首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C D Rao  A Kiuchi    P Roy 《Journal of virology》1983,46(2):378-383
The 3'-terminal sequences of the 10 double-stranded RNA genome segments of bluetongue virus (serotypes 10 and 11) were determined. The double-stranded RNAs were 3' labeled with [5'-32P]pCp and resolved into 10 segments by electrophoresis. After denaturation, the two complementary strands of segments 4 through 10 were resolved into fast- and slow-migrating species by polyacrylamide gel electrophoresis, and their 3' end sequences were determined. Complete RNase T1 digestion of the individual 3'-labeled double-stranded RNA segments yielded two labeled oligonucleotides, one of which migrated faster than the other on 20% polyacrylamide-7 M urea gels. Sequence analyses of the two oligonucleotides of segments 4 through 10 confirmed the corresponding RNA sequence data. For RNA segments 1 through 3 the oligonucleotide analyses gave comparable results. The 3'-terminal sequences of the fast-migrating RNA species were HOCAAUUU. . . ; those of the slow-migrating RNA species were HOCAUUCACA. . . . Similar results were obtained for double-stranded RNA from bluetongue virus serotypes 10 and 11. Beyond the common termini, the sequences for each segment varied considerably.  相似文献   

2.
3.
4.
5.
6.
7.
T J French  J J Marshall    P Roy 《Journal of virology》1990,64(12):5695-5700
Bluetongue is a disease of ruminants. The etiologic agent is bluetongue virus (BTV), a gnat-transmitted member of the Orbivirus genus of the Reoviridae. The virus has a genome of 10 double-stranded RNA species L1 to L3, M4 to M6, S7 to S10). The L2 and M5 genes of BTV which encode the outer capsid proteins VP2 and VP5, respectively, were inserted into a recombinant baculovirus downstream of duplicated copies of the baculovirus polyhedrin promoter. Insect cells coinfected with this virus plus a recombinant baculovirus expressing the two major core proteins VP3 and VP7 of BTV (T.J. French and P. Roy, J. Virol. 64:1530-1536, 1990) synthesized noninfectious, double-shelled, viruslike particles. When purified, these particles were found to have the same size and appearance as authentic BTV virions and exhibited high levels of hemagglutination activity. Antibodies raised to the expressed particles contained high titers of neutralizing activity against the homologous BTV serotype. The assembly of these bluetongue viruslike particles after the simultaneous expression of four separate proteins is indicative of the potential of this technology for the production of a new generation of viral vaccines and for the study of complex, multiprotein structures.  相似文献   

8.
9.
P Roy  A Fukusho  G D Ritter    D Lyon 《Nucleic acids research》1988,16(24):11759-11767
The nucleotide sequence of segment 1 of the double stranded RNA genome of bluetongue virus serotype 10 (BTV-10), encoding the largest viral core protein, VP1, has been determined. Linear sequence analysis of the predicted amino acid sequence of the 149-K Da protein, a putative component of the viral RNA-directed RNA polymerase, revealed extensive homology with the vaccinia virus 147K Da DNA-directed RNA polymerase subunit. Similar homologies were detected between the VP1 polypeptide and the beta chain subunit of Escherichia coli and common tobacco chloroplast RNA polymerases, yeast RNA polymerase II and III and fruit fly polymerase II.  相似文献   

10.
Two seronegative sheep were infected intravenously with 10(9) PFU each of bluetongue virus (BTV) serotype 10 and BTV serotype 17. One animal experienced a mild bluetongue-like disease, and both experienced a short-duration viremia and developed neutralizing immune responses to both virus serotypes. Progeny virus was isolated from venous blood from each animal by using conditions in which reassortment could not have occurred during isolation. Electropherotypes were determined for the progeny viruses from the infected sheep, yielding strikingly similar results for the two animals. In both sheep, serotype 10 dominated among the progeny, accounting for 92% of the progeny. Serotype 17 was rarely isolated and accounted for 3% of the progeny analyzed. The remaining 5% of the progeny clones were reassortant and derived genome segments from both serotypes 10 and 17. Analysis of the parental origin of genome segments in the small number of reassortant progeny analyzed suggested that selection of specific genome segments may have occurred in the infected sheep. These data indicate that reassortment of genome segments occurs, at low frequency, in sheep mixedly infected with BTV.  相似文献   

11.
The second complete genome of bluetongue virus serotype 9 (BTV-9) is presented in this report. The sequence analysis points to continued circulation in India of a mixed topotype virus apparently belonging to the BTV-9 serotype, and it raises questions about approaches for serotyping bluetongue viruses.  相似文献   

