首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: The antibacterial activity against Staphylococcus aureus of honey and propolis produced by Apis mellifera and Tetragonisca angustula was evaluated. Secondary aims included the study of the chemical composition of propolis and honey samples and its relationship with antibacterial activity against S. aureus. METHODS AND RESULTS: The antibacterial activity of honey and propolis was determined by the method of macrodilution. The minimum inhibitory concentration (MICs) of A. mellifera honey ranged from 126.23 to 185.70 mg ml(-1) and of T. angustula from 142.87 to 214.33 mg ml(-1). For propolis, the MIC ranged from 0.36 to 3.65 mg ml(-1) (A. mellifera) and from 0.44 to 2.01 mg ml(-1) (T. angustula). Honey and propolis were evaluated by high-performance liquid chromatography. Some typical compounds of Brazilian propolis were also identified in honey samples. Principal component analysis revealed that the chemical composition of honey and propolis samples was distinct based on the geographical location of the samples. CONCLUSIONS: Propolis samples had higher antibacterial activity against S. aureus when compared with honey. However, both propolis and honey samples had antibacterial against S. aureus. SIGNIFICANCE AND IMPACT OF THE STUDY: These antimicrobial properties would warrant further studies on the clinical applications of propolis and honey against S. aureus.  相似文献   

2.
Design and synthesis of a few novel methylamino piperidinyl substituted oxazolidinones are reported. Their antibacterial activities have been evaluated in a MIC assay against broader panel of both susceptible and resistant Gram-positive strains. (S)-N-{3-[3-Fluoro-4-(methyl-{1-[3-(5-nitrofuran-2-yl)-acryloyl]-piperidin-4-yl}-amino)-phenyl]-2-oxo-oxazolidin-5-ylmethyl}-acetamide 4i has shown comparable antibacterial activity to linezolid and eperezolid in the MIC assay, additionally compound 4i showed good antibacterial activity with an in vitro MIC value of 2-4 microg/mL against linezolid resistant Staphylococcus aureus (linezolid 16 microg/mL).  相似文献   

3.
Thirty-one 3-aryl-4-alkylaminofuran-2(5H)-ones were designed, prepared and tested for their antibacterial activity. Some of them showed significant antibacterial activity against Gram-positive organisms, especially against Staphylococcus aureus ATCC 25923, but all were inactive against Gram-negative organisms. Out of these compounds, 3-(4-bromophenyl)-4-(2-(4-nitrophenyl)hydrazinyl)furan-2(5H)-one (4a11) showed the most potent antibacterial activity against S. aureus ATCC 25923 with MIC(50) of 0.42 μg/mL. The enzyme assay revealed that the possible antibacterial mechanism of the synthetic compounds might be due to their inhibitory activity against tyrosyl-tRNA synthetase. Molecular dockings of 4a11 into S. aureus tyrosyl-tRNA synthetase active site were also performed. This inhibitor snugly fitting the active site might well explain its excellent inhibitory activity. Meanwhile, this modeling disclosed that a more suitable optimization strategy might be to modify the benzene ring at 3-position of furanone with hydrophilic groups.  相似文献   

4.
The purpose of the present study was to investigate the antibacterial activity of seven ethanolic extracts and three aqueous extracts from various parts (leaves, stems and flowers) of A. aroma against 163 strains of antibiotic multi-resistant bacteria. The disc diffusion assay was performed to evaluate antibacterial activity of the A. aroma crude extracts, against several Gram-positive bacteria (E. faecalis, S. aureus, coagulase-negative stahylococci, S. pyogenes, S. agalactiae, S. aureus ATCC 29213, E. faecalis ATCC 29212) and Gram-negative bacteria (E. coli., K. pneumoniae, P. mirabilis, E. cloacae, S. marcescens, M morganii, A. baumannii, P. aeruginosa, S. maltophilia, E. coli ATCC 35218, P. aeruginosa ATCC 27853, E. coli ATCC 25922). All ethanolic extracts showed activity against gram-positive bacteria. Among all obtained extracts, only leaf and flower fluid extracts showed activity against Gram-negative bacteria. Based on this bioassay, leaf fluid extracts tended to be the most potent, followed by flower fluid extracts. Minimal inhibitory concentration (MIC) values of extracts and antibiotics were comparatively determined by agar and broth dilution methods. Both extracts were active against S. aureus, coagulase-negative stahylococci, E. faecalis and E. faecium and all tested Gram-negative bacteria with MIC values from 0.067 to 0.308 mg/ml. In this study the minimal bactericidal concentration (MBC) values were identical or twice as high than the corresponding MIC for leaf extracts and four or eight times higher than MIC values for flower extracts. This may indicate a bactericidal effect. Stored extracts have similar antibacterial activity as recently obtained extracts. The A. aroma extracts of leaves and flowers may be useful as antibacterial agents against Gram- negative and Gram-positive antibiotic multi-resistant microorganisms.  相似文献   

