首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experimental studies have demonstrated that oral administration of lanthanum chloride (LaCl3) inhibits the development of atherosclerosis, but the related mechanism has not been fully elucidated. Oxysterols are toxic to the vascular endothelial cells which are important in preventing the formation and progression of atheromatous plaque. In this study, we examined the effect of LaCl3 on oxysterol cholestane-3β,5α,6β-triol (Triol)-induced apoptosis and the related mechanisms in ECV-304 cells, a presumptive endothelial cell line. Incubation with Triol resulted in apoptosis of ECV-304 cells, as determined by Hoechst 33342 staining, fluorescein isothiocyanate labeled annexin V/propidium iodide double staining, and the loss of mitochondrial membrane potential. Triol activated extracellular-signal-regulated kinase (ERK) and nuclear factor κB (NF-κB), and inhibition of Triol-activated ERK and NF-κB signaling by specific inhibitors attenuated apoptosis induction by Triol in ECV-304 cells. Pretreatment with LaCl3 (1 μM) for 12 h before exposure to Triol decreased Triol-mediated apoptosis as well as activation of ERK and NF-κB. In addition, Triol induced oxidative stress in ECV-304 cells, manifested by the increase of intracellular reactive oxygen species generation and malondialdehyde level, and the reduction of the content of total protein thiols and the activity of antioxidant glutathione peroxidases; LaCl3 pretreatment significantly reversed these effects. Finally, LaCl3 pretreatment significantly inhibited the increases of intracellular Ca2+ concentration induced by Triol. Our study suggests that Triol induced ECV-304 cell apoptosis, and LaCl3 could suppress this effect probably by inhibiting intracellular Ca2+ concentration elevation, oxidative stress, as well as activation of ERK and NF-κB signaling pathways.  相似文献   

2.
siRNA靶向沉默p22phox表达对内皮细胞衰老抑制作用的研究   总被引:2,自引:0,他引:2  
李虹  白小涓  刘强  王宁夫 《遗传》2008,30(9):1175-1181
设计特异性siRNA(Short interference RNA)诱导人脐静脉内皮细胞株ECV-304细胞NAD(P)H氧化酶活性亚单位p22phox基因沉默, 探讨p22phox基因沉默在血管紧张素Ⅱ(AngⅡ)诱导的ECV-304衰老中的作用及机理。应用体外转录合成3种siRNA转染体外培养的ECV-304, RT-PCR鉴定对p22phox基因沉默的效率和特异性, 确立适宜的转染浓度和基因沉默的持续时间; ECV-304分为空白对照组、AngⅡ组、siRNA转染组、AngⅡ+siRNA转染组, 观察细胞衰老改变及活性氧水平, 分析各组细胞p22phox的mRNA及蛋白表达。结果表明: 3种siRNA中, 一种对p22phox mRNA表达抑制率达到83%, 在一定转染浓度范围内, siRNA诱导的基因沉默效率呈剂量依赖性, 抑制效率高峰期在24~36 h; 给予AngⅡ后, b-gal染色阳性细胞数显著增加, 出现衰老的特征性改变, 衰老细胞p22phox的 mRNA及蛋白表达增加, 伴有一氧化氮(NO)生成减少, 活性氧生成增加, siRNA诱导p22phox基因沉默后降低了活性氧水平, 增加NO生成, 改善了AngⅡ诱导的ECV-304细胞的衰老改变。siRNA干扰技术可成功诱导NAD(P)H氧化酶p22phox基因沉默, 从而减缓AngⅡ诱导体外培养的ECV-304衰老进程, p22phox是防治衰老有希望的分子靶点。  相似文献   

