses of single neurons to stimulation of the bulbar "locomotor strip" were recorded extracellularly from superior cervical segments in mesencephalic cats. With a strength of stimulation of about 30 µA these responses usually had a latent period of 2–7 msec and they arose in neurons located at a depth of between 2 and 4 mm from the dorsal surface (Rexed's laminae V–VIII). These neurons could not be excited antidromically by stimulation of the lumbar or lower cervical segments. However, antidromic responses could be evoked by stimulation of a region located 3–5 mm caudally to the site of recording. It is suggested that neurons of segments C2 and C3 excited by stimulation of the locomotor strip are components of a cell column along which activity spreads polysynaptically in the direction of spinal stepping generators.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 11, No. 3, pp. 245–253, May–June, 1979.  相似文献   

8.
In experiments on anesthetised cats we investigated functional significance of different cholinergic mechanisms regulating the magnitude of vagal chronotropic effect components, inhibitory tonic and synchronizing. It was established that inhibitory tonic vagal component is determined by intensity of acetylcholine hydrolysis and total amount of excited cardiac M-cholinoreceptors. The magnitude of synchronizing vagal component depended on subtypes of cholinoreceptors selectively excited by acetylcholine released from vagal terminals. In particular, the blockade of M1- or M3-cholinoreceptors potentiated the synchronizing vagal component, whereas the blockade of M2-cholinoreceptors inhibited it.  相似文献   

9.
By exploiting a Still-Gennari olefination of a common C11-C26 aldehyde with a C4-C10 or C1-C10 beta-ketophosphonate, three modified C2-C6 region analogues of the 22-membered macrolide dictyostatin were synthesised and evaluated in vitro for growth inhibition against a range of human cancer cell lines, including the Taxol-resistant NCI/ADR-Res cell line. 6-Desmethyldictyostatin and 2,3-dihydrodictyostatin displayed potent (low nanomolar) antiproliferative activity, intermediate between dictyostatin and discodermolide, while 2,3,4,5-tetrahydrodictyostatin showed activity comparable to discodermolide. As with dictyostatin, these simplified analogues act through a mechanism of microtubule stabilisation, G2/M arrest and apoptosis.  相似文献   

10.
Complex sympathovagal interactions govern heart rate (HR). Activation of the postjunctional beta-adrenergic receptors on the sinus nodal cells augments the HR response to vagal stimulation, whereas exogenous activation of the presynaptic alpha-adrenergic receptors on the vagal nerve terminals attenuates vagal control of HR. Whether the alpha-adrenergic mechanism associated with cardiac postganglionic sympathetic nerve activation plays a significant role in modulation of the dynamic vagal control of HR remains unknown. The right vagal nerve was stimulated in seven anesthetized rabbits that had undergone sinoaortic denervation and vagotomy according to a binary white-noise signal (0-10 Hz) for 10 min; subsequently, the transfer function from vagal stimulation to HR was estimated. The effects of beta-adrenergic blockade with propranolol (1 mg/kg i.v.) and the combined effects of beta-adrenergic blockade and tonic cardiac sympathetic nerve stimulation at 5 Hz were examined. The transfer function from vagal stimulation to HR approximated a first-order, low-pass filter with pure delay. beta-Adrenergic blockade decreased the dynamic gain from 6.0 +/- 0.4 to 3.7 +/- 0.6 beats x min(-1) x Hz(-1) (P < 0.01) with no alteration of the corner frequency or pure delay. Under beta-adrenergic blockade conditions, tonic sympathetic stimulation did not further change the dynamic gain (3.8 +/- 0.5 beats x min(-1) x Hz(-1)). In conclusion, cardiac postganglionic sympathetic nerve stimulation did not affect the dynamic HR response to vagal stimulation via the alpha-adrenergic mechanism.  相似文献   

