首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
西安和宝鸡木本植物花期物候变化及温度敏感度对比   总被引:2,自引:0,他引:2  
陶泽兴  葛全胜  徐韵佳  王焕炯 《生态学报》2020,40(11):3666-3676
植物物候是指示生态系统对气候变化响应的重要证据。已有研究多基于代表性站点的物候观测数据研究物候特征及其对气候变化的响应规律。同一气候区内,不同站点的物候变化及对温度变化响应的敏感度是否一致仍需深入探讨。本文选择同属于暖温带湿润区汾渭平原气候区的西安和宝鸡为研究区,利用"中国物候观测网"在两个站点21个共有物种的开花始期和开花末期数据,比较了1987—2016年两站点各植物花期物候变化特征及其对温度变化响应的敏感度差异。结果表明,西安和宝鸡各物种的开花始期和开花末期均以提前趋势为主。大部分物种开花始期在西安的提前趋势(平均趋势-0.57 d/a)明显强于在宝鸡的提前趋势(平均趋势-0.29 d/a),但开花末期趋势差异不显著。除紫薇和迎春的敏感度差异较大外,其他物种开花始期和开花末期的温度敏感度在两站点间非常接近,无显著差异。由此可见,在同一气候区的不同站点,因增温幅度不同,植物的始花期变化存在较大差异,不能用单站点的物候变化反映整个气候区的物候变化。但同一植物在单站点的温度敏感度可以较好的反映同一气候区其他站点的植物物候-气候关系。本文研究结果可为利用有限站点的物候观测数据分析区域物候变化及对气候变化的响应提供科学依据。  相似文献   

2.
焦亮  马罗  张同文  王圣杰 《生态学报》2021,41(5):1944-1958
通过分析新疆阿尔泰山中段西伯利亚落叶松树轮宽度年表与气候因子的相关关系证明6-7月平均最低气温是研究区树木径向生长的主控气候因子(r=0.649,P<0.001)。利用线性回归方法构建了阿尔泰山中段1798-2017年6-7月平均最低气温方程,通过计算重建方程方差解释量(41.1%)和利用逐一剔除法对重建方程各项参数进行了稳定性检验,证明了重建方程是稳定可靠的。分析重建的平均最低气温年际变化表明,研究区经历了4个暖期(1906-1919年、1922-1935年、1945-1960年和1997-2017年)和4个冷期(1816-1831年、1840-1867年、1869-1886年和1888-1905年),并且与相邻地区平均气温重建序列冷暖变化阶段一致。基于多窗谱分析结果发现重建6-7月平均最低气温序列存在2a、2.4a、2.8-3a、11a、20-22a左右的变化周期,表明研究区气候变化主要受厄尔尼诺-南方涛动(ENSO)、太阳黑子活动和全球海温变化(SST)驱动。本研究为系统掌握阿尔泰山气候变化规律和科学预测未来气候变化提供了依据。  相似文献   

3.
近144年来秦岭太白山林线区3-6月平均气温的重建   总被引:2,自引:0,他引:2  
秦进  白红英  刘荣娟  翟丹平  苏凯  王俊  李书恒 《生态学报》2017,37(22):7585-7594
秦岭太白山林线植被因海拔较高且受人为扰动较轻,对气候变化的响应尤为敏感,为获取过去气候变化信息提供了可靠代用资源。然而,结合树木年代学方法及Arcgis空间插值功能进行秦岭林线气候变化重建的工作至今仍处于空白。利用采自太白山林线地带太白红杉(Larix chinensis)所建立的树轮宽度资料,与提取自太白山保护区气温栅格数据中的采样点位置气象数据进行相关分析。结果表明,太白红杉与3—6月平均气温相关性最显著,采用线性回归建立了两者的拟合模型,剔除重建方程中的1997、1998年之后,方差解释量达57.2%(调整自由度后为55.5%);重建气温序列显示偏冷时段平均跨度(16年)较偏暖时段平均跨度(10.8年)长,偏冷时段有:1870—1881年、1903—1918年和1977—1996年;偏暖的时段有:1882—1892年、1919—1929年和1997—2013年;在1931—1978年这一时期,气温相对稳定,1988年之后升温强烈;周期分析显示近144年以来3—6月气温存在22—31 a,18—22 a以及10—13 a的3个振荡周期,可能与大尺度气候驱动及太阳活动存在联系。以上结果均得到历史记录以及周边重建结果的支持。  相似文献   

