首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have employed site-directed mutagenesis to investigate the contribution of a conserved arginyl residue to the catalytic activity and cofactor affinity of D-serine dehydratase, a model pyridoxal 5'-phosphate (vitamin B6) enzyme. Replacement of R-120 in the active site peptide of D-serine dehydratase by L decreased the affinity of the enzyme for pyridoxal 5'-phosphate by 20-fold and reduced turnover by 5-8-fold. kappa cat displayed modified substrate alpha-deuterium isotope effects and altered dependence on both temperature and pH. Analysis of the pH rate profiles of DSD and the R-120----L variant indicated that R-120 interacts electrostatically with catalytically essential ionizable groups at the active site of wild type D-serine dehydratase. The decrease in cofactor affinity observed for DSD(R120L) was not accompanied by significant perturbations in the UV, CD, or 31P NMR spectrum of the holoenzyme, suggesting that the contribution of R-120 to pyridoxal phosphate affinity may be indirect or else involve an interaction with a cofactor functional group other than the 5'-phosphoryl moiety. The properties of two other site-directed variants of D-serine dehydratase indicated that the pyridoxal 5'-phosphate:K-118 Schiff base was indifferent to a small change in the shape of the side chain at position 117 (I-117----L), whereas replacement of K-118 by H resulted in undetectable levels of enzyme. A poor ability to bind cofactor may have rendered DSD(K118H) susceptible to intracellular proteolysis.  相似文献   

2.
Replacement of glycine by aspartic acid at either of two sites in a conserved, glycine-rich region inactivates the pyridoxal 5'-phosphate-dependent enzyme D-serine dehydratase (DSD) from Escherichia coli. To investigate why aspartic acid at position 279 or 281 causes a loss of activity, we measured the affinity of the G----D variants for pyridoxal 5'-phosphate and a cofactor:substrate analog complex and compared the UV, CD, and fluorescence properties of wild-type D-serine dehydratase and the inactive variants. The two G----D variants DSD(G279D) and DSD (G281D) displayed marked differences from wild-type D-serine dehydratase and from each other with respect to their affinity for pyridoxal 5'-phosphate and for a pyridoxal 5'-phosphate:glycine Schiff base. Compared to the wild-type enzyme, the cofactor affinity of DSD(G279D) and DSD(G281D) was decreased 225- and 50-fold, respectively, and the ability to retain a cofactor:glycine complex was decreased 765- and 1970-fold. The spectral properties of the inactive variants suggest that they form a Schiff base linkage with pyridoxal 5'-phosphate but do not hold the cofactor in a catalytically competent orientation. Moreover, the amount of cofactor aldamine in equilibrium with cofactor Schiff base is increased in DSD(G279D) and DSD(G281D) relative to that in wild-type DSD. Collectively, our findings indicate that introduction of a carboxymethyl side chain at G-279 or G-281 directly or indirectly disrupts catalytically essential protein-cofactor and protein-substrate interactions and thereby prevents processing of the enzyme bound cofactor:substrate complex. The conserved glycine-rich region is thus either an integral part of the D-serine dehydratase active site or conformationally linked to it.  相似文献   

3.
D-serine dehydratase (DSD) catalyses the conversion of d-serine to pyruvate and ammonia. d-Serine is a physiological modulator of glutamate neurotransmission in vertebrate brains. In mammals d-serine is degraded by d-amino-acid oxidase, whereas in chicken brain it is degraded by DSD, as we have recently demonstrated [Tanaka et al. (2007) Anal. Biochem. 362, 83-88]. To clarify the roles of DSD in avian species, we purified DSD from chicken kidney. The purified enzyme was a heterodimer consisting of subunits separable by SDS-PAGE but with identical N-terminal amino acid sequences. The prominent absorption at 416 nm and the inhibition of the enzyme both by hydroxylamine and by aminooxyacetate suggested that the enzyme contains pyridoxal 5'-phosphate as a cofactor. The enzyme showed the highest specificity to d-serine: the k(cat)/K(m) values of DSD for d-serine, d-threonine and l-serine were 6.19 x 10(3), 164 and 16 M(-1)s(-1), respectively. DSD was found immunohistochemically in the proximal tubules of the chicken kidney. Judging from the amino acid sequence deduced from the cDNA, chicken DSD is a homologue of cryptic DSD from Burkholderia cepacia and low-specificity d-threonine aldolase from Arthrobacter sp. strain DK-38, all of which have a cofactor binding motif of PHXK(T/A) in their N-terminal portions.  相似文献   

