首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribosomal protein S1 of Mycobacterium tuberculosis (MtRpsA) binds to ribosome and mRNA, and plays significant role in the regulation of translation initiation, conventional protein synthesis and transfer-messenger RNA (tmRNA) mediated trans-translation. It has been identified as the target of pyrazinoic acid (POA), a bactericidal moiety from hydrolysis of pyrazinamide, which is a mainstay of combination therapy for tuberculosis. POA prevented the interactions between the C-terminal S1 domain of MtRpsA (residues 280–368, MtRpsACTD_S1) and tmRNA; so that POA can inhibit the trans-translation, which is a key component of multiple quality control pathways in bacteria. However, the details of molecular mechanism and dynamic characteristics for MtRpsACTD_S1 interactions with POA, tmRNA or mRNA are still unclear. Here we present the 1H, 15N, 13C resonance assignments of MtRpsACTD_S1 as well as the secondary structure information based on backbone chemical shifts, which lay foundation for further solution structure determination, dynamic properties characterization and interactions investigation between MtRpsACTD_S1 and tmRNA, RNA or POA.  相似文献   

2.
3.
Er-23 is a small, 51 amino acid, disulfide-rich pheromone protein used for cell signaling by Euplotes raikovi. Ten of the 51 amino acids are cysteine, allowing up to five disulfide bonds. Previous NMR work with Er-23 utilized homologously expressed protein, prohibiting isotopic labeling, and consequently the chemical shift assignments were incomplete. We have expressed uniformly 15N and 13C-labeled Er-23 in an E. coli expression system. Here we report the full backbone and side chain resonance assignments for recombinant Er-23.  相似文献   

4.
Physiological stress can bring major molecular and cellular change to a living cell which further decide its survival or tolerance to the stress exposure. Cyanobacteria like Anabaena has been shown to tolerate high levels of different stresses like oxidative, desiccation, UV, and gamma radiation. They are able to withstand and recover remarkably without any lethal mutation when exposed to high doses of gamma radiation or prolonged duration of desiccation. In the present work, the modifications in protein profiles of Anabaena 7120 cells after exposure to 6 kGy of 60Co γ-rays and 6 days of desiccation, and the proteome dynamics during post stress recovery were investigated. Differentially expressed proteins during stress and recovery were identified by MALDI-ToF or LC-MS, which generated a partial proteome map of Anabaena 7120. Anabaena cells went through protein recycling—phase of protein degradation following by their resynthesis, which helped them to recover remarkably. The data suggests an overlap in proteome changes during recovery against radiation and desiccation stress.  相似文献   

5.
Lysostaphin family endopeptidases, produced by Staphylococcus genus, are zinc-dependent enzymes that cleave pentaglycine bridges of cell wall peptidoglycan. They act as autolysins to maintain cell wall metabolism or as toxins and weapons against competing strains. Consequently, these enzymes are compelling targets for new drugs as well as are potential antimicrobial agents themselves against Staphylococcus pathogens, which depend on cell wall to retain their immunity against antibiotics. The rapid spread of methicillin and vancomycin-resistant Staphylococcus aureus strains draws demand for new therapeutic approaches. S. aureus gene sa0205 was found to be implicated in resistance to vancomycin and synthesis of the bacteria cell wall. The gene encodes for a catalytic domain of a lysostaphin-type endopeptidase. We aim to obtain the structure of the Sa0205 catalytic domain, the first solution structure of the catalytic domain of the lysostaphin family enzymes. In addition, we are to investigate the apparent binding of the second zinc ion, which has not been previously reported for the enzyme group. Herein, we present the backbone and side chain resonance assignments of Sa0205 endopeptidase catalytic domain in its one and two zinc-bound forms.  相似文献   

6.
This study reports on the effects of dissolved organic matter (DOM) derived from the aquatic macrophyte Pistia stratiotes (collected from a tropical reservoir) on the mixotrophic growth of two phytoplankton species (Chlamydomonas moewusii and Anabaena sp.). The DOM from P. stratiotes had a mainly aliphatic structure, low molecular weight, low cellulose and lignin content and high carbon content. The addition of DOM (5% v/v) significantly decreased the growth rate of Anabaena sp. but increased the chlorophyll a concentration of C. moewusii. Higher light intensity (100 versus 30 µmol m?2 s?1) was important for Anabaena sp., increasing its growth rate and chlorophyll content. The use of DOM from P. stratiotes to mitigate cyanobacterial blooms should be further explored in future studies.  相似文献   