4.
Mediterranean high-relief karst areas are very vulnerable to changes in temporal patterns of precipitation and temperature. Understanding climate change in these areas requires current climate trends to be assessed within the context of the variability of rainfall and temperature trends in the recent past. A major difficulty is that the instrumental record in these high-relief areas is very limited and the use of data from paleoclimatic proxies, such as tree-ring data, is required to infer past climate variability. Furthermore, for complex relationships between tree-ring data and climatic variables, it is almost impossible to infer past inter-annual variations in temperature or precipitation, and the inference is limited to the reconstruction of low-frequency variability (i.e., the trend). To do so, in this work, we propose a new method based on detecting trends (by kernel smoothing) in tree variables that show maximum correlation with the trends (also estimated by kernel smoothing) of climate variables. This enables a standard regression framework to be established to reconstruct past climate. We have used tree-ring proxy data from Abies pinsapo to evaluate past climate trends in the Sierra de las Nieves karst massif in Southern Spain. Our analysis has found that during the last three hundred years the smoothed mean annual rainfall steadily decreased until the beginning of the 20th century and thereafter it remained more or less constant until the end of the century. On the other hand, the smoothed mean annual temperature has steadily increased since the beginning of the 18th century until recent times. These trends are also suggested by the climate projections for the latter part of the current 21st century. As the study area is a high-relief karst massif of significant hydrologic and ecologic interest, the implications of these trends should be taken into account when formulating effective action plans to mitigate the impact of climate change.  相似文献   

5.
Aim The northern limits of temperate broadleaved species in Fennoscanndia are controlled by their requirements for summer warmth for successful regeneration and growth as well as by the detrimental effects of winter cold on plant tissue. However, occurrences of meteorological conditions with detrimental effects on individual species are rare events rather than a reflection of average conditions. We explore the effect of changes in inter‐annual temperature variability on the abundances of the tree species Tilia cordata, Quercus robur and Ulmus glabra near their distribution limits using a process‐based model of ecosystem dynamics. Location A site in central Sweden and a site in southern Finland were used as examples for the ecotone between boreal and temperate forests in Fennoscandia. The Finnish site was selected because of the availability of varve‐thickness data. Methods The dynamic vegetation model LPJ‐GUESS was run with four scenarios of inter‐annual temperature forcing for the last 10,000 years. In one scenario the variability in the thickness of summer and winter varves from the annually laminated lake in Finland was used as a proxy for past inter‐annual temperature variability. Two scenarios were devised to explore systematically the effect of stepwise changes in the variance and shape parameter of a probability distribution. All variability scenarios were run both with and without the long‐term trend in Holocene temperature change predicted by an atmospheric general circulation model. Results Directional changes in inter‐annual temperature variability have significant effects on simulated tree distribution limits through time. Variations in inter‐annual temperature variability alone are shown to alter vegetation composition by magnitudes similar to the magnitude of changes driven by variation in mean temperatures. Main conclusions The varve data indicate that inter‐annual climate variability has changed in the past. The model results show that past changes in species abundance can be explained by changes in the inter‐annual variability of climate parameters as well as by mean climate. Because inter‐annual climatic variability is predicted to change in the future, this component of climate change should be taken into account both when making projections of future plant distributions and when interpreting vegetation history.  相似文献   