3.
Zhou SG  Xu LP  Liao DF  Lei XY  Yan FX  Zhu BY 《生理学报》2004,56(3):313-320
为研究环孢霉素A(cyclosporin A,CsA)对缺氧/复氧诱导人脐静脉内皮细胞(ECV-304)与中性粒细胞粘附的影响,本工作以缺氧/复氧诱导粘附为模型,采用D-N-乙酰氨基己糖苷酶比色法检测粘附率,流式细胞术检测ECV-304细胞表面粘附分子E-选择素(E-selectin)、细胞间粘附分子-1(ICAM-1)的表达,Fenton反应测定活性氧(reactive oxygen species,ROS)的含量,Westera-blot法检测ECV-304细胞亲环素A(cyclophilin A,CyPA)、磷酸化及总细胞外信号调节激酶(ERK1/2)蛋白的表达。结果发现,ECV-304细胞经缺氧/复氧处理后,ROS释放增多,E-selectin、ICAM-1的表达上调,其表面中性粒细胞的粘附增加,CsA能显著抑制缺氧/复氧的上述作用。缺氧/复氧后,CyPA蛋白表达明显上调,ERK1/2显著活化,细胞总ERK1/2蛋白表达无明显改变。CyPA抑制剂CsA以及CyPA反义寡核苷酸均明显减轻缺氧/复氧诱导的ERK1/2激活,显著减少ECV-304细胞与中性粒细胞柑附。ERK112信号通路特异性阻断剂PD98059亦显著抑制ECV-304细胞与中性粒细胞的粘附。上述结果提示,CsA抑制缺氧气/复氧诱导的ECV-304细胞与中性粒细胞粘附,并可能通过抑制ROS-Cyclophilin A-ERK112的信号转导途径实现。  相似文献   

4.
Wistar rats were fed Se-deficient (0.017±0.002 mg Se/kg) and Seadequate (0.32±0.045 Se mg/kg) diets for 12 mo and then were given 5 mg/kg of cholestane-3β,tα,6β-triol (3-triol), intravenously. Se compounds (Na2SeO3 and ebselen) were supplemented in different doses and times to the Se-deficient rats. Twenty-four hours after 3-triol infusion, the changes in ultrastructures of rat aorta were examined by scanning electron micrography (SEM) and transmission electron micrography (TEM). SEM examinations showed that 3-triol induced diffused injuries on arterial endothelial urfaces of long-term Se-deficient rat, and a large number of holes or craterlike defects were observed. TEM examinations further showed that 3-triol induced swelling, necrosis, and shedding of endothelial cells, which resulted in the destruction of endothelial integrity. Mean-while, smooth muscle cells proliferated and migrated toward intimae; the breakage of internal elastic lamina benefited the migration of smooth muscle cells. Supplemented with Na2SeO3 (40 μg/kg, 10 d per continuum) and ebselen (20 mg/kg), respectively, exhibited significant protection from damages induced by 3-triol. It seems that protecting mechanisms were different between Na2SeO3 and ebselen. The present investigation gave visual evidence that both injuries induced by cholesterol oxides and the Se nutritional status contributed to the development of atherosclerosis.  相似文献   

5.
Endothelial dysfunction is thought to be a major cause of vascular complications in diabetes. Our research shows that ghrelin attenuates high glucose-induced apoptosis in cultured human umbilical vein endothelial cells (ECV-304). Exposure to glucose (33.3mM) for 72 h caused a significant increase in apoptosis, as evaluated by TUNEL and flow cytometry, but pretreatment of ghrelin (10(-7)M) eliminated high glucose-induced apoptosis in ECV-304. Ghrelin also prevented the induction of caspase-3 activation, in cells incubated with glucose (33.3 mM). Exposure of cells to ghrelin (10(-7)M) caused rapid activation of Akt. PI3K inhibitor, LY294002 attenuated ghrelin's inhibitory effect on caspase-3 activity. Ghrelin protected endothelial cells from high glucose by inhibiting reactive oxygen species (ROS) generation. Results of our study indicate that ghrelin inhibits both high glucose-induced apoptosis via PI3K/Akt pathway and ROS production in ECV-304. This peptide may have potential in preventing diabetic complications, especially in obese patients.  相似文献   