4.
The glycogen phosphorylase molecule absorbs the ultraviolet energy of a nitrogen laser to form an excited state of the cofactor. The decay rate of this state has a lifetime of 6.7 microseconds, and its sensitivity to bound substrates presents a new perspective of the mechanism. A careful analysis of the decay curve for native enzyme and cofactor analogues showed that the lifetime depends on the conformation of protein groups at the active site and how the residues change with bound substrate. The reactive ternary complexes obtained from either direction of the reaction yielded the same lifetime, indicating a change in the active-site conformation to a common configuration for the cofactor and substrate phosphate. This configuration indicates an increase in the cofactor 5'-PO4 pKa and a possible proton shuttle. The pyridoxal 5'-pyrophosphate reconstituted enzyme showed no conformational change alone or in the presence of oligosaccharide. This result does not support an electrophilic attack by the 5'-PO4 phosphorus.  相似文献   

5.
It has been established that phosphate analogues can activate glycogen phosphorylase reconstituted with pyridoxal in place of the natural cofactor pyridoxal 5'-phosphate (Change YC. McCalmont T, Graves DJ. 1983. Biochemistry 22:4987-4993). Pyridoxal phosphorylase b has been studied by kinetic, ultracentrifugation, and X-ray crystallographic experiments. In solution, the catalytically active species of pyridoxal phosphorylase b adopts a conformation that is more R-state-like than that of native phosphorylase b, but an inactive dimeric species of the enzyme can be stabilized by activator phosphite in combination with the T-state inhibitor glucose. Co-crystals of pyridoxal phosphorylase b complexed with either phosphite, phosphate, or fluorophosphate, the inhibitor glucose, and the weak activator IMP were grown in space group P4(3)2(1)2, with native-like unit cell dimensions, and the structures of the complexes have been refined to give crystallographic R factors of 18.5-19.2%, for data between 8 and 2.4 A resolution. The anions bind tightly at the catalytic site in a similar but not identical position to that occupied by the cofactor 5'-phosphate group in the native enzyme (phosphorus to phosphorus atoms distance = 1.2 A). The structural results show that the structures of the pyridoxal phosphorylase b-anion-glucose-IMP complexes are overall similar to the glucose complex of native T-state phosphorylase b. Structural comparisons suggest that the bound anions, in the position observed in the crystal, might have a structural role for effective catalysis.  相似文献   

6.
5-Aminolevulinate synthase (EC 2.3.1.37) is the first enzyme in the heme biosynthesis in nonplant eukaryotes and some prokaryotes. It functions as a homodimer and requires pyridoxal 5'-phosphate as an essential cofactor. Tyr-121 is a conserved residue in all known sequences of 5-aminolevulinate synthases. Further, it corresponds to Tyr-70 of Escherichia coli aspartate aminotransferase, which has been shown to interact with the cofactor and prevent the dissociation of the cofactor from the enzyme. To test whether Tyr-121 is involved in cofactor binding in murine erythroid 5-aminolevulinate synthase, Tyr-121 of murine erythroid 5-aminolevulinate synthase was substituted by Phe and His using site-directed mutagenesis. The Y121F mutant retained 36% of the wild-type activity and the Km value for substrate glycine increased 34-fold, while the activity of the Y121H mutant decreased to 5% of the wild-type activity and the Km value for glycine increased fivefold. The pKa1 values in the pH-activity profiles of the wild-type and mutant enzymes were 6.41, 6.54, and 6.65 for wild-type, Y121F, and Y121H, respectively. The UV-visible and CD spectra of Y121F and Y121H mutants were similar to those of the wild-type with the exception of an absorption maximum shift (420 --> 395 nm) for the Y121F mutant in the visible spectrum region, suggesting that the cofactor binds the Y121F mutant enzyme in a more unrestrained manner. Y121F and Y121H mutant enzymes also exhibited lower affinity than the wild-type for the cofactor, reflected in the Kd values for pyridoxal 5'-phosphate (26.5, 6.75, and 1.78 microM for Y121F, Y121H, and the wild-type, respectively). Further, Y121F and Y121H proved less thermostable than the wild type. Taken together, these findings indicate that Tyr-121 plays a critical role in cofactor binding of murine erythroid 5-aminolevulinate synthase.  相似文献   