6.
The transformation of climatic regime has an undeniable impact on plant production, but we rarely have long enough date series to examine the unfolding of such effects. The clarification of the relationship between crop plants and climate has a near‐immediate importance due to the impending human‐made global change. This study investigated the relationship between temperature, precipitation, drought intensity and the yields of four major cereals in Hungary between 1921 and 2010. The analysis of 30‐year segments indicated a monotonously increasing negative impact of temperature on crop yields. A 1°C temperature increase reduced the yield of the four main cereals by 9.6%–14.8% in 1981–2010, which revealed the vulnerability of Eastern European crop farming to recent climate change. Climate accounted for 17%–39% of yield variability over the past 90 years, but this figure reached 33%–67% between 1981 and 2010. Our analysis supports the claim that the mid‐20th century green revolution improved yields “at the mercy of the weather”: during this period, the impact of increasing fertilization and mechanisation coincided with climatic conditions that were more favourable than today. Crop yields in Eastern Europe have been stagnating or decreasing since the mid‐1980s. Although usually attributed to the large socio‐economic changes sweeping the region, our analysis indicates that a warming climate is at least partially responsible for this trend. Such a robust impact of increasing temperatures on crop yields also constitutes an obvious warning for this core grain‐growing region of the world.  相似文献   

7.
Aim Climate and land‐use change will have a dramatic impact on future ecosystems through alterations to species ranges and community composition. When forming conservation strategies, correlative species distribution models are often created to assess risks for individual species. These models are based on the assumption of climatic equilibrium, such that the modern range is representative of the full range of conditions under which species could thrive. However, the palaeo‐ecological record illustrates examples of disequilibrium in species today, and recent studies suggest that many species could occur in much broader climatic settings than previously thought. Montane ecosystems are thought to be at disproportionate risk due to temperature sensitivity and restricted geographical ranges. However, in the Afrotropics the palaeo‐ecological record shows that montane forest taxa expanded into the lowlands numerous times, suggesting a possible tolerance to warm temperatures. Location Africa. Methods We integrate palaeo‐ecological and palaeo‐climatic data in order to compare climate conditions in which species are currently found with those in the past. We use species distribution models to construct potential modern ranges for Afromontane species based on modern distributions and distributions in the palaeo‐ecological record in order to evaluate the equilibrium of species ranges. Results We show that many Afromontane trees have occupied warmer climates in the past, which suggests that the current low‐elevation boundaries are not set by climate. Interestingly, the species with the largest disequilibrium between palaeo‐ and modern distributions are those whose modern distributions show the least temperature sensitivity. Mapping of species potential ranges based on modern and palaeo‐ distributions clearly shows that suitable climate conditions exist today in the lowlands for less temperature‐sensitive species. Main conclusions These results imply that the current range of these forest trees does not necessarily inform risk from climatic change, and that human land use may be the major pressure for many species in the future.  相似文献   

8.
The impact of climate warming on the advancement of plant spring phenology has been heavily investigated over the last decade and there exists great variability among plants in their phenological sensitivity to temperature. However, few studies have explicitly linked phenological sensitivity to local climate variance. Here, we set out to test the hypothesis that the strength of phenological sensitivity declines with increased local spring temperature variance, by synthesizing results across ground observations. We assemble ground‐based long‐term (20–50 years) spring phenology database (PEP725 database) and the corresponding climate dataset. We find a prevalent decline in the strength of phenological sensitivity with increasing local spring temperature variance at the species level from ground observations. It suggests that plants might be less likely to track climatic warming at locations with larger local spring temperature variance. This might be related to the possibility that the frost risk could be higher in a larger local spring temperature variance and plants adapt to avoid this risk by relying more on other cues (e.g., high chill requirements, photoperiod) for spring phenology, thus suppressing phenological responses to spring warming. This study illuminates that local spring temperature variance is an understudied source in the study of phenological sensitivity and highlight the necessity of incorporating this factor to improve the predictability of plant responses to anthropogenic climate change in future studies.  相似文献   