11.
Chemical activation of upper cervical spinal neurons modulates activity of thoracic respiratory interneurons in rats. The aim of the present study was to examine the effects of chemical activation of C(1)-C(2) spinal neurons on thoracic spinal respiratory motor outflows. Electroneurograms of left phrenic (n = 23) and intercostal nerves (ICNs, n = 93) between T(3) and T(8) spinal segments were recorded from 36 decerebrated, vagotomized, paralyzed, and ventilated male rats. To activate upper cervical spinal neurons, glutamate pledgets (1 M, 1 min) were placed on the dorsal surface of the C(1)-C(2) spinal cord. Glutamate on C(1)-C(2) increased ICN tonic activity in 56/59 (95%) ICNs. The average maximal tonic activity of ICN was increased by 174% (n = 59). After spinal transection at rostral C(1), glutamate on C(1)-C(2) still increased ICN tonic activity in 33/35 ICNs. However, the effects of C(1)-C(2) glutamate on ICN phasic activity were highly variable, with observations of augmentation or suppression of both inspiratory and expiratory discharge. C(1)-C(2) glutamate augmented the average amplitude of phrenic burst by 20%, whereas the increases in amplitude of ICN inspiratory activity, when they occurred, averaged 120%. The burst rate of phrenic nerve discharge was decreased from 34.2 +/- 1.6 to 26.3 +/- 2.0 (mean +/- SE) breaths/min during C(1)-C(2) glutamate. These data suggested that upper cervical propriospinal neurons might play a role in descending modulation of thoracic respiratory and nonrespiratory motor activity.  相似文献   

12.
The actions of a variety of polypeptide growth factors on isolated cells are thought to be initiated by stimulation of Na+-H+ exchange across the plasma membranes of the cells resulting in intracellular alkalinization. To determine whether insulin-like growth factors (IGFs) exert actions through such a mechanism, we incubated suspensions of canine renal proximal tubular segments with insulin or IGF I or with multiplication-stimulating activity (MSA)/IGF II. Changes in intracellular pH were detected by measurements of the distribution of [14C]5,5-dimethoxazolidine-2,4-dione. Incubation of segments with 10(-9) M MSA under conditions such that extracellular [Na+] greater than intracellular [Na+] effected intracellular alkalinization detectable within 1-2 min. Alkalinization was not observed under conditions where this gradient was not present. Alkalinization was not prevented by inclusion of 1 mM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid or 1 mM ouabain in incubations, but was inhibited by amiloride. Incubation of proximal tubular segments with as little as 10(-11) M MSA effected intracellular alkalinization. Incubation with as much as 10(-6) M insulin or IGF I did not. Our findings are consistent with an action of MSA/IGF II to stimulate Na+-H+ exchange across the plasma membrane of the renal proximal tubular cell. It is possible that the stimulation represents a mechanism by which actions of IGF II are initiated in growth factor-sensitive cells.  相似文献   

13.
In 11 experiments on anesthetised cats burst stimulation of peripheral cut end of right vagus nerve leads to synchronization of cardiac and vagus rhythms. Alterations of burst sequence frequency within definite limits has been synchronously reproduced by heart thus creating managed bradycardia possibility. Somatostatin (10(-8)-10(-9) M intravenously) decreases heart rate and inhibits total vagus chronotropic effect. Vagolytic effect of somatostatin caused a decrease of tonic component of the vagus chronotropic effect. On the other hand, somatostatin augmented the extent of the vagal synchronizing influences and caused enlargement of the ranges of managed bradycardia. The observed results testify to participation of the peptidergic mechanisms in genesis of vagal managed bradycardia.  相似文献   

