首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian lipoxygenases constitute a heterogeneous family of lipid-peroxidizing enzymes, and the various isoforms are categorized with respect to their positional specificity of arachidonic acid oxygenation into 5-, 8-, 12-, and 15-lipoxygenases. Structural modeling suggested that the substrate binding pocket of the human 5-lipoxygenase is 20% bigger than that of the reticulocyte-type 15-lipoxygenase; thus, reduction of the active-site volume was suggested to convert a 5-lipoxygenase to a 15-lipoxygenating enzyme species. To test this "space-based" hypothesis of the positional specificity, the volume of the 5-lipoxygenase substrate binding pocket was reduced by introducing space-filling amino acids at critical positions, which have previously been identified as sequence determinants for the positional specificity of other lipoxygenase isoforms. We found that single point mutants of the recombinant human 5-lipoxygenase exhibited a similar specificity as the wild-type enzyme but double, triple, and quadruple mutations led to a gradual alteration of the positional specificity from 5S- via 8S- toward 15S-lipoxygenation. The quadruple mutant F359W/A424I/N425M/A603I exhibited a major 15S-lipoxygenase activity (85-95%), with (8S,5Z,9E,11Z,14Z)-8-hydroperoxyeicosa-5,9 ,11, 14-tetraenoic acid being a minor side product. These data indicate the principle possibility of interconverting 5- and 15-lipoxygenases by site-directed mutagenesis and appear to support the space-based hypothesis of positional specificity.  相似文献   

2.
The positional specificity of arachidonic acid oxygenation is currently the decisive parameter for classification of mammalian lipoxygenases but, unfortunately, the structural reasons for lipoxygenase specificity are not well understood. Although there are no direct structural data on lipoxygenase/substrate interaction, experiments with modified fatty acid substrates and mutagenesis studies suggest that for 12- and 15-lipoxygenases, arachidonic acid slides into the substrate-binding pocket with its methyl end ahead. For arachidonate 5- and/or 8-lipoxygenation two alternative models for the enzyme/substrate interaction have been developed: 1) The orientation-determined model and 2) the space-determined model. This review explores the experimental data available on the mechanistic reasons for lipoxygenase specificity and concludes that each of the above-mentioned hypotheses may be valid for arachidonate 5-lipoxygenation under certain circumstances.  相似文献   

3.
Previous mutagenesis studies along with molecular modeling using the x-ray coordinates of the rabbit 15-lipoxygenase have led to the suggestion that the size of the substrate binding pocket may play an essential role in determining the oxygenation specificity of 5-, 12-, and 15-lipoxygenases. Based on the x-ray crystal structure of rabbit 15-lipoxygenase, Ile(593) appeared to be important in defining size and shape of the substrate-binding site in 15-lipoxygenases. We found that substitution of Ile(593) with alanine shifted the positional specificity of this enzyme toward 12-lipoxygenation. To compare the importance of position 593 with previously defined determinants for the oxygenation specificity, we introduced small (alanine-scan) or large amino acids (phenylalanine-scan) at critical positions surrounding the putative fatty acid-binding site, so that the volume of the pocket was either increased or decreased. Enlargement or alteration in packing density within the substrate binding pocket in the rabbit 15-lipoxygenase increased the share of 12-lipoxygenase products, whereas a smaller active site favored 15-lipoxygenation. Simultaneous substitution of both large and small residues in the context of either a 15- or 12-lipoxygenase indicated that there is a functional interplay of the sequence determinants for lipoxygenation specificity. If the 15-lipoxygenase active site is enlarged excessively, however, no lipoxygenation was observed anymore. Together these results indicate the importance of the overall size and shape of the arachidonic acid binding pocket in defining the specificity of lipoxygenase reaction.  相似文献   