7.
This review summarizes data on structure of muscle glycogen phosphorylase b and the role of the cofactor pyridoxal 5"-phosphate in catalysis and stabilizing the native conformation of the enzyme. Specific attention is paid to the stabilizing role of pyridoxal 5"-phosphate upon denaturation of phosphorylase b. Stability of holoenzyme, apoenzyme, and enzyme reduced by sodium borohydride is compared.  相似文献   

8.
Evidence for essential lysines in heparin cofactor II   总被引:1,自引:0,他引:1  
Covalent modification with pyridoxal 5'-phosphate was used to study the function of lysyl residues in heparin cofactor II, a heparin-dependent plasma protease inhibitor. Reduction of the Schiff base with sodium borohydride resulted in modification of 3-4 lysyl residues of heparin cofactor II at high concentrations of pyridoxal 5'-phosphate, one of which was protected in the presence of heparin. The antithrombin activity of modified heparin cofactor II was enhanced compared to the native protein. However, the heparin cofactor activity for thrombin inhibition was reduced significantly or completely eliminated in the modified protease inhibitor depending on the extent of phosphopyridoxylation. In contrast to native heparin cofactor II, the modified protease inhibitor did not bind to a heparin-agarose column. The results suggest that lysyl residues are essential for heparin cofactor activity during thrombin inhibition.  相似文献   

9.
D-Amino acid aminotransferase, purified to homogeneity and crystallized from Bacillus sphaericus, has a molecular weight of about 60,000 and consists of two subunits identical in molecular weight (30,000). The enzyme exhibits absorption maxima at 280, 330, and 415 nm, which are independent of the pH (5.5 to 10.0), and contains 2 mol of pyridoxal 5'-phosphate per mol of enzyme. One of the pyridoxal-5'-P, absorbing at 415 nm, is bound in an aldimine linkage to the epsilon-amino group of a lysine residue of the protein, and is released by incubation with phenylhydrazine to yield the catalytically inactive form. The inactive form, which is reactivated by addition of pyridoxal 5'phosphate, still has a 330 nm peak and contains 1 mol of pyridoxal 5'-phosphate. Therefore, this form is regarded as a semiapoenzyme. The holoenzyme shows negative circular dichroic bands at 330 and 415 nm. D-Amino acid aminotransferase catalyzes alpha transamination of various D-amino acids and alpha-keto acids. D-Alanine, D-alpha-aminobutyrate and D-glutamate, and alpha-ketoglutarate, pyruvate, and alpha-ketobutyrate are the preferred amino donors and acceptors, respectively. The enzyme activity is significantly affected by both the carbonyl and sulfhydryl reagents. The Michaelis constants are as follows: D-alanine (1.3 and 4.2 mM with alpha-ketobutyrate and alpha-ketoglutarate, respictively), alpha-ketobutyrate (14 mM withD-alanine), alpha-ketoglutarate (3.4 mM with D-alanine), pyridoxal 5'-phosphate (2.3 muM) and pyridoxamine 5'-phosphate (25 muM).  相似文献   

10.
The enzyme mitochondrial aspartate aminotransferase from beef liver is a dimer of identical subunits. The enzymatic activity of the resolved enzyme is restored upon addition of the cofactor pyridoxal 5-phosphate. The binding of 1 molecule of cofactor restores 50% of the original enzymatic activity, whereas the binding of a 2nd molecule of cofactor brings about more than 95% recovery of the catalytic activity. Following addition of 1 mol of pyridoxal-5-P per dimer, three forms of the enzyme may exist in solution: apoenzyme-2 pyridoxal 5'-phosphate, apoenzyme-1 pyridoxal 5'-phosphate, and apoenzyme. The enzyme species are separated by affinity chromatography and the following distribution was found: apoenzyme-2 pyridoxal 5'-phosphate/apoenzyme-1 pytidoxal 5'-phosphate/apoenzyme, 2/6/2. Similar distribution was observed after reduction with NaBH4 of the mixture containing apoenzyme and pyridoxal-5-P at a mixing ratio of 1:1. Fluorometric titrations conducted on samples of apoenzyme and apoenzyme-1 pyridoxal 5'-phosphate reveal that the enzyme species display identical affinity towards the inhibitor 4-pyridoxic-5-P (KD equals 1.1 times 10- minus 6 M). It is concluded that the binding of the cofactor to one of the catalytic sites does not affect the affinity of the second site for the inhibitor. These results, obtained by two independent methods, lend strong support to the hypothesis that the two subunits of the enzyme function independently.  相似文献   