9.
Current methods for estimating past climatic patterns from pollen data require that the vegetation be in dynamic equilibrium with the climate. Because climate varies continuously on all time scales, judgement about equilibrium conditions must be made separately for each frequency band (i.e. time scale) of climatic change. For equilibrium conditions to exist between vegetation and climatic changes at a particular time scale, the climatic response time of the vegetation must be small compared to the time scale of climatic variation to which it is responding. The time required for vegetation to respond completely to climatic forcing at a time scale of 104 yr is still unknown, but records of the vegetational response to climatic events of 500-to 1000-yr duration provide evidence for relatively short response times. Independent estimates for the possible patterns and timing of late-Quaternary climate changes suggest that much of the vegetational evidence previously interpreted as resulting from disequilibrium conditions can instead be interpreted as resulting from the individualistic response of plant taxa to the different regional patterns of temperature and precipitation change. The differences among taxa in their response to climate can lead a) to rates and direction of plant-population movements that differ among taxa and b) to fossil assemblages that differ from any modern assemblage. An example of late-Holocene vegetational change in southern Quebec illustrates how separate changes in summer and winter climates may explain the simultaneous expansion of spruce (Picea) populations southward and beech (Fagus) populations northward.  相似文献   

10.
Models of climate change predict that its effects on animal populations will not always be negative, but most studies indicate negative associations between changes in climate and the phenology of animal migration and reproduction. For some populations, however, climate change may render particular environments more favourable, with positive effects on population growth. We used a 30-year population dataset on over 2000 Common Eiders Somateria mollissima at a colony in southwest Iceland to examine the response of this species to climate fluctuations. Eiders are strongly dependent on suitable climatic conditions for successful reproduction and survival. Temperatures in southwest Iceland, in both winter and summer, have generally increased over the past 30 years but have shown considerable fluctuation. We show that females laid earlier following mild winters and that year-to-year variation in the number of nests was related to the temperature during the breeding season 2 years previously. Milder summers could have positive effects on breeding success and offspring survival, producing an increase in nest numbers 2 years later when most Eiders recruit into the breeding population. In this part of their range, Eiders could benefit from a general warming of the climate.  相似文献   

11.
A review of indicators of climate change for use in Ireland   总被引:1,自引:0,他引:1  
Impact indicators are systems/organisms, the vitality of which alters in response to changes in environmental condition. The indicators assessed in this review fall within the impact category of the driver-pressure-state-impact-response (DPSIR) framework. Instrumental records have shown unequivocal changes in climatic conditions over the past 30 years at a global level but impact indicators allow these changes to be monitored at a finer resolution. Our main aim was to review sets of indicators of climate change currently used in various countries and to make recommendations for their use in the Irish environment. We review a preliminary set of climate change impact indicators in five sectors: agriculture; plant and animal distribution patterns; phenology; palaeoecology and human health. Currently, the most effective impact indicators of climate change have proved to be phenological observations of tree developmental stages. The strongest factor limiting the use of indicators is the lack of long-term data sets from which a climatic signal can be extracted.  相似文献   

12.
The current distribution of species, environmental conditions and their interactions represent only one snapshot of a planet that is continuously changing, in part due to human influences. To distinguish human impacts from natural factors, the magnitude and pace of climate shifts, since the Last Glacial Maximum, are often used to determine whether patterns of diversity today are artefacts of past climate change. In the absence of high‐temporal resolution palaeoclimate reconstructions, this is generally done by assuming that past climate change occurred at a linear pace between widely spaced (usually, ≥1,000 years) climate snapshots. We show here that this is a flawed assumption because regional climates have changed significantly across decades and centuries during glacial–interglacial cycles, likely causing rapid regional replacement of biota. We demonstrate how recent atmosphere‐ocean general circulation model (AOGCM) simulations of the climate of the past 21,000 years can provide credible estimates of the details of climate change on decadal to centennial timescales, showing that these details differ radically from what might be inferred from longer timescale information. High‐temporal resolution information can provide more meaningful estimates of the magnitude and pace of climate shifts, the location and timing of drivers of physiological stress, and the extent of novel climates. They also produce new opportunities to directly investigate whether short‐term climate variability is more important in shaping biodiversity patterns rather than gradual changes in long‐term climatic means. Together, these more accurate measures of past climate instability are likely to bring about a better understanding of the role of palaeoclimatic change and variability in shaping current macroecological patterns in many regions of the world.  相似文献   