4.
The unstable epoxide leukotriene (LT) A(4) is a key intermediate in leukotriene biosynthesis, but may also be transformed to lipoxins via a second lipoxygenation at C-15. The capacity of various 12- and 15-lipoxygenases, including porcine leukocyte 12-lipoxygenase, a human recombinant platelet 12-lipoxygenase preparation, human platelet cytosolic fraction, rabbit reticulocyte 15-lipoxygenase, soybean 15-lipoxygenase and human eosinophil cytosolic fraction, to catalyze conversion of LTA(4) to lipoxins was investigated and standardized against the ability of the enzymes to transform arachidonic acid to 12- or 15-hydroxyeicosatetraenoic acids (HETE), respectively. The highest ratio between the capacity to produce lipoxins and HETE (LX/HETE ratio) was obtained for porcine leukocyte 12-lipoxygenase with an LX/HETE ratio of 0.3. In addition, the human platelet 100000xg supernatant 12-lipoxygenase preparation and the human platelet recombinant 12-lipoxygenase and human eosinophil 100000xg supernatant 15-lipoxygenase preparation possessed considerable capacity to produce lipoxins (ratio 0.07, 0.01 and 0.02 respectively). In contrast, lipoxin formation by the rabbit reticulocyte and soybean 15-lipoxygenases was much less pronounced (LX/HETE ratios <0.002). Kinetic studies of the human lipoxygenases revealed lower apparent K(m) for LTA(4) (9-27 microM), as compared to the other lipoxygenases tested (58-83 microM). The recombinant human 12-lipoxygenase demonstrated the lowest K(m) value for LTA(4) (9 microM) whereas the porcine leukocyte 12-lipoxygenase had the highest V(max). The profile of products was identical, irrespective of the lipoxygenase used. Thus, LXA(4) and 6S-LXA(4) together with the all-trans LXA(4) and LXB(4) isomers were isolated. Production of LXB(4) was not observed with any of the lipoxygenases. The lipoxygenase inhibitor cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate was considerably more efficient to inhibit conversion of LTA(4) to lipoxins, as compared to the inhibitory effect on 12-HETE formation from arachidonic acid (IC(50) 1 and 50 microM, respectively) in the human platelet cytosolic fraction.  相似文献   

5.
7,10,13-Hexadecatrienoic acid (16:3) is abundant in many plant species. However, its metabolism through the lipoxygenase pathway is not sufficiently understood. The goal of present work was to investigate the oxygenation of 16:3 by different plant lipoxygenases and to study the occurrence of oxygenated derivatives of 16:3 in plant seedlings. The recombinant maize 9-lipoxygenase specifically converted 16:3 into (7S)-hydroperoxide. Identification of this novel oxylipin was substantiated by data of GC-MS, LC-MS/MS, 1H-NMR, and 2D-COSY as well as by deuterium labeling from [2H6]16:3. Soybean lipoxygenase 1 produced 91% (11S)-hydroperoxide and 6% racemic 14-hydroperoxide. Recombinant soybean lipoxygenase 2 (specifically oxidizing linoleate into 13-hydroperoxide) lacked any specificity towards 16:3. Lipoxygenase 2 produced 7-, 8-, 10-, 11-, 13-, and 14-hydroperoxides of 16:3, as well as a significant amount of bis-allylic 9-hydroperoxide. Seedlings of several examined plant species possessed free hydroxy derivatives of 16:3 (HHTs), as well as their ethyl esters. Interestingly, HHTs occur not only in “16:3 plants”, but also in typical “18:3 plants” like pea and soybean seedlings.  相似文献   

6.
In order to analyse the amino acid determinants which alter the positional specificity of plant lipoxygenases (LOXs), multiple LOX sequence alignments and structural modelling of the enzyme-substrate interactions were carried out. These alignments suggested three amino acid residues as the primary determinants of positional specificity. Here we show the generation of two plant LOXs with new positional specificities, a gamma-linoleneate 6-LOX and an arachidonate 11-LOX, by altering only one of these determinants within the active site of two plant LOXs. In the past, site-directed-mutagenesis studies have mainly been carried out with mammalian lipoxygenases (LOXs) [1]. In these experiments two regions have been identified in the primary structure containing sequence determinants for positional specificity. Amino acids aligning with the Sloane determinants [2] are highly conserved among plant LOXs. In contrast, there is amino acid heterogeneity among plant LOXs at the position that aligns with P353 of the rabbit reticulocyte 15-LOX (Borngr?ber determinants) [3].  相似文献   