11.
Aspartate aminotransferase (AspAT) [EC 2.6.1.1] of thermophilic methanogen was further characterized with the enzyme from Methanobacterium thermoautotrophicum strain FTF-INRA as well as M. thermoformicicum strain SF-4. AspAT of strain FTF-INRA was similar in the amino donor specificity to the enzyme of M. thermoformicicum strain SF-4, in that it was active on L-cysteine and L-cysteine sulfinate in addition to L-glutamate and L-aspartate. The enzymes gave similar absorption spectra having maxima at around 326 and 415 nm with no pH-dependent shift but were found to contain 1 mol of tightly bound pyridoxal 5'-phosphate (PLP) per subunit. Reconstitution of each apoenzyme with added PLP resulted in partial recovery of the original enzymatic activity, suggesting a significant conformational change of the active site region upon removal of the cofactor. Polyacrylamide gel electrophoresis (PAGE) and gel filtration analyses revealed a tetrameric structure (180 kDa) of identical subunits with a molecular mass of 43 kDa for each of these enzymes. Electric current was found to affect the interaction or affinity of each subunit, promoting dissociation of the native enzyme into the monomeric form. Alkaline treatment was effective only for dissociation of the enzyme from strain SF-4. They were distinguishable by the more rapid reassociation of the monomer to the native aggregated form in the enzyme of strain FTF-INRA.  相似文献   

12.
5-Aminolevulinate synthase is the first enzyme of the heme biosynthetic pathway in animals and some bacteria. Lysine-313 of the mouse erythroid aminolevulinate synthase was recently identified to be linked covalently to the pyridoxal 5'-phosphate cofactor (Ferreira GC, Neame PJ, Dailey HA, 1993, Protein Sci 2:1959-1965). Here we report on the effect of replacement of aminolevulinate synthase lysine-313 by alanine, histidine, and glycine, using site-directed mutagenesis. Mutant enzymes were purified to homogeneity, and the purification yields were similar to those of the wild-type enzyme. Although their absorption spectra indicate that the mutant enzymes bind pyridoxal 5'-phosphate, they bind noncovalently. However, addition of glycine to the mutant enzymes led to the formation of external aldimines. The formation of an external aldimine between the pyridoxal 5'-phosphate cofactor and the glycine substrate is the first step in the mechanism of the aminolevulinate synthase-catalyzed reaction. In contrast, lysine-313 is an essential catalytic residue, because the K313-directed mutant enzymes have no measurable activity. In summary, site-directed mutagenesis of the aminolevulinate synthase active-site lysine-313, to alanine (K313A), histidine (K313H), or glycine (K313G) yields enzymes that bind the pyridoxal 5'-phosphate cofactor and the glycine substrate to produce external aldimines, but which are inactive. This suggests that lysine-313 has a functional role in catalysis.  相似文献   

13.
Molybdenum cofactor was extracted from membranes of Proteus mirabilis by three methods: acidification, heat treatment and heat treatment in the presence of sodium-dodecylsulphate (SDS). Extracts prepared by the latter method contained the highest concentration of molybdenum cofactor. In these extracts molybdenum cofactor was present in a low molecular weight form. It could not penetrate an YM-2 membrane during ultrafiltration suggesting a molecular weight above 1000. During aerobic incubation of cofactor extracts from membranes at least four fluorescent species were formed as observed in a reversed-phase high performance liquid chromatography (HPLC) system. The species in the first peak was inhomogeneous while the species in the others seem to be homogenous. In water, all fluorescent products had an excitation maximum at 380 nm and an emission maximum at 455 nm. Their absorption spectra showed maxima at around 270 nm and 400 nm. Fluorescent compounds present in the first peak could penetrate an YM-2 membrane during ultrafiltration, whereas the compounds in the other peaks hardly did. Using xanthine oxidase from milk as source of molybdenum cofactor apparently identical cofactor species were found. Cytoplasmic nor membrane extracts of the chlorate resistant mutant chl S 556 of P. mirabilis could complement nitrate reductase of Neurospora crassa nit-1 in the presence of 20 mM molybdate. However, fluorescent species with identical properties as found for the wild-type were formed during aerobic incubation of extracts from membranes of this mutant.Non-common Abbreviations HPLC high performance liquid chromatography - I.D. internal diameter - SDS sodium dodecyl sulphate  相似文献   