5.
Series of flavones and methyl-4H-1-benzopyran-4-ones carrying mono or diamidinobenzimidazoles at different positions were synthesized and evaluated for antibacterial and antifungal activities against E. coli, S. aureus, MRSA (methicillin-resistant S. aureus), MRSE (methicillin-resistant S. epidermidis), S. faecalis and C. albicans, C. krusei. The results showed that while all diamidines are inactive, the compounds having monoamidinobenzimidazoles at the C-6 position of the 2-phenyl-4H-1-benzopyran-4-one have potent antibacterial activities, particularly, against Gram-positive bacteria. Compounds 23 and 22 exhibited the best inhibitory activity with MIC values of 1.56 microg/ml against S. aureus, MRSA, MRSE and 3.12 microg/ml against C. albicans, respectively.  相似文献   

6.
AIMS: This study compared in vitro activities of Actichelated propolis (a multicomposite material obtained with mechano-chemichal activation) and of a hydroalcoholic extract of propolis. METHODS AND RESULTS: Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC), determined by means of microdilution broth method, against five strains of Staphylococcus aureus, Streptococcus pyogenes, Haemophilus influenzae, Enterococcus spp., Escherichia coli, Proteus mirabilis and Pseudomonas aeruginosa, showed a greater potency of Actichelated propolis (MIC range: 0.016-4 mg flavonoids ml(-1)) in respect to the hydroalcoholic extract (MIC range: 0.08-21.4 mg flavonoids ml(-1)). Concentrations of Actichelated propolis active against adenovirus, influenza virus, parainfluenza virus and herpes virus type 1 were at least 10 times lower than those of the hydroalcoholic extract. Preincubation of Strep. pyogenes and H. influenzae with subinhibitory concentrations of Actichelated propolis (1/4 and 1/8 x MIC) significantly reduced the number of bacteria that adhered to human buccal cells. CONCLUSIONS: Actichelated propolis has proven to possess antibacterial and antiviral activity higher than a hydroalcoholic extract, being also able to interfere on bacterial adhesion to human oral cells. SIGNIFICANCE AND IMPACT OF THE STUDY: This new formulation of propolis showing better antimicrobial and physical characteristics could improve the application of propolis in respiratory tract infections.  相似文献   

7.
We report herein the design, synthesis, and structure-activity relationship studies of conformationally restricted mutilin 14-carbamates based on the structure of SB-222734. The antibacterial activities of these newly synthesized compounds were also evaluated and compared with linezolid and retapamulin. Results showed that most of the target compounds exhibit good potency in inhibiting the growth of Gram-positive bacteria including Methicillin-susceptible Staphylococcus aureus MSSA (MIC: 0.0625-2μg/mL), Methicillin-resistant S. aureus MRSA (MIC: 0.0625-2μg/mL), Methicillin-susceptible Staphylococcus epidermidis MSSE (MIC: 0.0625-2μg/mL), Methicillin-resistant S. epidermidis MRSE (MIC: 0.0625-2μg/mL), and Streptococcus pneumonia (MIC: 0.0625-4μg/mL). In particular, three remarkable compounds of this series (12l, 12m, and 21l) exhibited comparable in vitro antibacterial profiles to that of retapamulin.  相似文献   

8.
Kim YH  Chung HJ 《New biotechnology》2011,28(6):713-718
This study was performed to evaluate the effects of Korean propolis against foodborne pathogens and spores of Bacillus cereus and to investigate the antimicrobial activity against B. cereus structure by transmission electron microscopy (TEM). The antimicrobial effects of the Korean propolis were tested against foodborne pathogens including Gram-positive (B. cereus, Listeria monocytogenes and Staphylococcus aureus) and Gram-negative (Salmonella typhimurium, Escherichia coli and Pseudomonas fluorescence) bacteria by agar diffusion assay. Gram-positive bacteria were more sensitive than were Gram-negative bacteria. The vegetative cells of B. cereus were the most sensitive among the pathogens tested with minimum inhibitory concentration (MIC) of 0.036 mg/μl of propolis on agar medium. Based on MIC, sensitivity of vegetative cells of B. cereus and its spores was tested in a nutrient broth with different concentrations of propolis at 37°C. In liquid broth, treatment with 1.8 mg/ml propolis showed bactericidal effect against B. cereus. B. cereus vegetative cells exposed to 7.2mg/ml of propolis lost their viability within 20 min. Against spores of B. cereus, propolis inhibited germination of spores up to 30 hours, compared to control at higher concentration than vegetative cells yet acted sporostatically. The bactericidal and sporostatic action of propolis were dependent on the concentration of propolis used and treatment time. Electron microscopic investigation of propolis-treated B. cereus revealed substantial structural damage at the cellular level and irreversible cell membrane rupture at a number of locations with the apparent leakage of intracellular contents. The antimicrobial effect of propolis in this study suggests potential use of propolis in foods.  相似文献   