7.
15-lipoxygenase-1: a prooxidant enzyme   总被引:2,自引:0,他引:2  
Schewe T 《Biological chemistry》2002,383(3-4):365-374
Human and rabbit reticulocyte 15-lipoxygenase (15-lipoxygenase-1) and the leukocyte-type 12-lipoxygenases (12/15-lipoxygenases) of pig, beef, mouse and rat constitute a particular subfamily of mammalian lipoxygenases (reticulocyte-type lipoxygenases) with unique properties and functions. They catalyze enzymatic lipid peroxidation in complex biological structures via direct dioxygenation of phospholipids and cholesterol esters of biomembranes and plasma lipoproteins. Moreover, they are a source of free radicals initiating non-enzymatic lipid peroxidation and other oxidative processes. Expression and activity of reticulocyte-type lipoxygenases are highly regulated. Moreover, the susceptibility of intracellular membranes toward these lipoxygenases is controlled and may be increased together with lipoxygenase activity under conditions of oxidative stress. Thus, oxidative stress may favor a concerted package of lipoxygenase-mediated enzymatic and non-enzymatic lipid peroxidation and co-oxidative processes. Reaction of reticulocyte-type lipoxygenases with low-density lipoprotein renders the latter atherogenic and appears to be involved in the formation of atherosclerotic lesions.  相似文献   

8.
Terp N  Göbel C  Brandt A  Feussner I 《Phytochemistry》2006,67(18):2030-2040
The peroxidation of polyunsaturated fatty acids is mostly catalyzed by members of the lipoxygenase enzyme family. Lipoxygenase products can be metabolized further in the oxylipin pathway and are known as signalling substances that play a role in plant development as well as in plant responses to wounding and pathogen attack. Apart from accumulating data in model plants like Arabidopsis, information on the relevance of lipid peroxide metabolism in the crop plant oilseed rape is scarce. Thus we aimed to analyze lipoxygenases and oxylipin patterns in seedlings of oilseed rape. RNA isolated from 3 day etiolated seedlings contains mRNAs for at least two different lipoxygenases. These have been cloned as cDNAs and named Bn-Lox-1fl and Bn-Lox-2fl. The protein encoded by Bn-Lox-2fl was identified as a 13-lipoxygenase by expression in Escherichia coli. The Bn-Lox-1fl yielded an inactive protein when expressed in E. coli. Based on Bn-Lox-1fl active site determinants and on sequence homology the Bn-Lox-1fl is most likely a 9-lipoxygenase. Both genes are expressed in light-grown and etiolated cotyledons as well as in leaves. Bn-Lox-2fl protein is more abundant in cotyledons of etiolated seedlings than in cotyledons of green seedlings. Both 13- and 9-lipoxygenase-derived hydroperoxides can be detected during germination. Etiolated seedlings contain more lipoxygenase-derived hydroperoxides in non esterified fatty acids than green seedlings. The 13-lipoxygenase derivatives are 6-8-fold more abundant than the 9-derivatives. Lipoxygenase-derived hydroperoxides in esterified lipids are almost not present during germination. These results suggest that 13-lipoxygenases acting on free fatty acids dominate during B. napus seed germination.  相似文献   