14.
Chen Z  Wang LH  Schelvis JP 《Biochemistry》2003,42(9):2542-2551
Thromboxane synthase is a hemethiolate enzyme that catalyzes the isomerization of prostaglandin H2 to thromboxane A2. We report the first resonance Raman (RR) spectra of recombinant human thromboxane synthase (TXAS) in both the presence and the absence of substrate analogues U44069 and U46619. The resting enzyme and its U44069 complex are found to have a 6-coordinate, low spin (6c/ls) heme, in agreement with earlier experiments. The U46619-bound enzyme is detected as a 6c/ls heme too, which is in contradiction with a previous conclusion based on absorption difference spectroscopy. Two new vibrations at 368 and 424 cm(-1) are observed upon binding of the substrate analogues in the heme pocket and are assigned to the second propionate and vinyl bending modes, respectively. We interpret the changes in these vibrational modes as the disruption of the protein environment and the hydrogen-bonding network of one of the propionate groups when the substrate analogues enter the heme pocket. We use carbocyclic thromboxane A2 (CTA2) to convert the TXAS heme cofactor to its 5-coordinate, high spin (5c/hs) form, as is confirmed by optical and RR spectroscopy. In this 5c/hs state of the enzyme, the Fe-S stretching frequency is determined at 350 cm(-1) with excitation at 356.4 nm. This assignment is supported by comparison to the spectrum of resting enzyme excited at 356.4 nm and by exciting at different wavelengths. Implications of our findings for substrate binding and the catalytic mechanism of TXAS will be discussed.  相似文献   

15.
Reduction of benzylamine oxidase by p-methoxybenzylamine under anaerobic conditions leads to biphasic absorbance changes at 470 nm. These reflect the intermediate formation of an enzyme substrate complex with spectral properties different from those of native enzyme and fully reduced enzyme. The spectrally modified enzyme-substrate complex exhibits a broad difference absorption band centered around 360 nm. The transient accumulation of this intermediate during reaction can be conveniently followed by stopped-flow techniques at wavelengths between 320 and 360 nm, where contributions from the subsequent reduction of the enzymic 470-nm chromophore are of minor significance. 2. Analogous intermediates exhibiting similar absorption spectra seem to be formed on reduction of the enzyme by benzylamine and other amine substrates which were tested. Substitution of benzylamine as the reducing substrate by [alpha, alpha-2H]benzylamine results in a decreased accumulation of the spectrally modified intermediate. This indicates that its formation is preceded by deprotonation of the alpha-carbon of the amine substrate. 3. Circular dichroism spectra of benzylamine oxidase exhibit a positive band at 360 nm, lending support to the previous conclusion that benzylamine oxidase is a pyridoxal enzyme. Formation of the spectrally modified enzyme-substrate complex then most likely reflects the prototropic shift converting an amine-pyridoxal Schiff-base obtained by rapid pre-equilibration between enzyme and substrate into an aldehyde-pyridoxamine Schiff-base.  相似文献   

16.
Static absorbance measurements of D-serine dehydratase from Escherichia coli taken at 2 degrees C show that during the steady-state course of D-serine conversion the absorption maximum of the Schiff base of the cofactor pyridoxal 5'-phosphate (pyridoxal-P) is shifted from 415 to 442 nm. Furthermore, the progress curve of intermediates was monitored by stopped-flow techniques at wavelengths ranging from 320 to 500 nm. A point by point construction of successive spectra from these stopped-flow traces at various time intervals after the start of reaction resulted in a series of consecutive spectra exhibiting two isobestic points at 353 and 419 nm. The half-time of the absorbance changes occurring at 330 and 455 nm was found to be 6.5 ms, suggesting the observation of a single, enzyme-bound intermediate. The spectral data with substrate and inhibitors provide evidence that the intermediate is the Schiff base of alpha-aminoacrylate and pyridoxal-P. The proposed assignment is strongly supported by experiments of apodehydratase with transient-state analogues which exhibit a similar absorbance shift on binding to apoenzyme. Moreover, these results suggest that the phosphate group of the substrate--pyridoxal-P complex serves as the main anchoring point during catalysis. A reaction mechanism of the D-serine dehydratase is presented.  相似文献   