9.
The major l-amino acid oxidase (LAAO, EC 1.4.3.2) of king cobra (Ophiophagus hannah) venom is known to be an unusual form of snake venom LAAO as it possesses unique structural features and unusual thermal stability. The antibacterial effects of king cobra venom LAAO were tested against several strains of clinical isolates including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli using broth microdilution assay. For comparison, the antibacterial effects of several antibiotics (cefotaxime, kanamycin, tetracycline, vancomycin and penicillin) were also examined using the same conditions. King cobra venom LAAO was very effective in inhibiting the two Gram-positive bacteria (S. aureus and S. epidermidis) tested, with minimum inhibitory concentration (MIC) of 0.78μg/mL (0.006μM) and 1.56μg/mL (0.012μM) against S. aureus and S. epidermidis, respectively. The MICs are comparable to the MICs of the antibiotics tested, on a weight basis. However, the LAAO was only moderately effective against three Gram-negative bacteria tested (P. aeruginosa, K. pneumoniae and E. coli), with MIC ranges from 25 to 50μg/mL (0.2-0.4μM). Catalase at the concentration of 1mg/mL abolished the antibacterial effect of LAAO, indicating that the antibacterial effect of the enzyme involves generation of hydrogen peroxide. Binding studies indicated that king cobra venom LAAO binds strongly to the Gram-positive S. aureus and S. epidermidis, but less strongly to the Gram-negative E. coli and P. aeruginosa, indicating that specific binding to bacteria is important for the potent antibacterial activity of the enzyme.  相似文献   

10.
土茯苓提取物抗细菌活性的研究   总被引:4,自引:0,他引:4  
通过测定土茯苓提取物对革兰氏阳性菌和革兰氏阴性菌的抑菌活性,来更全面的评价和综合利用土茯苓资源,实验结果表明土苓955乙醇和乙酸乙酯的提取物抑菌范围广,服抑菌活性强,这两种提取物的MIC和MBC值显示了土茯苓作为抗细菌资源的可利用价值。  相似文献   

11.
Propolis is a plant-based sticky substance that is produced by honeybees. It has been used traditionally by ancient civilizations as a folk medicine, and is known to have many pharmaceutical properties including antioxidant, antibacterial, antifungal, anti-inflammatory, antiviral, and antitumour effects. Worldwide, researchers are still studying the complex composition of propolis to unveil its biological potential, and especially its antimicrobial activity against a variety of multidrug-resistant microorganisms. This review explores scientific reports published during the last decade on the characterization of different types of propolis, and evaluates their antimicrobial activities against Staphylococcus aureus and Candida albicans. Propolis can be divided into different types depending on their chemical composition and physical properties associated with geographic origin and plant sources. Flavonoids, phenols, diterpenes, and aliphatic compounds are the main chemicals that characterize the different types of propolis (Poplar, Brazilian, and Mediterranean), and are responsible for their antimicrobial activity. The extracts of most types of propolis showed greater antibacterial activity against Gram-positive bacteria: particularly on S. aureus, as well as on C. albicans, as compared to Gram-negative pathogens. Propolis acts either by directly interacting with the microbial cells or by stimulating the immune system of the host cells. Some studies have suggested that structural damage to the microorganisms is a possible mechanism by which propolis exhibits its antimicrobial activity. However, the mechanism of action of propolis is still unclear, due to the synergistic interaction of the ingredients of propolis, and this natural substance has multi-target activity in the cell. The broad-spectrum biological potentials of propolis present it as an ideal candidate for the development of new, potent, and cost-effective antimicrobial agents.  相似文献   