9.
Lang I  Feussner I 《Phytochemistry》2007,68(8):1120-1127
The dioxygenation of polyunsaturated fatty acids is mainly catalyzed by members of the lipoxygenase enzyme family in flowering plants and mosses. Lipoxygenase products can be metabolized further and are known as signalling substances that play a role in plant development as well as in plant responses to wounding and pathogen attack. Apart from accumulating data in mammals, flowering and non-flowering plants, information on the relevance of lipid peroxide metabolism in prokaryotic organisms is scarce. Thus we aimed to isolate and analyze lipoxygenases and oxylipin patterns from cyanobacterial origin. DNA isolated from Nostoc punctiforme strain PCC73102 yielded sequences for at least two different lipoxygenases. These have been cloned as cDNAs and named NpLOX1 and NpLOX2. Both proteins were identified as linoleate 13-lipoxygenases by expression in E. coli. NpLOX1 was characterized in more detail: It showed a broad pH optimum ranging from pH 4.5 to pH 8.5 with a maximum at pH 8.0 and alpha-linolenic acid was the preferred substrate. Bacterial extracts contain more 13-lipoxygenase-derived hydroperoxides in wounded than in non-wounded cells with a 30-fold excess of non-esterified over esterified oxylipins. 9-Lipoxygenase-derived derivatives were not detectable. 13-Lipoxygenase-derived hydroperoxides in esterified lipids were present at almost equal amounts compared to non-esterified hydroperoxides in non-wounded cells. These results suggest that 13-lipoxygenases acting on free fatty acids dominate in N. punctiforme strain PCC73102 upon wounding.  相似文献   

10.
Lipoxygenases are a class of non-heme iron dioxygenases which catalyze the hydroperoxidation of fatty acids for the biosynthesis of leukotrienes and lipoxins. The structure of the 839-residue soybean lipoxygenase-1 was used as a template to model human 5-, 12-, and 15-lipoxygenases. A distance-based algorithm for placing side chains in a low homology environment (only the four iron ligands were fixed during side chain placement) was devised. Twenty-six of the 56 conserved lipoxygenase residues were grouped in four distinct regions of the enzyme. These regions were analyzed to discern whether the side chain interactions could be duplicated in the models or whether alternate conformers should be considered. The effects of site directed mutagenesis variants were rationalized using the models of the human lipoxygenases. In particular, variants which shifted positional specificity between 12- and 15-lipoxygenase activity were analyzed. Analysis of active site residues produced a model which accounts for observed lipoxygenase positional specificity and stereospecificity.  相似文献   

11.
Plant lipoxygenases (LOXs) are a class of widespread dioxygenases catalysing the hydroperoxidation of polyunsaturated fatty acids. Although multiple isoforms of LOX have been detected in a wide range of plants, their physiological roles remain to be clarified. With the aim to clarify the occurrence of LOXs in olives and their contribution to the elaboration of the olive oil aroma, we cloned and characterized the first cDNA of the LOX isoform which is expressed during olive development. The open reading frame encodes a polypeptide of 864 amino acids. This olive LOX is a type-1 LOX which shows a high degree of identity at the peptide level towards hazelnut (77.3%), tobacco (76.3%) and almond (75.5%) LOXs. The recombinant enzyme shows a dual positional specificity, as it forms both 9- and 13-hydroperoxide of linoleic acid in a 2:1 ratio, and would be defined as 9/13-LOX. Although a LOX activity was detected throughout the olive development, the 9/13-LOX is mainly expressed at late developmental stages. Our data suggest that there are at least two Lox genes expressed in black olives, and that the 9/13-LOX is associated with the ripening and senescence processes. However, due to its dual positional specificity and its expression pattern, its contribution to the elaboration of the olive oil aroma might be considered.  相似文献   

12.
13.
Wound-responsive lipoxygenase full-length cDNA from Zea mays was used to heterologously express the lipoxygenase enzyme and positional specificity of the lipoxygenase reaction was determined. The purified lipoxygenase catalyzed the conversion of α-linolenic acid into both 13-hydroperoxylinolenic acid and 9-hydroperoxylinolenic acid with a ratio of 6 to 4. The phylogenetic tree analysis indicated that the lipoxygenase is a type 1-lipoxygenase and belongs to 9-lipoxygenase subfamily with exceptional positional specificity. Dual positional specificity of the wound-responsive lipoxygenase indicates the versatile utilization of a singular lipoxygenase species as both 13-lipoxygenase and 9-lipoxygenase.  相似文献   

