首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Mathematical modelling of the heat resistance of Listeria monocytogenes   总被引:2,自引:0,他引:2  
The heat resistance of Listeria monocytogenes phagovar 2389/2425/3274/2671/47/108/340 (1992 French outbreak strain) in broth was studied at 55, 60 and 65 °C. Experiments were carried out on bacterial cultures in three different physiological states: cultures at the end of the log phase, cultures heat-shocked at 42 °C for 1 h, and subcultures of cells resistant to prolonged heating. Survivor curves were better fitted using a sigmoidal equation than the classical log-linear model. This approach was justified by the existence of heat resistance distributions within the bacterial populations. Peaks (log10 of heating time) of heat resistance distributions of untreated, heat-shocked, and selected cultures at 55, 60 and 65 °C were 0·34, −0·90 and −1·84 min, 0·74, −0·51 and −1·24 min, and 0·17, −0·94 and−1·45 min, respectively. The widths of the distributions are proportional to 0·29, 0·36and 0·41 min0·5, 0·26, 0·36 and 0·41 min0·5, and 0·34, 0·44 and 0·41 min0·5. An increase in thethermal tolerance could then be induced by sublethal heat shock or by selection of heatresistant cells.  相似文献   

2.
The effect of acid shock on the heat resistance of Listeria monocytogenes   总被引:5,自引:1,他引:4  
The effect of acid shock on the heat resistance of Listeria monocytogenes was investigated. After growth for 24 h at 30°C in tryptic soy broth containing 0.6% yeast extract, cell culture suspensions of L. monocytogenes were acidified with HCl or acetic acid over various time periods before being heated in whole milk to a temperature of 58°C. When cells were acid-shocked immediately with HCl for 1, 2 or 4 h, those acid-shocked for 1 h demonstrated the largest increase in thermotolerance as compared to control cells, when heated at 58°C in whole milk. In fact, cells acid-shocked for longer than 1 h with HCl demonstrated in some instances a decreased recovery as compared to control cells. Other types of acid-shock treatments included lowering the pH gradually either over a 4 h or a 24 h period. However, regardless of the type of acid-shock treatment, cells acid-shocked with HCl (but not acetic acid) prior to heating had significantly greater heat resistance as compared to control (non-acid-shocked) cells. It appears that acidification with HCl prior to final heating can enhance the heat resistance of L. monocytogenes.  相似文献   

3.
Effect of tempering on the heat resistance of Listeria monocytogenes   总被引:5,自引:1,他引:4  
Cultures of Listeria monocytogenes were preheated at 48°C for 1 h in broth and UHT milk before heating at 60°C. Preheating resulted in a marked increase in heat resistance compared with untreated controls.  相似文献   

4.
The effect of prior heat shock on the thermal resistance of Listeria monocytogenes in meat was investigated. A sausage mix inoculated with approximately 10(7) L. monocytogenes per g was initially subjected to a heat shock temperature of 48 degrees C before being heated at a final test temperature of 62 or 64 degrees C. Although cells heat shocked at 48 degrees C for 30 or 60 min did not show a significant increase in thermotolerance as compared with control cells (non-heat shocked), bacteria heat shocked for 120 min did, showing an average 2.4-fold increase in the D64 degrees C value. Heat-shocked cells shifted to 4 degrees C appeared to maintain their thermotolerance for at least 24 h after heat shock.  相似文献   

5.
Listeria monocytogenes is an opportunistic pathogen that causes rare but frequently fatal infections, termed listerioses. In general, strains of L. monocytogenes are susceptible to a wide range of antibiotics, except for the cephalosporins, fluorochinolones and fosfomycin (Hof, 1991). The current therapy of choice is a combination of ampicillin and aminoglycoside, usually gentamicin (Lorber, 1997). In cases when it is not possible to use a beta-lactam antibiotic, second-choice therapy involves the use of an association of trimethoprim with a sulfonamide, such as in co-trimoxazole, in which the more active in the combination seems trimethoprim, synergized by the sulfa compound. Other second line agents for listeriosis include erythromycin and vancomycin (Temple and Nahata, 2000). The first strains of L. monocytogenes resistant to antibiotics were reported in 1988 (Poyart-Salmeron et al. 1990) The present paper reviews the current state of affairs with regard to the resistance of L. monocytogenes isolated from food products and clinical material to different antibiotics, with particular emphasis on those used in the therapy of listeriosis.  相似文献   