6.
Park WH  Han YW  Kim SH  Kim SZ 《Mutation research》2007,619(1-2):81-92
We investigated the involvement of ROS such as H2O2 and O2*-, and GSH in As4.1 cell death induced by pyrogallol. The intracellular H2O2 levels were decreased or increased depending on the concentration and incubation time of pyrogallol. The levels of O2*- were significantly increased. Pyrogallol reduced the intracellular GSH content. And ROS scavengers, Tempol, Tiron, Trimetazidine and NAC could not significantly down-regulate the production of H2O2 and O2*-. However, these ROS scavengers slightly inhibited apoptosis. Interestingly, Tempol showing the recovery of GSH depletion induced by pyrogallol significantly decreased apoptosis without the significant reduction of intracellular O2*- levels. SOD and catalase did not change the level of H2O2 but decreased the level of O2*-. The inhibition of GSH depletion by these was accompanied with the decrease of apoptosis, as evidenced by sub-G1 DNA content, annexin V staining, mitochondria membrane potential (DeltaPsi(m)) and Western data. In addition, ROS scavengers and SOD did not alter a G2 phase accumulation of the cell cycle induced by pyrogallol. However, catalase changed the cell cycle distributions of pyrogallol-treated cells to those of pyrogallol-untreated cells. In summary, we have demonstrated that pyrogallol potently generates ROS, especially O2*-, in As4.1 JG cells, and Tempol, SOD and catalase could rescue to a lesser or greater extent cells from pyrogallol-induced apoptosis through the up-regulation of intracellular GSH content.  相似文献   

7.
The rat hepatocyte catalyzed oxidation of 2',7'-dichlorofluorescin to form the fluorescent 2,7'-dichlorofluorescein was used to measure endogenous and xenobiotic-induced reactive oxygen species (ROS) formation by intact isolated rat hepatocytes. Various oxidase substrates and inhibitors were then used to identify the intracellular oxidases responsible. Endogenous ROS formation was markedly increased in catalase-inhibited or GSH-depleted hepatocytes, and was inhibited by ROS scavengers or desferoxamine. Endogenous ROS formation was also inhibited by cytochrome P450 inhibitors, but was not affected by oxypurinol, a xanthine oxidase inhibitor, or phenelzine, a monoamine oxidase inhibitor. Mitochondrial respiratory chain inhibitors or hypoxia, on the other hand, markedly increased ROS formation before cytotoxicity ensued. Furthermore, uncouplers of oxidative phosphorylation inhibited endogenous ROS formation. This suggests endogenous ROS formation can largely be attributed to oxygen reduction by reduced mitochondrial electron transport components and reduced cytochrome P450 isozymes. Addition of monoamine oxidase substrates increased antimycin A-resistant respiration and ROS formation before cytotoxicity ensued. Addition of peroxisomal substrates also increased antimycin A-resistant respiration but they were less effective at inducing ROS formation and were not cytotoxic. However, peroxisomal substrates readily induced ROS formation and were cytotoxic towards catalase-inhibited hepatocytes, which suggests that peroxisomal catalase removes endogenous H(2)O(2) formed in the peroxisomes. Hepatocyte catalyzed dichlorofluorescin oxidation induced by oxidase substrates, e.g., benzylamine, was correlated with the cytotoxicity induced in catalase-inhibited hepatocytes.  相似文献   

8.
Endothelial mitochondria, the major site of ATP generation, modulate the intracellular dynamics of reactive oxygen species (ROS), which, in turn, control endothelial function. Adequate oxygen (O(2)) supply is required by endothelial cells (EC). Both hypoxia and hyperoxia may favor the overproduction of ROS leading to oxidative stress, mitochondrial damage and endothelial dysfunction. We investigated the capability and mechanisms of Cellfood? (CF), an antioxidant compound, to modulate O(2) availability and mitochondrial respiratory metabolism and to regulate ROS generated by hypoxia in EC in vitro. Human umbilical vein endothelial cells (HUVEC) and ECV-304 were evaluated for the O(2) consumption using a Clark's electrode. The O(2) consumption rate rose, during the first minutes after CF addition and was associated with increase in mitochondrial oxidative capacity and good cell viability. Similar behaviours were observed when EC were exposed to CF for up to 8 days. The O(2) consumption increased and was accompanied by both intracellular rise of ATP and maintainment of LDH concentration. Hypoxia-induced ROS generation was significantly inhibited by CF, through the up-regulated expression of MnSOD, an anti-oxidant responsible for mitochondrial function preservation. The EC hypoxic response is mediated by the hypoxia master regulator HIF-1alpha whose activation was attenuated by CF, in concomitance with MnSOD up-regulation. Our results suggest a role for CF in improoving respiratory metabolism and in activating anti-oxidant mechanisms in EC, thus preserving endothelial function.  相似文献   

