首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In the current review we focus on the opportunity to use brackish water in the cultivation of floricultural plants, plants for which, due to their high economic value, growers have traditionally used good quality water for irrigation. Now, even for these crops the use of alternative water sources for irrigating nursery plants is needed because of the limited supplies of fresh water in many countries; understanding how saline water can be used will also enhance sustainable development in floriculture. While salt stress usually reduces plant growth, any such reduction might not be negative for ornamentals, where shoot vigour is sometime undesirable, although on flower crops salt stress can delay flowering or decrease flower quality characteristics. However, a decrease in growth rate is not enough to characterize the salt tolerance of ornamental plants, but traits like tip and marginal leaf burn, as consequence of sodium and chlorine accumulation, have to be considered for their effects on aesthetical value. With this in mind, some halophytes should be considered for floriculture because of their ability to cope with saline environments; their potential to tolerate salt is an important factor in reducing production costs. Consequently, the identification of ornamental halophytes is important for producing a commercially acceptable crop when irrigated with brackish waters. Many aspects of a plant's reaction to salt are genetically determined, so selection of suitable genotypes or breeding for salt tolerance in ornamentals are interesting options. Developing salt-tolerant floricultural crops, together with typical management practices that avoid excessive salinity stress in the root media, will provide the grower with economically and environmentally sound wastewater reuse options.  相似文献   

3.
Agricultural productivity is majorly impacted due to various abiotic stresses, particularly salinity and drought. Halophytes serve as an excellent resource for identifying and developing new crop systems, as these grow very luxuriously in very high saline soils. Understanding salinity stress tolerance mechanisms in such plants is an important step towards generating crop varieties that can cope with environmental stresses. Use of modern tools of ‘omics’ analyses and small RNA sequencing has helped to gain insights into the complex plant stress responses. Salinity tolerance being a multigenic trait requires a combination of strategies and techniques to successfully develop improved crops varieties. Many transgenic crops are being developed through genetic transformation. Besides marker-assisted breeding/QTL approaches are also being used to improve abiotic stress tolerance. In this review, we focus on the recent developments in the utilization of halophytes as a source of genes for genetic improvement in abiotic stress tolerance of crops.  相似文献   

4.
Improving crop salt tolerance   总被引:63,自引:0,他引:63  
Salinity is an ever-present threat to crop yields, especially in countries where irrigation is an essential aid to agriculture. Although the tolerance of saline conditions by plants is variable, crop species are generally intolerant of one-third of the concentration of salts found in seawater. Attempts to improve the salt tolerance of crops through conventional breeding programmes have met with very limited success, due to the complexity of the trait: salt tolerance is complex genetically and physiologically. Tolerance often shows the characteristics of a multigenic trait, with quantitative trait loci (QTLs) associated with tolerance identified in barley, citrus, rice, and tomato and with ion transport under saline conditions in barley, citrus and rice. Physiologically salt tolerance is also complex, with halophytes and less tolerant plants showing a wide range of adaptations. Attempts to enhance tolerance have involved conventional breeding programmes, the use of in vitro selection, pooling physiological traits, interspecific hybridization, using halophytes as alternative crops, the use of marker-aided selection, and the use of transgenic plants. It is surprising that, in spite of the complexity of salt tolerance, there are commonly claims in the literature that the transfer of a single or a few genes can increase the tolerance of plants to saline conditions. Evaluation of such claims reveals that, of the 68 papers produced between 1993 and early 2003, only 19 report quantitative estimates of plant growth. Of these, four papers contain quantitative data on the response of transformants and wild-type of six species without and with salinity applied in an appropriate manner. About half of all the papers report data on experiments conducted under conditions where there is little or no transpiration: such experiments may provide insights into components of tolerance, but are not grounds for claims of enhanced tolerance at the whole plant level. Whether enhanced tolerance, where properly established, is due to the chance alteration of a factor that is limiting in a complex chain or an effect on signalling remains to be elucidated. After ten years of research using transgenic plants to alter salt tolerance, the value of this approach has yet to be established in the field.  相似文献   