13.
西北干旱地区气候变化及其对草地生产潜力的影响   总被引:1,自引:0,他引:1  
依据宁夏各县区24个气象站37年(1981—2017年)间的逐月气温、降水资料,采用Miami模型和Thornthwaite Memorial模型计算宁夏草地生产潜力,分析其时空变化。结果表明:从时间变化来看,宁夏平均气温以0.47℃·(10a)^-1的速度持续上升,降水量呈先下降后上升的趋势,从2010—2017年年降雨量增加了40 mm;从空间变化来看,宁夏气候从西北向东南由“暖干”向“冷湿”逐渐变化;宁夏草地气候生产潜力从西北向东南逐渐递增;草地气候生产潜力变化趋势与降水变化趋势一致,各时间段气候生产潜力与降水呈显著正相关(P<0.01),与温度呈负相关关系。因此,降水是宁夏草地气候生产潜力的限制因素,草地生产潜力较大区域在宁夏中南部,而以温度升高为特征的气候变化,对宁夏草地气候生产潜力影响较小。  相似文献   

14.
Interest in climate change research has taken on new relevance with the realization that human activities, such as the accelerated release of the so‐called greenhouse gases, may be altering the thermal properties of our atmosphere. Important social, economic, and scientific questions include the following. Is climate changing? If so, can these changes be related to human activities? Are episodes of extreme weather, such as droughts or hurricanes, increasing in frequency? Long‐term meteorological data, on broad spatial and temporal scales, are needed to answer these questions. Unfortunately, such data were never gathered; therefore, indirect proxy methods must be used to infer past climatic trends. A relatively untapped source of paleoclimate data is based on hindcasting past climatic trends using the environmental optima and tolerances of algae (especially diatoms) preserved in lake sediment profiles. Paleophycologists have used two approaches. Although still controversial, attempts have been made to directly infer climatic variables, such as temperature, from past algal assemblages. The main assumption with these types of analyses is that species composition is either directly related to temperature or that algal assemblages are related to some variable linearly related to temperature. The second more commonly used approach is to infer a limnological variable (e.g. water chemistry, lake ice cover, etc.) that is related to climate. Although paleolimnological approaches are broadly similar across climatic regions, the environmental gradients that paleophycologists track can be very different. For example, climatic inferences in polar regions have focused on past lake ice conditions, whereas in lakes near arctic treeline ecotones, paleophycologists have developed methods to infer past lakewater‐dissolved organic carbon, because this variable has been linked to the density of coniferous trees in a drainage basin. In closed‐basin lakes in arid and semiarid regions, past lakewater salinity, which can be robustly reconstructed from fossil algal assemblages, is closely tied to the balance of evaporation and precipitation (i.e. drought frequency). Some recent examples of paleophycolgical work include the documentation of striking environmental changes in high arctic environments in the 19th century believed to be related to climate warming. Meanwhile, diatom‐based reconstructions of salinity (e.g. the Great Plains of North America and Africa) have revealed prolonged periods of droughts over the last few millennia that have greatly exceeded those recorded during recent times. Marked climatic variability that is outside the range captured by the instrumental record has a strong bearing on sustainability of human societies. Only with a long‐term perspective can we understand natural climatic variability and the potential influences of human activities on climate and thereby increase our ability to understand future climate.  相似文献   