9.
Arsenic trioxide has been known to regulate many biological functions such as cell proliferation, apoptosis, differentiation, and angiogenesis in various cell lines. We investigated the involvement of GSH and ROS such as H(2)O(2) and O(2)(*-) in the death of As4.1 cells by arsenic trioxide. The intracellular ROS levels were changed depending on the concentration and length of incubation with arsenic trioxide. The intracellular O(2)(*-) level was significantly increased at all the concentrations tested. Arsenic trioxide reduced the intracellular GSH content. Treatment of Tiron, ROS scavenger decreased the levels of ROS in 10 microM arsenic trioxide-treated cells. Another ROS scavenger, Tempol did not decrease ROS levels in arsenic trioxide-treated cells, but slightly recovered the depleted GSH content and reduced the level of apoptosis in these cells. Exogenous SOD and catalase did not reduce the level of ROS, but did decrease the level of O(2)(*-). Both of them inhibited GSH depletion and apoptosis in arsenic trioxide-treated cells. In addition, ROS scavengers, SOD and catalase did not alter the accumulation of cells in the S phase induced by arsenic trioxide. Furthermore, JNK inhibitor rescued some cells from arsenic trioxide-induced apoptosis, and this inhibitor decreased the levels of O(2)(*-) and reduced the GSH depletion in these cells. In summary, we have demonstrated that arsenic trioxide potently generates ROS, especially O(2)(*-), in As4.1 juxtaglomerular cells, and Tempol, SOD, catalase, and JNK inhibitor partially rescued cells from arsenic trioxide-induced apoptosis through the up-regulation of intracellular GSH levels.  相似文献   

10.
Upregulation of the p53 tumor suppressor protein by infection with a recombinant p53 adenovirus resulted in extensive apoptosis in ECV-304 cells and the eventual death of almost all the cells. To establish a system to elucidate the molecular mechanisms involved in p53-mediated apoptosis of these cells, we established a variant of ECV-304 that is resistant to p53-induced apoptosis by repeated infections with a recombinant p53 adenovirus. We have designated this variant as the DECV cell line (Differentiated ECV-304). DECV cells expressed similar amounts of nuclear-localized p53 as ECV-304 cells when infected with recombinant p53 adenovirus, but in contrast to ECV-304 cells, greater than 95% of DECV cells survived and remained viable after 24 hours of infection. In further contrast to ECV-304 cells, DECV cells grew less efficiently in soft agar and exhibited contact inhibition in growth assays. Moreover, DECV cells formed unusual lattice or cyst-like structures in culture and formed lumenal structures indicative of epithelial differentiation in three-dimensional collagen matrices, while parental ECV-304 cells showed minimal evidence of these cellular behaviors. A comparative molecular analysis of gene expression in DECV and ECV-304 cells was conducted by cDNA micro-array technology. Protocadherin-1 was found to be expressed in DECV cells but not in ECV-304 cells, while the Id-3 gene was observed expressed in ECV-304 cells but not in DECV cells. Moreover, upregulated expression of p53 in ECV-304 cells induced the EPHB2 (Ephrin) receptor tyrosine kinase and the ephrin-B1 ligand mRNAs compared to DECV cells treated in the same manner. These data demonstrate that a new variant of the ECV-304 cell line, which is resistant to p53-mediated apoptosis, exhibits differential gene expression as well as distinct cell behaviors as compared to the parental ECV-304 cell line. DECV cells should prove to be a useful tool in future studies to elucidate mechanisms of p53-mediated apoptosis and differentiation.  相似文献   

11.
A series of novel Ligustrazine derivatives was designed, synthesized, and assayed for their protective effects on damaged ECV-304 cells and antiplatelet aggregation activities. The results showed that most Ligustrazine derivatives exhibited lower EC(50) values for protective effects on the ECV-304 cells damaged by hydrogen peroxide in comparison with Ligustrazine. And some Ligustrazine derivatives presented better antiplatelet aggregation activities than Ligustrazine. The derivatives containing the bisphenylmethyl pharmacophore (7a-c) exhibited highest potency. Compound 7a displayed most potential protective effects on the ECV-304 cells damaged by hydrogen peroxide, and compound 7c was found to be the most active antiplatelet aggregation agent. Structure-activity relationships were briefly discussed.  相似文献   