6.
The effect of prior heat shock on the thermal resistance of Listeria monocytogenes in meat was investigated. A sausage mix inoculated with approximately 10(7) L. monocytogenes per g was initially subjected to a heat shock temperature of 48 degrees C before being heated at a final test temperature of 62 or 64 degrees C. Although cells heat shocked at 48 degrees C for 30 or 60 min did not show a significant increase in thermotolerance as compared with control cells (non-heat shocked), bacteria heat shocked for 120 min did, showing an average 2.4-fold increase in the D64 degrees C value. Heat-shocked cells shifted to 4 degrees C appeared to maintain their thermotolerance for at least 24 h after heat shock.  相似文献   

7.
8.
A strain of Listeria monocytogenes isolated from a drain in a food-processing plant was demonstrated, by determination of D values, to be more resistant to the lethal effect of heat at 56 or 59 degrees C following incubation for 45 min in tryptose phosphate broth (TPB) at pH 12.0 than to that of incubation for the same time in TPB at pH 7.3. Cells survived for at least 6 days when they were suspended in TPB at pHs 9.0, 10.0, and 11.0 and stored at 4 or 21 degrees C. Cells of L. monocytogenes incubated at 37 degrees C for 45 min and then stored for 48 or 144 h in TPB at pH 10.0 were more resistant to heat treatment at 56 degrees C than were cells stored in TPB at pH 7.3. The alkaline-stress response in L. monocytogenes may induce resistance to otherwise lethal thermal-processing conditions. Treatment of cells in 0.05 M potassium phosphate buffer (pH 7.00 +/- 0.05) containing 2.0 or 2.4 mg of free chlorine per liter reduced populations by as much as 1.3 log(10) CFU/ml, while treatment with 6.0 mg of free chlorine per liter reduced populations by as much as 4.02 log(10) CFU/ml. Remaining subpopulations of chlorine-treated cells exhibited some injury, and cells treated with chlorine for 10 min were more sensitive to heating at 56 degrees C than cells treated for 5 min. Contamination of foods by L. monocytogenes cells that have survived exposure to processing environments ineffectively cleaned or sanitized with alkaline detergents or disinfectants may have more severe implications than previously recognized. Alkaline-pH-induced cross-protection of L. monocytogenes against heat has the potential to enhance survival in minimally processed as well as in heat-and-serve foods and in foods on holding tables, in food service facilities, and in the home. Cells surviving exposure to chlorine, in contrast, are more sensitive to heat; thus, the effectiveness of thermal processing in achieving desired log(10)-unit reductions is not compromised in these cells.  相似文献   

9.
The acquisition process of antibiotic resistance in an otherwise susceptible organism is shaped by the ecology of the species. Unlike other relevant human pathogens, Listeria monocytogenes has maintained a high rate of susceptibility to the antibiotics used for decades to treat human and animal infections. However, L. monocytogenes can acquire antibiotic resistance genes from other organisms’ plasmids and conjugative transposons. Ecological factors could account for its susceptibility. L. monocytogenes is ubiquitous in nature, most frequently including reservoirs unexposed to antibiotics, including intracellular sanctuaries. L. monocytogenes has a remarkably closed genome, reflecting limited community interactions, small population sizes and high niche specialization. The L. monocytogenes species is divided into variants that are specialized in small specific niches, which reduces the possibility of coexistence with potential donors of antibiotic resistance. Interactions with potential donors are also hampered by interspecies antagonism. However, occasional increases in population sizes (and thus the possibility of acquiring antibiotic resistance) can derive from selection of the species based on intrinsic or acquired resistance to antibiotics, biocides, heavy metals or by a natural tolerance to extreme conditions. High-quality surveillance of the emergence of resistance to the key drugs used in primary therapy is mandatory.  相似文献   