14.
To determine the somatic sensory modalities conveyed by hindlimb somatic afferent inputs, the discharge of neurons in the nucleus tractus solitarius was recorded in anesthetized rats after electrical stimulation of either the contralateral sciatic nerve or L(6) spinal nerve, which innervates the hindlimb. The discharge of seven of eight cells was increased (P < 0.05) by capsaicin injected into the arterial supply of the hindlimb. Discharge was unaltered in 19 neurons tested for sensitivity to nonnoxious (40 degrees C) and noxious (47 degrees C) heating of the hindlimb skin. In contrast, lightly stroking the skin elicited discharge in 2 of 14 cells, whereas noxious pinching increased activity in 4 other cells. Rhythmic (1- to 3-s) muscle contraction (MC) increased (P < 0.05) discharge in >60% of neurons tested (11 of 18). Static (10- to 30-s) MC significantly (P < 0.05) increased discharge in four cells, two of which were also responsive to rhythmic MC. Rhythmic and sustained muscle stretch increased discharge (P < 0.05) in three of eight neurons tested. These data indicate that nucleus tractus solitarius neurons receive input from low- and high-threshold cutaneous mechanoreceptors, respond to capsaicin delivered into the hindlimb arterial supply, lack thermal sensitivity, and respond to activation of mechanosensitive as well as metabosensitive endings in skeletal muscle.  相似文献   

15.
The projections of phrenic nerve afferents to neurons in the dorsal (DRG) and ventral (VRG) respiratory group were studied in anesthetized, paralyzed, and vagotomized cats. Extracellular recordings of neuronal responses to vagal nerve and cervical phrenic nerve stimulation (CPNS) indicated that about one-fourth of the DRG respiratory-modulated neurons were excited by phrenic nerve afferents with an onset latency of approximately 20 ms. In addition, non-respiratory-modulated neurons within the DRG were recruited by CPNS. Although some convergence of vagal and phrenic afferent input was observed, most neurons were affected by only one type of afferent. In contrast to the DRG, only 3 out of 28 VRG respiratory-modulated neurons responded to CPNS. A second study determined that most of these neuronal responses were due to activation of diaphragmatic afferents since 90% of the DRG units activated by CPNS were also excited at a longer latency by thoracic phrenic nerve stimulation. The difference in onset latency of neuronal excitation indicates an afferent peripheral conduction velocity of about 10 m/s, which suggests that they are predominately small myelinated fibers (group III) making paucisynaptic connections with DRG neurons. Decerebration, decerebellation, and bilateral transection of the dorsal columns at C2 do not abolish the neuronal responses to cervical PNS.  相似文献   

16.
The temporal relations between simultaneously recorded neurons of the nucleus ventralis lateralis (VL) of cat thalamus were studied. The interaction and the functional connections between individual VL neurons are described. This was achieved with an application of cross correlation techniques. The response patterns of different individual neurons to somatic sensory and photic stimuli were also analyzed. For the purpose of classifying neurons as thalamocortical relay cells (T-C) and non relay cells (N-C) which do not project to the motor sensory cortex antidromic cortical stimulation was used. This stimulation was also used as conditioning one when proceeded peripheral stimuli. To analyze the nonspecific specific interactions upon single neurons conditioning photic stimuli were applied. The results show that T-C neurons are antidromically excited from a wide cortical areas and that the functional interaction between T-C neurons is mediated by a shared input from common sources. It is further postulated that N-C cells interposed between relay neurons subserve the functions of gating units modifying the neuronal network of lateral ventral nucleus of the thalamus.  相似文献   

17.
We examined the effects of chemical and reflex drives on the postinspiratory inspiratory activity (PIIA) of phrenic motoneurons using a single-fiber technique. Action potentials from "single" fibers were recorded from the C5 phrenic root together with contralateral mass phrenic activity (also from C5) in anesthetized, paralyzed, and artificially ventilated cats with intact vagus and carotid sinus nerves. Nerve fibers were classified as "early" or "late" based on their onset of discharge in relation to mass phrenic activity during hyperoxic ventilation. Only the early fibers displayed PIIA but not the late fibers, even when their activity began earlier in inspiration with increased chemical drives. Isocapnic hypoxia increased, whereas hyperoxic hypercapnia shortened the duration of PIIA. Pulmonary stretch and "irritant" receptors inhibited PIIA. Hypercapnia and stimulation of peripheral chemoreceptors by lobeline excited both early and late units to the same extent, but hypoxic ventilation had a less marked excitatory effect on late fiber activity. Irritant receptor activation increased the activity of early more than late fibers. Hyperoxic hyperventilation eliminated late phrenic fiber activity, whereas early fibers became tonically active. Bilateral vagotomy abolished this sustained discharge in eight of nine early units, suggesting the importance of vagal afferents in producing tonic firing during hyperventilation. These results suggest that early and late phrenic fibers have different responses to chemical stimuli and to vagally mediated reflexes; late units do not discharge in postinspiratory period, whereas early fibers do; the PIIA is not affected in the same way by various chemical and vagal inputs; and early units that exhibit PIIA display tonic activity with hyperoxic hypocapnia.  相似文献   