14.
5- and 12-lipoxygenases isolated from porcine leukocytes were investigated by electron paramagnetic resonance at X-band and atomic absorption spectroscopy. For comparison potato 5-lipoxygenase was studied under identical experimental conditions. All three lipoxygenases contained between 0.7 and 0.9 Fe atoms/enzyme molecule. As isolated, both mammalian enzymes exhibited a characteristic EPR signal at low magnetic field with a maximum at g = 5.20 indicative of a high-spin ferric iron center. The signal was not affected by the oxidants 12-hydroperoxyeicosatetraenoic acid or arachidonic acid, nor was it affected by the reductant nordihydroguaiaretic acid. In the case of the potato enzyme an intense EPR signal with resonances at g = 7.50, 6.39 and 5.84 was only observed after addition of an oxidant, such as 9-hydroperoxyoctadecadienoic acid.  相似文献   

15.
Human 5-lipoxygenase contains a non-heme iron essential for its activity. In order to determine which amino acid residues are involved in the iron-binding and the lipoxygenase activity, nine amino acid residues in highly homologous regions among the lipoxygenases were individually replaced by means of site-directed mutagenesis. Mutant 5-lipoxygenases in which His-367 or His-550 was replaced by either Asn or Ala, His-372 by either Asn or Ser, or Glu-376 by Gln were completely devoid of the activity. Though mutants containing an alanine residue instead of His-390 or His-399 lacked the activity, the corresponding asparagine substituted mutants exhibited. The other mutants retained the enzyme activity. These results strongly suggest that His-367, His-372, His-550 and Glu-376 are crucial for 5-lipoxygenase activity and coordinate to the essential iron.  相似文献   

16.
17.
Lipoxygenases have been classified according to their specificity of fatty acid oxygenation and for several plant enzymes pH-dependent alterations in the product patterns have been reported. Assuming that the biological role of mammalian lipoxygenases is based on the formation of specific reaction products, pH-dependent alterations would impact enzymes' functionality. In this study we systematically investigated the pH-dependence of vertebrate lipoxygenases and observed a remarkable stability of the product pattern in the near physiological range for the wild-type enzyme species. Site-directed mutagenesis of selected amino acids and alterations in the substrate concentrations induced a more pronounced pH-dependence of the reaction specificity. For instance, for the V603H mutant of the human 15-lipoxygenase-2 8-lipoxygenation was dominant at acidic pH (65%) whereas 15-H(p)ETE was the major oxygenation product at pH 8. Similarly, the product pattern of the wild-type mouse 8-lipoxygenase was hardly altered in the near physiological pH range but H604F exchange induced strong pH-dependent alterations in the positional specificity. Taken together, our data suggest that the reaction specificities of wild-type vertebrate lipoxygenase isoforms are largely resistant towards pH alterations. However, we found that changes in the assay conditions (low substrate concentration) and introduction/removal of a critical histidine at the active site impact the pH-dependence of reaction specificity for some lipoxygenase isoforms.  相似文献   

18.
Various purified lipoxygenases were incubated with [14C]arachidonylethanolamide which is an endogenous ligand for cannabinoid receptors. When radioactive products were analyzed by thin-layer chromatography, porcine leukocyte 12-lipoxygenase and rabbit reticulocyte and soybean 15-lipoxygenases produced polar compounds at about the same reaction rates as that of oxygenation of free arachidonic acid. In contrast, the reaction of human platelet 12-lipoxygenase proceeded at a much lower rate, and porcine leukocyte 5-lipoxygenase was totally inactive. The result indicated that the lipoxygenases, which had been shown previously to be capable of oxygenating esterified polyunsaturated fatty acids, were also active with the arachidonylethanolamide. High-performance liquid chromatography, ultraviolet and mass spectrometry and nuclear magnetic resonance spectroscopy identified the major product by leukocyte 12-lipoxygenase as 12-hydroperoxy-5,8,10,14-eicosatetraenoylethanolamide and that by 15-lipoxygenases as 15-hydroperoxy-5,8,11,13-eicosatetraenoylethanolamide. The 15-hydroxy derivative inhibited electrically-evoked contraction of mouse vas deferens with an IC50 of 0.63 μM as well as arachidonylethanolamide (0.17 μM), but the 12-hydroxy derivative was much less effective.  相似文献   