10.
The heat resistance of a strain of L. monocytogenes was determined both in broth and in meat emulsion. The D -values for meat emulsion were approximately two to three times higher than those for broth and also the z -value increased significantly. The micro-organism proved to be more resistant when the cells were heated up slowly (0·5°C/min) to constant temperatures of 60, 63 and 66°C in meat emulsion. The D 60, D 63 and D 66 were, respectively 12·95, 5·4 and 2·3 min. Results may have implications in the survival of Listeria monocytogenes in particular food preparations.  相似文献   

11.
12.
Twelve Listeria monocytogenes strains representing seven serovars were heat-treated in physiological saline by a glass capillary tube method. Five strains were treated at 58°, 60° and 62°C, three at 60°, 62° and 64°C and four at 60°C. Heat-treated bacteria were recovered on blood agar in two ways: (1) incubation at 37°C for 7 d; and (2) preincubation at 4°C for 5 d, followed by incubation at 37°C for 7 d. D and z values were determined. Better average recovery and higher D values were obtained when the preincubation procedure was used. The final evaluations of the heat resistance properties of the strains were therefore based on values for preincubated samples. D values recorded at 58°, 60°, 62° and 64°C for preincubated samples were 1.7–3.4, 0.72–3.1, 0.30–1.3 and 0.33–0.68 min, respectively. z values determined were 5.2–6.9°C. D values were compared statistically. Significant differences in heat resistance were noted both between serovars and between strains belonging to the same serovar.  相似文献   

13.
14.
The lipids of Listeria monocytogenes   总被引:3,自引:0,他引:3  
  相似文献   

15.
AIMS: In the past eight to 10 years, reports of antibiotic resistance in food-borne isolates in many countries have increased, and this work examined the susceptibility of 1001 food isolates of Listeria species. METHODS AND RESULTS: Susceptibility/resistance to eight antibiotics was determined using the Bauer-Kirby disc diffusion assay, and 10.9% of the isolates examined displayed resistance to one or more antibiotics. Resistance to one or more antibiotics was exhibited in 0.6% of Listeria monocytogenes isolates compared with 19.5% of Listeria innocua isolates. Resistance was not observed in Listeria seeligeri or Listeria welshimeri. Resistance to tetracycline (6.7%) and penicillin (3.7%) was the most frequently observed, and while resistance to one antibiotic was most common (9.1%), isolates resistant to two or more antibiotics (1.8%) were also observed. CONCLUSION: While resistance to the antibiotics most commonly used to treat human listeriosis was not observed in L. monocytogenes, the presence of such resistance in other Listeria species raises the possibility of future acquisition of resistance by L. monocytogenes. SIGNIFICANCE AND IMPACT OF THE STUDY: The higher level of resistance in L. innocua compared with L. monocytogenes suggests that a species-related ability to acquire resistance to antibiotics exists.  相似文献   

16.
17.
HflX is a ubiquitous bacterial GTPase that splits and recycles stressed ribosomes. In addition to HflX, Listeria monocytogenes contains a second HflX homolog, HflXr. Unlike HflX, HflXr confers resistance to macrolide and lincosamide antibiotics by an experimentally unexplored mechanism. Here, we have determined cryo-EM structures of L. monocytogenes HflXr-50S and HflX-50S complexes as well as L. monocytogenes 70S ribosomes in the presence and absence of the lincosamide lincomycin. While the overall geometry of HflXr on the 50S subunit is similar to that of HflX, a loop within the N-terminal domain of HflXr, which is two amino acids longer than in HflX, reaches deeper into the peptidyltransferase center. Moreover, unlike HflX, the binding of HflXr induces conformational changes within adjacent rRNA nucleotides that would be incompatible with drug binding. These findings suggest that HflXr confers resistance using an allosteric ribosome protection mechanism, rather than by simply splitting and recycling antibiotic-stalled ribosomes.  相似文献   