15.
许驭丹  李帅  董世魁  沈豪  周秉荣  李甫 《生态学报》2024,44(4):1671-1679
近几十年来青藏高原正经历着广泛而深远的气候变化,这种变化对当地物种的物候及分布格局产生了显著影响。猪毛蒿作为干旱半干旱地区的优势物种和影响群落稳定性的关键物种,青藏高原东缘是其重要的分布区域之一,然而其物候将如何应对气候变化目前我们尚不清楚。为此,基于青海省东部连续20年的气象数据和原位物候观测实验,探讨猪毛蒿物候的变化规律及量化不同气候因子的相对贡献率。结果表明:1)过去20年间年均温和年均每日日照时长分别呈现出显著的上升和下降趋势,而年降水和年均每日最大风速没有显著的变化;2)20年间猪毛蒿返青-开花的时间间隔和开花-结果的时间间隔并未表现出显著的变化趋势,结果-枯黄的时间间隔显著缩短;3)所有气候因子均对猪毛蒿不同物候的时间间隔有显著影响,其中最大风速是影响猪毛蒿物候时间间隔最重要的气候因子。这一研究发现可以为气候变化情景下青藏高原高寒植物的保护和利用提供理论依据。  相似文献   

16.
Aim Evidence indicates that species are responding to climate change through distributional range shifts that track suitable climatic conditions. We aim to elucidate the role of meso‐scale dispersal barriers in climate‐tracking responses. Location South coast of England (the English Channel). Methods Historical distributional data of four intertidal invertebrate species were logistically regressed against sea surface temperature (SST) to determine a climate envelope. This envelope was used to estimate the expected climate‐tracking response since 1990 along the coast, which was compared with observed range expansions. A hydrodynamic modelling approach was used to identify dispersal barriers and explore disparities between expected and observed climate tracking. Results Range shifts detected by field survey over the past 20 years were less than those predicted by the changes that have occurred in SST. Hydrodynamic model simulations indicated that physical barriers produced by complex tidal currents have variably restricted dispersal of pelagic larvae amongst the four species. Main conclusions We provide the first evidence that meso‐scale hydrodynamic barriers have limited climate‐induced range shifts and demonstrate that life history traits affect the ability of species to overcome such barriers. This suggests that current forecasts may be flawed, both by overestimating range shifts and by underestimating climatic tolerances of species. This has implications for our understanding of climate change impacts on global biodiversity.  相似文献   

17.
Despite increasing concerns about the vulnerability of species'' populations to climate change, there has been little overall synthesis of how individual population responses to variation in climate differ between taxa, with trophic level or geographically. To address this, we extracted data from 132 long-term (greater than or equal to 20 years) studies of population responses to temperature and precipitation covering 236 animal and plant species across terrestrial and freshwater habitats. Our results identify likely geographical differences in the effects of climate change on populations and communities in line with macroecological theory. Temperature tended to have a greater overall impact on populations than precipitation, although the effects of increased precipitation varied strongly with latitude, being most positive at low latitudes. Population responses to increased temperature were generally positive, but did not vary significantly with latitude. Studies reporting significant climatic trends through time tended to show more negative effects of temperature and more positive effects of precipitation upon populations than other studies, indicating climate change has already impacted many populations. Most studies of climate change impacts on biodiversity have focused on temperature and are from middle to high northern latitudes. Our results suggest their findings may be less applicable to low latitudes.  相似文献   