12.
All 10 genome segments (Seg-1 to 10-a total of 19,188 bp) were sequenced from a strain of bluetongue virus serotype 3 (BTV-3) from India (strain IND2003/08). Sequence comparisons showed that nine of the genome segments from this virus group with other eastern topotype strains. Genome Seg-2 and Seg-6 group with eastern BTV-3 strains from Japan. However, Seg-5 (the NS1 gene) from IND2003/08 belongs to a western lineage, demonstrating that IND2003/08 is a reassortant between eastern and western topotype bluetongue viruses. This confirms that western BTV strains have been imported and are circulating within the subcontinent.  相似文献   

13.
14.
In this article, we document the first complete genome sequence of an isolate of bluetongue virus serotype 16 (BTV16) from a goat in India. The virus was isolated from an in-contact goat from an animal farm in Chennai where clinical disease occurs in sheep. The total size of the genome is 19,185 bp. The information provided for full-length sequences of all 10 segments will help in understanding the geographical origin and transmission of the Indian isolate of BTV16 as well as its comparison with global isolates of BTV16 of sheep, cattle, and other host species origins.  相似文献   

15.
The full genome sequence (19,177 bp) of an Indian strain (IND1988/02) of bluetongue virus (BTV) serotype 23 was determined. This virus was isolated from a sheep that had been killed during a severe bluetongue outbreak that occurred in Rahuri, Maharashtra State, western India, in 1988. Phylogenetic analyses of these data demonstrate that most of the genome segments from IND1988/02 belong to the major "eastern" BTV topotype. However, genome segment 5 belongs to the major "western" BTV topotype, demonstrating that IND1988/02 is a reassortant. This may help to explain the increased virulence that was seen during this outbreak in 1988. Genome segment 5 of IND1988/02 shows >99% sequence identity with some other BTV isolates from India (e.g., BTV-3 IND2003/08), providing further evidence of the existence and circulation of reassortant strains on the subcontinent.  相似文献   

16.
A M Wade-Evans 《Gene》1992,118(2):295-296
Bluetongue virus has a ten-segment double-stranded RNA genome, of which segment 8 encodes a nonstructural protein NS2. This protein is the only bluetongue viral protein to be phosphorylated and also has the ability to bind single-stranded RNA. At present, the function of NS2 is unknown and in order to analyse its characteristics in more detail, it was first necessary to obtain a full-length cDNA clone of the genome segment.  相似文献   

17.
Bluetongue virus is the type species of the genus Orbivirus in the family Reoviridae. We report the first complete genome sequence of an isolate (IND2004/01) of bluetongue virus serotype 10 (BTV-10) from Andhra Pradesh, India. This isolate, which is stored in the Orbivirus Reference Collection (ORC) at IAH Pirbright, shows >99% nucleotide identity in all 10 genome segments with a vaccine strain of BTV-10 from the United States.  相似文献   

18.
Rice dwarf virus (RDV) is a double-shelled spherical plant virus consisting of 46,000 Mr capsid and 114,000 Mr core proteins and minor structural proteins, and containing 12 genome segments of double-stranded RNA. The virus has been crystallized in the cubic space group I23 with a = 789 A. There are two particles per unit cell, each positioned on a point of 23 symmetry. Packing considerations showed that the diameter of the virus particle is 693 A. The crystals diffract to at least 6.5 A resolution.  相似文献   

19.
The entire genome of the reference strain of bluetongue virus (BTV) serotype 16 (strain RSArrrr/16) was sequenced (a total of 23,518 base pairs). The virus was obtained from the Orbivirus Reference Collection (ORC) at IAH, Pirbright, United Kingdom. The virus strain, which was previously provided by the Onderstepoort Veterinary Research Institute in South Africa, was originally isolated from the Indian subcontinent (Hazara, West Pakistan) in 1960. Previous phylogenetic comparisons show that BTV RNA sequences cluster according to the geographic origins of the virus isolate/lineage, identifying distinct BTV topotypes. Sequence comparisons of segments Seg-1 to Seg-10 show that RSArrrr/16 belongs to the major eastern topotype of BTV (BTV-16e) and can be regarded as a reference strain of BTV-16e for phylogenetic and molecular epidemiology studies. All 10 genome segments of RSArrrr/16 group closely with the vaccine strain of BTV-16 (RSAvvvv/16) that was derived from it, as well as those recently published for a Chinese isolate of BTV-16 (>99% nucleotide identity), suggesting a very recent common ancestry for all three viruses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号