18.
Aims:  Study the effect of redox potential and pH of the heating media on Listeria monocytogenes heat resistance and model its action at fixed temperature.
Methods and Results:  The heat resistance of Listeria monocytogenes at 58°C was studied in Brain Heart Infusion broth as a function of pH (from 5·0 to 7·0) and redox potential ( E h7). The media redox was adjusted with nitrogen gas, potassium ferricyanide and dithiothreitol. A Weibull model was used to fit survival curves. The heat resistance parameter (δ58°C) was estimated from each inactivation curve. A major effect of pH was observed. Bigelow model was used to describe the effect of redox potential on the apparent L. monocytogenes heat resistance. The highest δ58°C values have been obtained at pH 7·0 and oxidizing conditions.
Conclusions:  The developed model indicates that the E h7 has a significant effect and varied depending on the pH of the heating media. The z redox values, calculated from δ58°C allowed quantifying the influence of heating media redox potential on L. monocytogenes thermal inactivation.
Significance and Impact of the Study:  The obtained model shows the action of redox potential on L. monocytogenes thermal destruction and might be useful to take into account in food thermal processes.  相似文献   

19.
Infection with Listeria monocytogenes stimulates T cell proliferation and T cell-derived lymphokine production. The release of lymphokines, in turn, "activates" macrophages, enhancing their bactericidal capacity. Because prior studies suggest that I-A+ accessory cells play a critical role in this pathway, we assessed the effects of an anti-I-A antibody on the murine host resistance to listerial infection. To this end, we infused Listeria into control C57BL/6 mice (I-Ab haplotype) and mice of the same strain which had been pretreated 18 hr earlier with D3137 (a monoclonal IgG2a anti-I-Ab,d antibody). Preliminary studies demonstrated that this antibody can markedly inhibit antigen-induced proliferation of Listeria-dependent T cells in vitro and (at a dose of 1 mg/animal) can markedly reduce I-A expression on splenocytes in vivo. Even though D3137 pretreatment prevented the splenomegaly normally observed after Listeria infusion into mice, it protected animals infused with otherwise lethal concentrations of Listeria. Because antibody-treated animals had sevenfold fewer organisms in their spleens 18 hr after infection and 1000-fold fewer organisms than control animals 3 days after infection, improved survival resulted from an antibody-induced increase in the bactericidal capacity of the MPS. Protection was not noted when C1.18.4 (an IgG2a myeloma protein without known antibody activity) was infused into C57BL/6 mice or when D3137 was infused in B10.BR (I-Ak) mice. D3137 also protected (B10 X B10.BR)F1 mice (which are hybrids bearing I-Ab and I-Ak), suggesting that complete blockade of antigen presentation is not a prerequisite for its protective action. Further studies into the mechanism for these effects may provide new insights into the pathophysiology of MPS activation in response to immunologic challenge.  相似文献   

20.
Four strains of Listeria monocytogenes were examined for catalase (CA) and superoxide dismutase (SOD) activities. The two strains having the highest CA activities (LCDC and Scott A) also possessed the highest SOD activities. The CA activity of heated cell extracts of all four strains examined decreased sharply between 55 and 60 degrees C. SOD was more heat labile than CA. Two L. monocytogenes strains demonstrated a decline in SOD activity after heat treatment at 45 degrees C, whereas the other two strains demonstrated a decline at 50 degrees C. Sublethal heating of the cells at 55 degrees C resulted in increased sensitivity to 5.5% NaCl. Exogenous hydrogen peroxide was added to suspensions of L. monocytogenes; strains producing the highest CA levels showed the greatest H2O2 resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号