19.
Leukotrienes are inflammatory mediators involved in several diseases. The enzyme 5-lipoxygenase initiates the synthesis of leukotrienes from arachidonic acid. Little structural information is available regarding 5-lipoxygenase. In this study, we found that the primary structure of the catalytic domain of human 5-lipoxygenase is similar to that of the rabbit 15-lipoxygenase. This similarity allowed the development of a theoretical model of the tertiary structure of the 5-lipoxygenase catalytic domain, using the resolved structure of rabbit 15-lipoxygenase as a template. This model was used in conjunction with primary and secondary structural information to investigate putative nucleotide binding sites, a MAPKAP kinase 2 phosphorylation site, and a Src homology 3 binding site on the 5-lipoxygenase protein, further. Results indicate that the putative nucleotide binding sites are spatially distinct, with one on the -barrel domain and the other(s) on the catalytic domain. The MAPKAP kinase 2 phosphorylation site involves a four amino acid insertion in mammalian 5-lipoxygenases that significantly alters molecular structure. This target for post-translational modification is both common and unique to 5-lipoxygenases. The Src homology 3 binding site, found in all lipoxygenases, appears to lack the characteristic left-handed type II helix structure of known Src homology 3 binding sites. These results, which highlight the unique nature of the MAPKAP kinase site, underscore the utility of structural information in the analysis of protein function. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00894-002-0076-y.Electronic Supplementary Material available.  相似文献   

20.
Plant alpha dioxygenases (PADOX) convert fatty acids to 2-hydroperoxy products that are important in plant signaling pathways. The PADOX amino-terminal domain is distinct from that in other myeloperoxidase-family hemoproteins, and the positional specificity and prosthetic group of PADOX distinguish them from the non-heme iron plant lipoxygenases. The constraints of the PADOX active site on potential substrates are poorly understood and only limited structure-function and mechanistic information is available for these enzymes. We developed several bacterial and insect cell systems for expression of recombinant Arabidopsis thaliana PADOX1 and evaluated the enzyme's substrate and inhibitor profiles and explored the functional role of the amino-terminal domain. Substrate specificity studies gave the following relative oxygenase activity values: linolenate, 1.00; linoleate, 0.95; oleate, 0.84; palmitoleate, 0.69; myristate, 0.23; palmitate, 0.17; and gamma-linolenate, 0.16. Methyl esters of myristate, linoleate and linolenate were not oxygenated. 3-Thiamyristate was the only oxygenase substrate that produced pronounced enzyme self-inactivation during catalysis. 3,4-Dehydromyristate inactivated the oxygenase without appreciable oxygen consumption. Several compounds inhibited oxygenase activity, including catechol (K(i) approximately 90 microM), divalent zinc ion (K(i) approximately 50 microM), N,N,N',N'-tetramethyl-p-phenylenediamine (K(i) approximately 20 microM) and cyanide ion (K(i) approximately 5 microM). Zinc ion did not change the K(m) values for linoleate or oxygen, or the K(i) value for cyanide, indicating that zinc acts at a distinct site from the other compounds. Gel-filtration chromatography revealed considerable variation in oligomeric state of recombinant PADOX1 produced in the various expression systems, but oligomeric state was not correlated with activity. Deletion of the first eight or fourteen PADOX1 residues in a NuSA-PADOX1 fusion protein led to 13 and 83% decreases in activity, respectively, indicating the N-terminal region is important for normal catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号