5.
Halophytes play a vital role in saline agriculture because these plants are necessary to increase the food supply to meet the demands of the growing world population. In addition, the transfer of salt-resistance genes from halophytes using genetic technologies has the potential to increase the salt tolerance of xerophytes. Characterization of some particularly promising halophyte model organisms has revealed the important new insights into the salt tolerance mechanisms used by plants. Numerous advances using these model systems have improved our understanding of salt tolerance regulation and salt tolerance-associated changes in gene expression, and these mechanisms have important implications for saline agriculture. Recent findings provide a basis for future studies of salt tolerance in plants, as well as the development of improved strategies for saline agriculture to increase yields of food, feed, and fuel crops.  相似文献   

6.
Some important physiological selection criteria for salt tolerance in plants   总被引:13,自引:0,他引:13  
Muhammad Ashraf   《Flora》2004,199(5):361-376
Undoubtedly, plant breeders have made a significant achievement in the past few years, improving salinity tolerance in a number of potential crops using artificial selection and conventional breeding approaches, although molecular biology approaches are currently being intensively pursued for achieving this goal. However, most of the selection procedures used so far, were based merely on differences in agronomic characters. Agronomic characters represent the combined genetic and environmental effects on plant growth, and include the integration of the physiological phenomena conferring salinity tolerance. In fact, physiological criteria are able to supply more reliable information than agronomic characters. Although there are large numbers of reports in the literature mainly dealing with water relations, photosynthesis, and accumulation of various inorganic ions and organic metabolites in individual crops, there is little information available on the use of these attributes as selection criteria for improving salt tolerance through selection and breeding programs. In this review, the major adaptive components of salt tolerance such as osmotic adjustment, photosynthesis, water relations and ion relations are reviewed. In view of the complexity of salt tolerance and its great variation at intra-specific and inter-specific levels, it is difficult to identify single criteria, which could be used as effective selection targets. Rather it is most meaningful if physiological and biochemical indicators for individual species are determined rather than generic indicators.  相似文献   

7.
Plants maintained in high soil salinity generally develop particular structures to either tolerate or survive such adverse environments. Excretion of excess ions by special salt glands or other similar structures is a well-known phenomenon for regulating the mineral content of many halophytes. However, the three chenopod halophytes of Suaeda inhabit high saline soils, yet they exhibit no signs of salt excretion structures. The current study has been undertaken to assess the structural attributes of these halophytes to reveal their cellular characteristics during growth in salt tolerance. Transmission and scanning electron microscopy, as well as ion chromatography, have been employed for the study. One of the most noticeable features uncovered was the epidermal cutinization shown to be heavy on the outer epidermis and characterized externally by thick wax plates. Numerous vesicles and membranous invagination in the vacuoles were common features within the mesophyll cytoplasm. Invaginations of the vacuolar and/or plasma membrane frequently formed secondary vacuoles which later became distinct, membrane-bound compartments. Significant accumulation of solid sodium chloride salts was well demonstrated in the vacuoles of air-dried epidermis. Finally, salt tolerance mechanisms in these Suaeda have been discussed with respect to other halophyte modifications that improve salt tolerance in various ways.  相似文献   

8.
盐生植物种子萌发对环境的适应对策   总被引:45,自引:0,他引:45  
渠晓霞  黄振英 《生态学报》2005,25(9):2389-2398
盐生环境是一种严峻的胁迫环境,对植物的生长、发育、繁殖等生活史的各阶段都产生着重要的影响。盐生植物是生长在盐渍土壤上的一类天然植物区系,它们在长期的进化过程中形成了一系列适应盐生生境的特殊生存策略。一般情况下,盐生植物种子对环境的适应能力,是植物对盐生环境适应性的重要体现;而植物发育早期对盐度的适应能力又是决定物种分布和群落组成的关键因素。在对国内外相关文献进行分析归纳的基础上,从盐分对种子萌发的影响机理及植物种子萌发对盐生环境的适应对策两个方面综述了植物种子休眠萌发与盐生环境的关系。  相似文献   