7.
One important mechanism plants use to cope with salinity is keeping the cytosolic Na+ concentration low by sequestering Na+ in vacuoles, a process facilitated by Na+/H+ exchangers (NHX). There are eight NHX genes (NHX1 through NHX8) identified and characterized in Arabidopsis thaliana. Bioinformatics analyses of the known Arabidopsis genes enabled us to identify six Medicago truncatula NHX genes (MtNHX1, MtNHX2, MtNHX3, MtNHX4, MtNHX6, and MtNHX7). Twelve transmembrane domains and an amiloride binding site were conserved in five out of six MtNHX proteins. Phylogenetic analysis involving A. thaliana, Glycine max, Phaseolus vulgaris, and M. truncatula revealed that each individual MtNHX class (class I: MtNHX1 through 4; class II: MtNHX6; class III: MtNHX7) falls under a separate clade. In a salinity-stress experiment, M. truncatula exhibited ~?20% reduction in biomass. In the salinity treatment, sodium contents increased by 178 and 75% in leaves and roots, respectively, and Cl? contents increased by 152 and 162%, respectively. Na+ exclusion may be responsible for the relatively smaller increase in Na+ concentration in roots under salt stress as compared to Cl?. Decline in tissue K+ concentration under salinity was not surprising as some antiporters play an important role in transporting both Na+ and K + . MtNHX1, MtNHX6, and MtNHX7 display high expression in roots and leaves. MtNHX3, MtNHX6, and MtNHX7 were induced in roots under salinity stress. Expression analysis results indicate that sequestering Na+ into vacuoles may not be the principal component trait of the salt tolerance mechanism in M. truncatula and other component traits may be pivotal.  相似文献   

8.
The Na+/H+ antiporters play an important role in salt tolerance in plants. However, the functions of OsNHXs in rice except OsNHX1 have not been well studied. Using the gain- and loss-of-function strategies, we studied the potential role of OsNHX2 in salt tolerance in rice. Overexpression of OsNHX2 (OsNHX2-OE) in rice showed the significant tolerance to salt stress than wild-type plants and OsNHX2 knockdown transgenic plants (OsNHX2-KD). Under salt treatments of 300-mM NaCl for 5 days, the plant fresh weights, relative water percentages, shoot heights, Na+ contents, K+ contents, and K+/Na+ ratios in leaves of OsNHX2-OE transgenic plants were higher than those in wild-type plants, while no differences were detected in roots. K+/Na+ ratios in rice leaf mesophyll cells and bundle sheath cells were higher in OsNHX2-OE transgenic plants than in wild-type plants and OsNHX2-KD transgenic plants. Our data indicate that OsNHX2 plays an important role in salt stress based on leaf mesophyll cells and bundle sheath cells and can be served in genetically engineering crop plants with enhanced salt tolerance.  相似文献   

9.
Vibrio cholerae is the bacterial causative agent of the human disease cholera. Non-pathogenic bacterium can be converted to pathogenic following infection by a filamentous phage, CTXΦ, that carries the cholera toxin encoding genes. A crucial step during phage infection requires a direct interaction between the CTXΦ minor coat protein (pIIICTX) and the C-terminal domain of V. cholerae TolA protein (TolAIIIvc). In order to get a better understanding of TolA function during the infection process, we have initiated a study of the V. cholerae TolAIII domain by 2D and 3D heteronuclear NMR. With the exception of the His-tag (H123–H128), 97 % of backbone 1H, 15N and 13C resonances were assigned and the side chain assignments for 92 % of the protein were obtained (BMRB deposit with accession number 25689).  相似文献   

10.
Photochemically induced dynamic nuclear polarization (photo-CIDNP) has been observed in the homodimeric, type-1 photochemical reaction centers (RCs) of the acidobacterium, Chloracidobacterium (Cab.) thermophilum, by 15N magic-angle spinning (MAS) solid-state NMR under continuous white-light illumination. Three light-induced emissive (negative) signals are detected. In the RCs of Cab. thermophilum, three types of (bacterio)chlorophylls have previously been identified: bacteriochlorophyll a (BChl a), chlorophyll a (Chl a), and Zn-bacteriochlorophyll a′ (Zn-BChl a′) (Tsukatani et al. in J Biol Chem 287:5720–5732, 2012). Based upon experimental and quantum chemical 15N NMR data, we assign the observed signals to a Chl a cofactor. We exclude Zn-BChl because of its measured spectroscopic properties. We conclude that Chl a is the primary electron acceptor, which implies that the primary donor is most likely Zn-BChl a′. Chl a and 81-OH Chl a have been shown to be the primary electron acceptors in green sulfur bacteria and heliobacteria, respectively, and thus a Chl a molecule serves this role in all known homodimeric type-1 RCs.  相似文献   