12.
The hexane, ethyl acetate, dichloromethane, methanol extracts and spent media (extracellular substances) were tested in vitro for their antibacterial activity for which one Gram-positive bacterium (Staphylococcus aureus) and four Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Klebsiella pneumoniae) were used as test organisms. The methanol extract showed more potent activity than other organic extracts, spent medium of the culture exhibited little activity against E. coli only. No inhibitory effect was found against Klebsiella pneumoniae.The broth microdilution assay gave minimum inhibitory concentrations (MIC) values ranging from 1 to 512 μg/ml. The MIC of methanol extract against S. aureus and E. coli were 128 μg/ml and 256 μg/ml, respectively.  相似文献   

13.
The free radical scavenging effect of two propolis samples collected from reclaimed land, Egypt as well as of vitamin C and caffeic acid in 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical system was determined. The antimicrobial (Staphylococcus aureus; Escherichia coli and Candida albicans) activity was also investigated. The results of the free radical scavenging effect of El-Saff and Ismailia propolis showed a concentration-dependent activity. The antioxidant activity was varied according to the examined material. It was obvious that caffeic acid and vitamin C showed the highest activity if compared with the propolis samples. El- Saff propolis had a higher antioxidant activity than Ismailia propolis, it showed a higher antibacterial activity against Staphylococcus aureus and a higher anti-fungal activity against Candida albicans. While the Ismailia propolis had a higher antibacterial activity against Escherichia coli, than El-Saff propolis. The chemical composition of propolis samples was investigated by GC/MS, where 75 compounds were identified, 22 being new for propolis. The Ismailia propolis was characterized by the presence of a highly significant amount of aromatic acid esters (47.3%) and triterpenoids (17.3%), while El-Saff propolis contained 3% and 1.9% respectively. The new esters belonged to 4-methoxyhydrocinnamic acid, hydroferulic acid and ferulic acid. El-Saff propolis had a very high significant amount (27%) of 2,6-bis-(pentanyloxy)-4-pentanylphenethanol, which is also a new compound for propolis.  相似文献   

14.
A series of novel aliphatic sulfonamide derivatives (1-7) were synthesized and characterized by elemental analyses, FT-IR, (1)H NMR, (13)C NMR and LC-MS techniques. All the synthesized compounds were evaluated in vitro as antimicrobial agents against representative strains of Gram-positive (Staphylococcus aureus ATCC 25953, Bacillus cereus ATCC 6633 and Listeria monocytogenes ATCC Li6 (isolate), Gram-negative bacteria (Escherichia coli ATCC 11230) and antifungal agent against Candida albicans (clinical isolate) by both disc diffusion and minimal inhibition concentration (MIC) methods. All these bacteria and fungus studied were screened against some antibiotics to compare with our chemicals' zone diameters. Our aliphatic sulfonamides have highest powerful antibacterial activity for Gram-negative bacteria than Gram-positive bacteria and antibacterial activity decreases as the length of the carbon chain increases.  相似文献   

15.
The antimicrobial activity of samples of Northern Argentine propolis (Tucumán, Santiago del Estero and Chaco) against phytopathogenic bacteria was assessed and the most active samples were identified. Minimal inhibitory concentration (MIC) values were determined by agar macrodilution and broth microdilution assays. Strong antibacterial activity was detected against Erwinia carotovora spp carotovora CECT 225, Pseudomonas syringae pvar tomato CECT 126, Pseudomonas corrugata CECT 124 and Xanthomonas campestris pvar vesicatoria CECT 792. The most active propolis extract (Tucumán, T1) was selected to bioguide isolation and identified for antimicrobial compound (2',4'-dihydroxychalcone). The antibacterial chalcone was more active than the propolis ethanolic extract (MIC values of 0.5-1 μg ml(-1) and 9.5-15 μg ml(-1), respectively). Phytotoxicity assays were realized and the propolis extracts did not retard germination of lettuce seeds or the growth of onion roots. Propolis solutions applied as sprays on tomato fruits infected with P. syringae reduced the severity of disease. Application of the Argentine propolis extracts diluted with water may be promising for the management of post harvest diseases of fruits.  相似文献   

16.
Ten xanthones with one or two isoprenoid groups and a prenylated benzophenone isolated from roots of Cudrania cochinchinensis (Moraceae) were tested for their antimicrobial activities against Bacillus subtilis and methicillin-resistant Staphylococcus aureus (MRSA). Among these compounds, gerontoxanthone H exhibited considerable antibacterial activity against B. subtilis (MIC = 1.56 microg/ml). Four xanthones, gerontoxanthone I, toxyloxanthone C, cudraxanthone S, and 1,3,7-trihydroxy-2-prenylxanthone, showed weak antibacterial activity against the bacterium (MICs = 3.13-6.25 microg/ml). These compounds also exhibited similar MIC values against methicillin-sensitive S. aureus, MRSAs, and Micrococcus luteus.  相似文献   