17.
Jhee KH  Niks D  McPhie P  Dunn MF  Miles EW 《Biochemistry》2002,41(6):1828-1835
Our studies of the reaction mechanism of cystathionine beta-synthase from yeast (Saccharomyces cerevisiae) are facilitated by the spectroscopic properties of the pyridoxal phosphate coenzyme. The enzyme catalyzes the reaction of L-serine with L-homocysteine to form L-cystathionine through a series of pyridoxal phosphate intermediates. In this work, we explore the substrate specificity of the enzyme by use of substrate analogues combined with kinetic measurements under pre-steady-state conditions and with circular dichroism and fluorescence spectroscopy under steady-state conditions. Our results show that L-allothreonine, but not L-threonine, serves as an effective substrate. L-Allothreonine reacts with the pyridoxal phosphate cofactor to form a stable 3-methyl aminoacrylate intermediate that absorbs maximally at 446 nm. The rapid-scanning stopped-flow results show that the binding of L-allothreonine as the external aldimine is faster than formation of the 3-methyl aminoacrylate intermediate. The 3-methyl aminoacrylate intermediate reacts with L-homocysteine to form a new amino acid, 3-methyl-L-cystathionine, which was characterized by nuclear magnetic resonance spectroscopy. This new amino acid may be a useful analogue of L-cystathionine.  相似文献   

18.
Plasma amine oxidases (EC 1.4.3.6) are classified as containing the organic cofactor pyridoxal phosphate. Biochemical and bioassays on the pig plasma amine oxidase fail to reveal the presence of pyridoxal phosphate and 31P n.m.r. evidence is also inconsistent with pyridoxal phosphate in the enzyme. Resonance Raman spectral studies on phenylhydrazone derivatives of the pig and bovine plasma enzymes have been carried out and comparisons made with the corresponding derivatives of pyridoxal phosphate and pyrroloquinoline quinone (PQQ). The resonance Raman evidence indicates that the cofactor in both plasma amine oxidases is PQQ or a closely related species and not pyridoxal phosphate. The results substantiate earlier reports concerning the identity of the organic cofactor.  相似文献   

19.
The turnover of glycogen phosphorylase has been measured using the cofactor, pyridoxal phosphate, as a label specific for this enzyme in skeletal muscle. Radiolabelled pyridoxine administered in vivo is incorporated into a protein-bound fraction in skeletal muscle, shown by several criteria to be equivalent to glycogen phosphorylase. This pool of radiolabel disapears slowly with a half-life of 11.9 days, taken to be a good estimate of the intracellular half-life of the enzyme. The use of the cofactor in this fashion minimises overestimation of half-life that results from reincorporation of the label. Further, premature dissociation of the cofactor from native enzyme, which would lead to underestimation of half-life, is unlikely. At the level of sensitivity given by this method there was little evidence for the appearance of pyridoxal phosphate-labelled degradation intermediates of the enzyme.  相似文献   

20.
Pyridoxal kinase has been purified 2000-fold from pig brain. The enzyme preparation migrates as a single protein and activity band on analytical gel electrophoresis. The interactions of the substrate pyridoxal and the inhibitor N-dansyl-2-oxopyrrolidine (dansyl = 5-dimethylaminonaphthalene-1-sulfonyl) with the catalytic site were examined by means of fluorescence spectroscopy. The increase in emission anisotropy that follows the binding of pyridoxal to the kinase was used to determine the equilibrium dissociation constant. Pyridoxal kinase binds one molecule of substrate with a Kd = 11 microns at pH 6. The emission anisotropy spectrum of bound pyridoxal reveals that the substrate is not rigidly trapped by the protein matrix. N-Dansyl-2-oxopyrrolidine is a competitive inhibitor with respect to ATP at saturating concentrations of pyridoxal. It binds to the enzyme with a dissociation constant of 6 microns. N-Dansyl-2-oxopyrrolidine is immobilized by strong interactions with the enzyme, but it is displaced from the catalytic site by ATP. The results are consistent with the hypothesis that N-dansyl-2-oxopyrrolidine binds at the nucleotide binding site of pyridoxal kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号