11.
12.
Phosphoenolpyruvate binding to the C-terminal domain (EIC) of enzyme I of the bacterial phosphotransferase system (PTS) initiates a phosphorylation cascade that results in sugar translocation across the cell membrane and controls a large number of essential pathways in bacterial metabolism. EIC undergoes an expanded to compact conformational equilibrium that is regulated by ligand binding and determines the phosphorylation state of the overall PTS. Here, we report the backbone 1H, 15N and 13C chemical shift assignments of the 70 kDa EIC dimer from the thermophilic bacterium Thermoanaerobacter tengcongensis. Assignments were obtained at 70 °C by heteronuclear multidimensional NMR spectroscopy. In total, 90% of all backbone resonances were assigned, with 264 out of a possible 299 residues assigned in the 1H–15N TROSY spectrum. The secondary structure predicted from the assigned backbone resonance using the program TALOS+ is in good agreement with the X-ray crystal structure of T. tengcongensis EIC. The reported assignments will allow detailed structural and thermodynamic investigations on the coupling between ligand binding and conformational dynamics in EIC.  相似文献   

13.
14.
15.
We report almost complete sequence specific 1H, 13C and 15N NMR assignments of a 150-residue long calmodulin-like calcium-binding protein from Entamoeba histolytica (EhCaBP6), as a prelude to its structural and functional characterization.  相似文献   

16.
17.
The hypothetical protein ‘Alr3200’ of Anabaena sp. strain PCC7120 is highly conserved among cyanobacterial species. It is a member of the DUF820 (Domain of Unknown Function) protein family, and is predicted to have a DNase domain. Biochemical analysis revealed a Mg(II)-dependent DNase activity for Alr3200 with a specific activity of 8.62×104 Kunitz Units (KU) mg?1 protein. Circular dichroism analysis predicted Alr3200 to have ~40% β-strands and ~9% α-helical structures. Anabaena PCC7120 inherently expressed Alr3200 at very low levels, and its overexpression had no significant effect on growth of Anabaena under control conditions. However, Analr3200 +, the recombinant Anabaena strain overexpressing Alr3200, exhibited zero survival upon exposure to 6 kGy of γ-radiation, which is the LD50 for wild type Anabaena PCC7120 as well as the vector control recombinant strain, AnpAM. Comparative analysis of the two recombinant Anabaena strains suggested that it is not the accumulated Alr3200 per se, but its possible interactions with the radiation-induced unidentified DNA repair proteins of Anabaena, which hampers DNA repair resulting in radiosensitivity.  相似文献   

18.
19.
This study presents the first example of an alcohol dehydrogenase (ADH) from the halophilic archaeum Haloquadratum walsbyi (HwADH). A hexahistidine-tagged recombinant HwADH was heterologously overexpressed in Haloferax volcanii. HwADH was purified in one step and was found to be thermophilic with optimal activity at 65 °C. HwADH was active in the presence of 10% (v/v) organic solvent. The enzyme displayed dual cofactor specificity and a broad substrate scope, and maximum activity was detected with benzyl alcohol and 2-phenyl-1-propanol. HwADH accepted aromatic ketones, acetophenone and phenylacetone as substrates. The enzyme also accepted cyclohexanol and aromatic secondary alcohols, 1-phenylethanol and 4-phenyl-2-butanol. H. walsbyi may offer an excellent alternative to other archaeal sources to expand the toolbox of halophilic biocatalysts.  相似文献   

20.
While the role of the vacuolar NHX Na+/H+ exchangers in plant salt tolerance has been demonstrated on numerous occasions, their control over cytosolic ionic relations has never been functionally analysed in the context of subcellular Na+ and K+ homeostasis. In this work, PutNHX1 and SeNHX1 were cloned from halophytes Puccinellia tenuiflora and Salicornia europaea and transiently expressed in Arabidopsis wild type Col-0 and the nhx1 mutant. Phylogentic analysis, topological prediction, analysis of evolutionary conservation, the topology structure and analysis of hydrophobic or polar regions of PutNHX1 and SeNHX1 indicated that they are unique tonoplast Na+/H+ antiporters with characteristics for salt tolerance. As a part of the functional assessment, cytosolic and vacuolar Na+ and K+ in different root tissues and ion fluxes from root mature zone of Col-0, nhx1 and their transgenic lines were measured. Transgenic lines sequestered large quantity of Na+ into root cell vacuoles and also promoted high cytosolic and vacuolar K+ accumulation. Expression of PutNHX1 and SeNHX1 led to significant transient root Na+ uptake in the four transgenic lines upon recovery from salt treatment. In contrast, the nhx1 mutant maintained a prolonged Na+ efflux and the nhx1:PutNHX1 and nhx1:SeNHX1 lines started to actively pump Na+ out of the cell. Overall, our findings suggest that PutNHX1 and SeNHX1 improve Na+ sequestration in the vacuole and K+ retention in the cytosol and vacuole of root cells of Arabidopsis, and that they interact with other regulatory mechanisms to provide a highly orchestrated regulation of ionic relations among intracellular cell compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号