17.
The aim of the present study was to screen for antimicrobial activity in endophytic fungi isolated from surface sterilized leaves and branches of five Garcinia plants, G. atroviridis, G. dulcis, G. mangostana, G. nigrolineata and G. scortechinii, found in southern Thailand. Fermentation broths from 377 isolated fungi were tested for antimicrobial activity by the agar diffusion method. Minimum inhibitory concentrations (MICs) were obtained for crude ethyl acetate extracts. Seventy isolates (18.6%) displayed antimicrobial activity against at least one pathogenic microorganism, such as Staphylococcus aureus, a clinical isolate of methicillin-resistant S. aureus, Candida albicans and Cryptococcus neoformans. The results revealed that 6-10%, 1-2% and 18% of the crude ethyl acetate extracts inhibited both strains of S. aureus (MIC 32-512 microg mL(-1)), Ca. albicans and Cr. neoformans (MIC 64-200 microg mL(-1)), and Microsporum gypseum (MIC 2-64 microg mL(-1)), respectively. Isolates D15 and M76 displayed the strongest antibacterial activity against both strains of S. aureus. Isolates M76 and N24 displayed strong antifungal activity against M. gypseum. Fungal molecular identification based on internal transcribed spacer rRNA gene sequence analysis demonstrated that isolates D15 (DQ480353), M76 (DQ480360) and N24 (DQ480361) represented Phomopsis sp., Botryosphaeria sp. and an unidentified fungal endophyte, respectively. These results indicate that some endophytic fungi from Garcinia plants are a potential source of antimicrobial agents.  相似文献   

18.
A series of 1beta-methylcarbapenems bearing an (imidazo[5,1-b]thiazolium-6-yl)methyl moiety, a 5,5-fused heterobicycle, at the C-2 position was synthesized and evaluated for in vitro antibacterial activities. CP0569 (1r) and its analogues showed potent antibacterial activities against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), and Gram-negative bacteria, including Pseudomonas aeruginosa. Moreover, CP0569 (1r) exhibited stronger antibacterial activity against MRSA and higher resistance to renal dehydropeptidase-1 (DHP-1) than any currently marketed carbapenems, that is, imipenem (IPM), panipenem (PAPM), and meropenem (MEPM).  相似文献   

19.
Baccharis dracunculifolia D.C. (Asteraceae) is the most important plant source of the Brazilian green propolis. Since propolis is known for its antimicrobial activity, the aim of this work was to evaluate the antimicrobial activities of B. dracunculifolia and some of its isolated compounds. The results showed that the leaves extract of B. dracunculifolia (BdE) presents antifungal and antibacterial activities, especially against Candida krusei and Cryptococcus neoformans, for which the BdE showed IC50 values of 65 microg mL(-1) and 40 microg mL(-1), respectively. In comparison to the BdE, it was observed that the green propolis extract (GPE) showed better antimicrobial activity, displaying an IC50 value of 9 microg mL(-1) against C. krusei. Also, a phytochemical study of the BdE was carried out, affording the isolation of ursolic acid (1), 2a-hydroxy-ursolic acid (2), isosakuranetin (3), aromadendrin-4'-methylether (4), baccharin (5), viscidone (6), hautriwaic acid lactone (7), and the clerodane diterpene 8. This is the first time that the presence of compounds 1, 2, and 8 in B. dracunculifolia has been reported. Among the isolated compounds, 1 and 2 showed antibacterial activity against methicillin-resistant Staphylococcus aureus, displaying IC50 values of 5 microg mL(-1) and 3 microg mL(-1), respectively. 3 was active against C. neoformans, showing an IC50 value of 15 microg mL(-1) and a MIC value of 40 microg mL(-1), while compounds 4-8 were inactive against all tested microorganisms. The results showed that the BdE, similar to the GPE, displays antimicrobial activity, which may be related to the effect of several compounds present in the crude extract.  相似文献   

20.
The antibacterial activities of propolis samples have been examined in vitro, according to the principles accepted for the determination of a similar activity of antibiotics with the use of solid and liquid media. It has been found that propolis extracts showed antibacterial activity through a range of commonly encountered gram positive cocci (S. aureus, beta hem. Streptococus), but had weak activity against gram negative bacteria (E. coli, P. aeruginosa). GC/MS analysis showed that propolis samples contain a variety of chemical compounds including aromatic compounds, fatty acid esters and sesquiterpenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号