18.
Antibody-coated microprobes were inserted into the thoracic (T3-4) spinal cord in urethane-anesthetized Sprague-Dawley rats to detect the differences in the release of immunoreactive substance P-like (irSP) substances in response to differential activation of cardiac nociceptive sensory neurons (CNAN). CNAN were stimulated either by intrapericardial infusion of an inflammatory ischemic exudate solution (IES) containing algogenic substances (i.e., 10 mM each of adenosine, bradykinin, prostaglandin E2, and 5-hydroxytryptamine), or by transient occlusion of the left anterior descending coronary artery (CoAO). There was widespread basal release of irSP from the thoracic spinal cord. Stimulation of the CNAN by IES did not alter the pattern of release of irSP. Conversely, CoAO augmented the release of irSP from T3-4 spinal segments from laminae I-VII. This CoAO-induced irSP release was eliminated after thoracic dorsal rhizotomy. These results indicate that heterogeneous activation of cardiac afferents, as with focal coronary artery occlusion, represents an optimum input for activation of the cardiac neuronal hierarchy and for the resultant perception of angina. Excessive stimulation of cardiac nociceptive afferent neurons elicited during regional coronary artery occlusion involves the release of SP in the thoracic spinal cord and suggests that local spinal cord release of SP may be involved in the neural signaling of angina.  相似文献   

19.
Progression through mitosis requires the precisely timed ubiquitin-dependent degradation of specific substrates. E2-C is a ubiquitin-conjugating enzyme that plays a critical role with anaphase-promoting complex/cyclosome (APC/C) in progression of and exit from M phase. Here we report that mammalian E2-C is expressed in late G(2)/M phase and is degraded as cells exit from M phase. The mammalian E2-C shows an autoubiquitinating activity leading to covalent conjugation to itself with several ubiquitins. The ubiquitination of E2-C is strongly enhanced by APC/C, resulting in the formation of a polyubiquitin chain. The polyubiquitination of mammalian E2-C occurs only when cells exit from M phase. Furthermore, mammalian E2-C contains two putative destruction boxes that are believed to act as recognition motifs for APC/C. The mutation of this motif reduced the polyubiquitination of mammalian E2-C, resulting in its stabilization. These results suggest that mammalian E2-C is itself a substrate of the APC/C-dependent proteolysis machinery, and that the periodic expression of mammalian E2-C may be a novel autoregulatory system for the control of the APC/C activity and its substrate specificity.  相似文献   

20.
A study of the conformational spaces of the chiral proton pump inhibitor (PPI) drug omeprazole by semiempirical, ab-initio, and DFT methods is described. In addition to the chiral center at the sulfinyl sulfur atom, the chiral axis at the pyridine ring (due to the hindered rotation of the 4-methoxy substituents) was considered. The results were analyzed in terms of the 5-methoxy and 6-methoxy tautomers and the two pairs of enantiomers (R,P)/(S,M) and (R,M)/(S,P). Five torsion angles were systematically explored: the backbone rotations defined by D1 (N3-C2-S10-O11), D2 (C2-S10-C12-C13), and D3 (S10-C12-C13-N14) and two methoxy rotations defined by D4 (C6-C5-O8-C9) and D5 (C16-C17-O19-C20). Significant energy differences were revealed between the 5- and 6-methoxy tautomers, the extended and folded conformations, and the (S,M) and (S,P) diastereomers. The "extended M" conformation of the 6-methoxy tautomer of (S)-omeprazole was found to be the most stable conformer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号