12.
We demonstrated the cytotoxicity of glyceraldehyde-related Maillard reaction products for HL-60 cells. Glyceraldehyde-modified bovine serum albumin and glyceraldehyde-modified casein inhibited the proliferation of HL-60 cells. The reaction products formed from glyceraldehyde and Nalpha-acetyllysine had also a cytotoxic effect on HL-60 cells. The cytotoxic effect was prevented by N-acetylcysteine or pyrrolidinedithiocarbamate as the antioxidants. In addition, the reaction products depressed the intracellular glutathione level, and induced the reactive oxygen species (ROS) production. These results suggested that the glyceraldehyde-related advanced glycation end products (AGEs) induced the cytotoxicity and the oxidative stress.We previously reported that the glyceraldehyde-related AGE was identified as 1-(5-acetylamino-5-carboxypentyl)-3-hydroxy-5-hydroxymethyl-pyridinium, named GLAP (glyceraldehyde-derived pyridinium compound), formed from glyceraldehyde and Nalpha-acetyllysine (Biosci. Biotechnol. Biochem., 67, 930-932 (2003)). In this study, GLAP inhibited the proliferation of HL-60 cells, and the inhibitory effect was prevented by the antioxidants. Furthermore, GLAP depressed the intracellular glutathione level, and induced the ROS production.This work indicated the possibility that the cytotoxicity and the oxidative stress in the progression of diabetic complications and chronic renal disease might be induced by GLAP.  相似文献   

13.
粘着斑激酶在bFGF引起细胞迁移中的动态变化及意义   总被引:3,自引:0,他引:3  
Liang GB  Zhang GP  Jin HM  Qian RZ 《生理学报》2004,56(4):509-514
本文旨在观察不同浓度碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)引起体外培养的ECV-304细胞迁移时粘着斑激酶(focal adhesion kinase,FAK)的动态变化及FAK与细胞迁移的关系。建立体外培养的ECV-304细胞划痕损伤模型,观察经不同剂量(0、5、10、15 ng/ml)bFGF作用12-24 h内细胞迁移距离(电脑图像测定)和FAK蛋白含量(Western blot)、活性(免疫沉淀加Western blot)和mRNA(RT-PCR)的动态变化。用免疫细胞化学(ABC法)染色研究整合素α3表达。结果发现,低浓度(5 ng/ml)bFGF促进细胞迁移,FAK蛋白含量增加42.07±2.02%、活性增加71.37±1.85%,与对照组比,差异显著(P<0.05),并与迁移距离呈正相关(P<0.05)。高浓度(15 ng/ml)bFGF抑制细胞迁移,FAK的变化相反。FAK mRNA的变化比蛋白变化早出现6 h。与对照细比,各实验组整合素α3表达无明显差异。由此可见,不同剂量bFGF对ECV-304细胞迁移的双相调节作用与FAK含量、活性与mRNA表达呈正相关,FAK在bFGF引起的细胞迁移的信号转导途径中起着重要作用。  相似文献   

14.
15.
Earlier studies, including our own, revealed that activation of mast cells is accompanied by production of reactive oxygen species (ROS) that help to mediate the release of the inflammatory mediators, including histamine and eicosanoids. However, little is known about the mechanisms of ROS production, including the species of oxidants produced. In this study we show that in both the RBL-2H3 mast cell line and bone marrow-derived mast cells, FcepsilonRI cross-linking stimulates intracellular oxidative burst, including hydrogen peroxide (H(2)O(2)) production, as defined with the oxidant-sensitive dyes dichlorofluorescein and scopoletin and the selective scavenger ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one). The oxidative burst was observed immediately after stimulation and was most likely due to an NAD(P)H oxidase. Experiments using selective pharmacological inhibitors demonstrated that activation of tyrosine kinases and phosphatidylinositol-3-kinase is required for induction of the oxidative burst. Blockade of the oxidative burst by diphenyleneiodonium impaired the release of preformed granular mediators, such as histamine and beta-hexosaminidase, and the secretion of newly synthesized leukotriene C(4), whereas selective scavenging H(2)O(2) by ebselen impaired leukotriene C(4) secretion, but not degranulation. Sustained elevation of cytosolic calcium through store-operated calcium entry was totally abolished when ROS production was blocked. In contrast, selective depletion of H(2)O(2) caused a considerable decrease and delay of the calcium response. Finally, tyrosine phosphorylation of phospholipase Cgamma and the linker for activation of T cells, an event required for calcium influx, was suppressed by diphenyleneiodonium and ebselen. These studies demonstrate that activation of the intracellular oxidative burst is an important regulatory mechanism of mast cell responses.  相似文献   