9.
Salinity stress is a major limitation in barley production. Substantial genetic variation in tolerance occurs among genotypes of barley, so the development of salt-tolerant cultivars is a potentially effective approach for minimizing yield losses. The lack of economically viable methods for screening salinity tolerance in the field remains an obstacle to breeders, and molecular marker-assisted selection is a promising alternative. In this study, salinity tolerance of 172 doubled-haploid lines generated from YYXT (salinity-tolerant) and Franklin (salinity-sensitive) was assessed in glasshouse trials during the vegetative phase. A high-density genetic linkage map was constructed from 76 pairs of simple sequence repeats and 782 Diversity Arrays Technology markers which spanned a total of 1,147 cM. Five significant quantitative trait loci (QTL) for salinity tolerance were identified on chromosomes 1H, 2H, 5H, 6H and 7H, accounting for more than 50% of the phenotypic variation. The tolerant variety, YYXT, contributed the tolerance to four of these QTL and Franklin contributed the tolerance to one QTL on chromosome 1H. Some of these QTL mapped to genomic regions previously associated with salt tolerance in barley and other cereals. Markers associated with the major QTL identified in this study have potential application for marker-assisted selection in breeding for enhanced salt tolerance in barley.  相似文献   

10.
Salt-tolerant crops: origins,development, and prospects of the concept   总被引:5,自引:0,他引:5  
Summary The genetic approach to the problems posed by salt-affected soils and water,i.e., breeding crops resistant to salinity stress, is traced to two principal origins: the European ecological interest in halophytes, and the exigencies of growing crops in the arid and semi-arid lands of the American West. The point is made that breeding for resistance to salinity stress cannot be divorced from breeding for various other desirable traits of mineral plant nutrition and metabolism. A survey is conducted of the existing body of information on breeding for desiderata of mineral nutrition in general and salt tolerance in particular. The prospects of breeding crops for salt tolerance are discussed, with emphasis on a) its relation to breeding for resistance to other mineral stresses; b) field trials; c) collaboration between plant physiologists and geneticist-breeders; and d) extensive exploration of germplasm.  相似文献   

11.
Plant salt tolerance: adaptations in halophytes   总被引:1,自引:0,他引:1  
Background Most of the water on Earth is seawater, each kilogram of which contains about 35 g of salts, and yet most plants cannot grow in this solution; less than 0·2 % of species can develop and reproduce with repeated exposure to seawater. These ‘extremophiles’ are called halophytes.Scope Improved knowledge of halophytes is of importance to understanding our natural world and to enable the use of some of these fascinating plants in land re-vegetation, as forages for livestock, and to develop salt-tolerant crops. In this Preface to a Special Issue on halophytes and saline adaptations, the evolution of salt tolerance in halophytes, their life-history traits and progress in understanding the molecular, biochemical and physiological mechanisms contributing to salt tolerance are summarized. In particular, cellular processes that underpin the ability of halophytes to tolerate high tissue concentrations of Na+ and Cl, including regulation of membrane transport, their ability to synthesize compatible solutes and to deal with reactive oxygen species, are highlighted. Interacting stress factors in addition to salinity, such as heavy metals and flooding, are also topics gaining increased attention in the search to understand the biology of halophytes.Conclusions Halophytes will play increasingly important roles as models for understanding plant salt tolerance, as genetic resources contributing towards the goal of improvement of salt tolerance in some crops, for re-vegetation of saline lands, and as ‘niche crops’ in their own right for landscapes with saline soils.  相似文献   

12.
Increasing soil salinization and the growing scarcity of fresh water dictate the need for a creative solution to attain sustainable crop production. To accomplish this aim, the domestication of inherently salt tolerant plant species with economic value is proposed as a straightforward methodology. Most studies investigating salt tolerance mechanisms are linked to small, experimental systems that cannot be generalized to the real agricultural context. The crops Salicornia and Sarcocornia, however, with their extreme salt tolerance and long history of consumption by humans, make the ideal model plants on which to base a halophyte growth strategy. New applied technologies were developed for leafy vegetable production using small-scale greenhouse and in-field studies. Several cultivation systems adapted to the irrigation water salinity and the available soil conditions are described. Daylength manipulation and a repetitive harvest regime partially elucidated the flowering patterns of Salicornia and Sarcocornia and showed that flowering should be prevented for maximal vegetable production. Additionally, the beneficial effect of saline irrigation on quality parameters via the enhancement of stress-induced secondary metabolites with antioxidant capacity should be considered during cultivation. This review summarizes the recent developments in growing halophytes for food production with saline irrigation, using Salicornia and Sarcocornia as a case study.  相似文献   