18.
Climate has been inherently linked to global diversity patterns, and yet no empirical data are available to put modern climate change into a millennial-scale context. High tropical species diversity has been linked to slow rates of climate change during the Quaternary, an assumption that lacks an empirical foundation. Thus, there is the need for quantifying the velocity at which the bioclimatic space changed during the Quaternary in the tropics. Here we present rates of climate change for the late Pleistocene and Holocene from Mexico and Guatemala. An extensive modern pollen survey and fossil pollen data from two long sedimentary records (30,000 and 86,000 years for highlands and lowlands, respectively) were used to estimate past temperatures. Derived temperature profiles show a parallel long-term trend and a similar cooling during the Last Glacial Maximum in the Guatemalan lowlands and the Mexican highlands. Temperature estimates and digital elevation models were used to calculate the velocity of isotherm displacement (temperature change velocity) for the time period contained in each record. Our analyses showed that temperature change velocities in Mesoamerica during the late Quaternary were at least four times slower than values reported for the last 50 years, but also at least twice as fast as those obtained from recent models. Our data demonstrate that, given extremely high temperature change velocities, species survival must have relied on either microrefugial populations or persistence of suppressed individuals. Contrary to the usual expectation of stable climates being associated with high diversity, our results suggest that Quaternary tropical diversity was probably maintained by centennial-scale oscillatory climatic variability that forestalled competitive exclusion. As humans have simplified modern landscapes, thereby removing potential microrefugia, and climate change is occurring monotonically at a very high velocity, extinction risk for tropical species is higher than at any time in the last 86,000 years.  相似文献   

19.
Climate change and habitat loss are both key threatening processes driving the global loss in biodiversity. Yet little is known about their synergistic effects on biological populations due to the complexity underlying both processes. If the combined effects of habitat loss and climate change are greater than the effects of each threat individually, current conservation management strategies may be inefficient and at worst ineffective. Therefore, there is a pressing need to identify whether interacting effects between climate change and habitat loss exist and, if so, quantify the magnitude of their impact. In this article, we present a meta‐analysis of studies that quantify the effect of habitat loss on biological populations and examine whether the magnitude of these effects depends on current climatic conditions and historical rates of climate change. We examined 1319 papers on habitat loss and fragmentation, identified from the past 20 years, representing a range of taxa, landscapes, land‐uses, geographic locations and climatic conditions. We find that current climate and climate change are important factors determining the negative effects of habitat loss on species density and/or diversity. The most important determinant of habitat loss and fragmentation effects, averaged across species and geographic regions, was current maximum temperature, with mean precipitation change over the last 100 years of secondary importance. Habitat loss and fragmentation effects were greatest in areas with high maximum temperatures. Conversely, they were lowest in areas where average rainfall has increased over time. To our knowledge, this is the first study to conduct a global terrestrial analysis of existing data to quantify and test for interacting effects between current climate, climatic change and habitat loss on biological populations. Understanding the synergistic effects between climate change and other threatening processes has critical implications for our ability to support and incorporate climate change adaptation measures into policy development and management response.  相似文献   

20.
Forecasting how species will respond to climatic change requires knowledge of past community dynamics. Here we use time‐series data from the small‐mammal fossil records of two caves in the Great Basin of the American West to evaluate how contrasting and variable local paleoclimates have shaped small‐mammal abundance dynamics over the last ~7500 years of climatic change. We then predict how species and communities will respond to future scenarios of increased warming and aridity coupled with continued spread of an invasive annual grass (Bromus tectorum). We find that most community‐level responses to climatic change occur in the mammalian abundance structure at both sites; the dominance of the community by individuals from species with a southern geographic affinity increases with climatic warming. This suggests that responses occurred in situ rather than by the immigration of new taxa over this time interval. Despite predictability at the community‐scale, species‐level relationships between abundance and climate are variable and are not necessarily explained by a species' geographic affinity. Species present at both sites, however, exhibit remarkably similar responses to climate at each site, indicating that species autecology (specifically dietary functional group) is important in determining response to climatic warming. Regression‐tree analyses show remarkable concordance between the two cave faunas and highlight the importance of a granivorous dietary strategy in this desert ecosystem. Under projections of increased temperature and decreased precipitation over the next 50 years, our results indicate that granivores should thrive as communities become more dominated by individuals with a southern geographic affinity. Granivores, however, are negatively impacted by the invasion of cheatgrass. The last century of anthropogenic impacts has thus placed granivores at a greater risk of extinction than predicted under climate‐only scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号