16.
Du CB  Liu JW  Su W  Ren YH  Wei DZ 《Life sciences》2003,74(6):771-780
L-ascorbic acid 2-phosphate-6-palmitate (Asc2P6P) was synthesized and its effect on the damage of PC12 cells induced by H2O2 was investigated. 200 microM H2O2 in a treatment period of 4 hours in our experiment resulted in substantial cell loss. With the increasing concentration of antioxidants, such H2O2-induced cytotoxicity was significantly prevented and the corresponding intracellular and extracellular ROS levels decreased concurrently by pre-treatment with Asc2P6P and Asc. It was found that Asc2P6P was superior to L-ascorbic acid in its protective role and showed a dose-dependent manner during a 24-hour treatment. The higher potency of Asc2P6P's protective role on PC12 cells was correlated with its more effective ROS scavenging ability. HPLC assay demonstrated that Asc2P6P could easily enter the cells and be converted into Asc persistently, which contributed to its distinguished role in protecting PC12 cells against H2O2-induced cytotoxicity.  相似文献   

17.
Overexpression of wild-type p53 in ECV-304 tumor cells induced extensive apoptosis and the eventual death of nearly all of the cells. We generated ECV-304 cells resistant to p53-induced apoptosis as a strategy to identify novel genes that might be relevant to p53-mediated apoptosis. ECV-304 cells resistant to p53 were isolated by repeated infections with a recombinant p53 adenovirus and were designated as DECV. The expression of 5,730 genes in p53-resistant (DECV) and p53-sensitive ECV-304 cells were profiled by DNA microarray analysis. We report here the expression of 80 genes that differed by 2-fold or more between sensitive and resistant cells upregulated for p53. Many of these differentially expressed genes are regulated by p53 in ECV-304 and H1299 p53-null cells. Our analysis identifies many new potential targets for p53 that play roles in cell cycle regulation, DNA repair, redox control, cell adhesion, apoptosis, and differentiation.  相似文献   

18.
19.
We have investigated whether arachidonic acid could regulate tissue transglutaminase (tTGase) via intracellular reactive oxygen species (ROS) in NIH3T3 cells. tTGase was identified in NIH3T3 cells by Western blot and confocal microscopy. Arachidonic acid elevated in situ tTGase activity in dose- and time-dependent manners with a maximal level at 1h, and ROS scavengers, N-(2-mercaptopropionyl)glycine and catalase, blocked the tTGase activation by arachidonic acid. The activation of tTGase by arachidonic acid was largely inhibited by transfection of tTGase siRNA. The role of intracellular ROS in the activation of in situ tTGase was supported by the activation of in situ tTGase by exogenous H(2)O(2). Arachidonic acid stimulated the formation of stress fibers in a dose- and time-dependent manner, and the ROS scavengers suppressed the arachidonic acid-induced formation of stress fibers. These results suggested that the activation of in situ tTGase and stress fiber formation by arachidonic acid was mediated by intracellular ROS in NIH3T3 cells.  相似文献   

20.
We have investigated a novel function of calpeptin, a commonly used inhibitor of calpain, in the production of intracellular reactive oxygen species (ROS) in Swiss 3T3 fibroblasts. Calpeptin induced a rapid increase of intracellular ROS by a dose-dependent manner, with a maximal increase at 10 min, which was inhibited by ROS scavengers, catalase and 2-MPG. However, other calpain inhibitors, E64d and N-acetyl-Leu-Leu-Nle-CHO (ALLN), had no effect on the level of intracellular ROS, indicating that calpain was not involved in the ROS production by calpeptin. The role of Rho in the ROS production by calpain was studied by scrape-loading of C3 transferase. C3 transferase, which inhibited stress fiber formation by calpeptin, had no effect on the ROS production in response to calpeptin, suggesting that Rho was not involved in the ROS production by calpeptin. But the elevation of intracellular ROS was inhibited by mepacrine, a phospholipase A2 inhibitor. In addition, scavenging intracellular ROS by the incubation with catalase and 2-MPG had no effect on the stress fiber formation by calpeptin. These results suggested that calpeptin stimulated the production of intracellular ROS and stress fiber formation by independent mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号