13.
Background As important components in saline agriculture, halophytes can help to provide food for a growing world population. In addition to being potential crops in their own right, halophytes are also potential sources of salt-resistance genes that might help plant breeders and molecular biologists increase the salt tolerance of conventional crop plants. One especially promising halophyte is Suaeda salsa, a euhalophytic herb that occurs both on inland saline soils and in the intertidal zone. The species produces dimorphic seeds: black seeds are sensitive to salinity and remain dormant in light under high salt concentrations, while brown seeds can germinate under high salinity (e.g. 600 mm NaCl) regardless of light. Consequently, the species is useful for studying the mechanisms by which dimorphic seeds are adapted to saline environments. S. salsa has succulent leaves and is highly salt tolerant (e.g. its optimal NaCl concentration for growth is 200 mm). A series of S. salsa genes related to salt tolerance have been cloned and their functions tested: these include SsNHX1, SsHKT1, SsAPX, SsCAT1, SsP5CS and SsBADH. The species is economically important because its fresh branches have high value as a vegetable, and its seed oil is edible and rich in unsaturated fatty acids. Because it can remove salts and heavy metals from saline soils, S. salsa can also be used in the restoration of salinized or contaminated saline land.Scope Because of its economic and ecological value in saline agriculture, S. salsa is one of the most important halophytes in China. In this review, the value of S. salsa as a source of food, medicine and forage is discussed. Its uses in the restoration of salinized or contaminated land and as a source of salt-resistance genes are also considered.  相似文献   

14.

Background

Drought and salinity are two major abiotic stresses that severely limit barley production worldwide. Physiological and genetic complexity of these tolerance traits has significantly slowed the progress of developing stress-tolerant cultivars. Marker-assisted selection (MAS) may potentially overcome this problem. In the current research, seventy two double haploid (DH) lines from a cross between TX9425 (a Chinese landrace variety with superior drought and salinity tolerance) and a sensitive variety, Franklin were used to identify quantitative trait loci (QTL) for drought and salinity tolerance, based on a range of developmental and physiological traits.

Results

Two QTL for drought tolerance (leaf wilting under drought stress) and one QTL for salinity tolerance (plant survival under salt stress) were identified from this population. The QTL on 2H for drought tolerance determined 42% of phenotypic variation, based on three independent experiments. This QTL was closely linked with a gene controlling ear emergency. The QTL on 5H for drought tolerance was less affected by agronomic traits and can be effectively used in breeding programs. A candidate gene for this QTL on 5H was identified based on the draft barley genome sequence. The QTL for proline accumulation, under both drought and salinity stresses, were located on different positions to those for drought and salinity tolerance, indicating no relationship with plant tolerance to either of these stresses.

Conclusions

Using QTL mapping, the relationships between QTL for agronomic and physiological traits and plant drought and salinity tolerance were studied. A new QTL for drought tolerance which was not linked to any of the studied traits was identified. This QTL can be effectively used in breeding programs. It was also shown that proline accumulation under stresses was not necessarily linked with drought or salinity tolerance based on methods of phenotyping used in this experiment. The use of proline content in breeding programs can also be limited by the accuracy of phenotyping.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1243-8) contains supplementary material, which is available to authorized users.  相似文献   

15.
Salt-affected soils are generally classified into two main categories, sodic (alkaline) and saline. Our previous studies showed that the wild soybean accession JWS156-1 (Glycine soja) from the Kinki area of Japan was tolerant to NaCl salt, and the quantitative trait locus (QTL) for NaCl salt tolerance was located on soybean linkage group N (chromosome 3). Further investigation revealed that the wild soybean accession JWS156-1 also had a higher tolerance to alkaline salt stress. In the present study, an F6 recombinant inbred line mapping population (n = 112) and an F2 population (n = 149) derived from crosses between a cultivated soybean cultivar Jackson and JWS156-1 were used to identify QTL for alkaline salt tolerance in soybean. Evaluation of soybean alkaline salt tolerance was carried out based on salt tolerance rating (STR) and leaf chlorophyll content (SPAD value) after treatment with 180 mM NaHCO3 for about 3 weeks under greenhouse conditions. In both populations, a significant QTL for alkaline salt tolerance was detected on the molecular linkage group D2 (chromosome 17), which accounted for 50.2 and 13.0% of the total variation for STR in the F6 and the F2 populations, respectively. The wild soybean contributed to the tolerance allele in the progenies. Our results suggest that QTL for alkaline salt tolerance is different from the QTL for NaCl salt tolerance found previously in this wild soybean genotype. The DNA markers closely associated with the QTLs might be useful for marker-assisted selection to pyramid tolerance genes in soybean for both alkaline and saline stresses.  相似文献   

16.
17.
In crop modelling the soil, plant and atmosphere system is regarded as a continuum with regard to root water uptake and transpiration. Crop production, often assumed to be linearly related with transpiration, depends on several factors, including water and nutrient availability and salinity. The effect of crop production factors on crop production is frequently incorporated in crop models using empirical reduction functions, which summarize very complex processes. Crop modelling has mainly focused on conventional crops and specific plant types such as halophytes have received limited attention. Crop modelling of halophytes can be approached as a hierarchy of production situations, starting at the situation with most optimal conditions and progressively introducing limiting factors. We analyse crop production situations in terms of water- and salt limited production and in terms of combined stresses. We show that experimental data as such may not be the bottleneck, but that data need to be adequately processed, to provide the basis for a first analysis. Halophytic crops offer a production perspective in saline areas, but in other areas long-term use of low quality irrigation water for halophyte production can result in serious soil quality problems. An overview is given of potential problems concerning the use of (saline) irrigation water, leading to the conclusion that soil quality changes due to poor quality water should be considered in determining the areas selected for halophyte growing.  相似文献   

18.
19.
一年生盐生植物耐盐机制研究进展   总被引:5,自引:0,他引:5       下载免费PDF全文
盐生植物是一类能够在盐土上完成生活史的天然植物, 在与盐土协同演化过程中形成了一系列适应盐生环境的特殊生存策略。其中一年生盐生植物因其生活史短、方便培养和观察、易于基因转化和后代繁殖, 已成为耐盐机制研究的主要对象。一年生盐生植物面临多变的生境胁迫, 具有更大的生存风险, 所以具有不同于多年生盐生植物的更稳妥的适应机制, 主要体现在种子的高盐休眠、复水速萌、形态和萌发的多态性、存在持久种子库及调节资源分配等方面。种子萌发后的生长、发育和繁殖等生活史的各阶段都要经受严峻的盐生胁迫环境。通常所说的耐盐机理是指成株对盐分的调控, 按照植物种类不同而分为稀盐、泌盐和拒盐3种耐盐形式。该文在对国内外相关文献进行分析归纳的基础上, 首先介绍了一年生盐生植物的常见类型, 然后分别从种子特征、形态结构、生理生化和生态习性等方面综述了一年生盐生植物的耐盐机制。  相似文献   

20.
DNA markers have enormous potential to improve the efficiency and precision of conventional plant breeding via marker-assisted selection (MAS). The large number of quantitative trait loci (QTLs) mapping studies for diverse crops species have provided an abundance of DNA marker-trait associations. In this review, we present an overview of the advantages of MAS and its most widely used applications in plant breeding, providing examples from cereal crops. We also consider reasons why MAS has had only a small impact on plant breeding so far and suggest ways in which the potential of MAS can be realized. Finally, we discuss reasons why the greater adoption of MAS in the future is inevitable, although the extent of its use will depend on available resources, especially for orphan crops, and may be delayed in less-developed countries. Achieving a substantial impact on crop improvement by MAS represents the great challenge for agricultural scientists in the next few decades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号