首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rats were given soybean trypsin inhibitor or repeatedly injected with pancreozymin (daily 40 I.D.U./kg) for 7 days, and the insulin and glucagon contents of the pancreas were measured. The insulin and glucagon contents were markedly increased after these treatments and this effect was especially conspicuous after injections of large doses (daily 120 I.D.U.) of depot-type pancreozymin. Insulin content thus reached 1.9 times, and glucagon content 2.4 times as much in control values. This result is compatible with our previous histological finding that not only the exocrine pancreas but also islet cells undergo the trophic effect of endogenous and exogenous pancreozymin.  相似文献   

2.
Studies on the developing mammalian pancreas have suggested that insulin and glucagon co-exist in a transient cell population and that peptide YY (PYY) marks the earliest developing endocrine cells. We have investigated this in the embryonic avian pancreas, which is characterised by anatomical separation of insulin and glucagon islets. Moreover, we have compared the development of the endocrine cells to that of processing enzymes involved in pancreatic hormone biosynthesis. PYY-like immunoreactivity occurred in islet cells from the youngest stages examined: it increased in amount from approximately 5 days of incubation and was co-localised with glucagon and to a lesser extent with insulin. Insulin and glucagon cells were numerous: co-existence of the two peptides in the same cells was but rarely observed. From the youngest stages examined, prohormone convertase (PC) 1/3-like immunoreactivity was detected in insulin cells and PC2-, 7B2- and carboxypeptidase E-like immunoreactivity in both glucagon and insulin cells. We conclude that: (1) PYY-like immunoreactivity occurs in avian islet cells but generally in lesser amounts than in mammals at the earlier stages, (2) the paucity of cells co-expressing insulin and glucagon indicate that all avian insulin cells do not pass through a stage where they co-express glucagon and (3) the early expression of the enzymes responsible for the processing of prohormones suggests that this process is initiated soon after islet cells first differentiate.  相似文献   

3.
饥饿状态大鼠胰腺高血糖素和胰岛素变化的定量分析   总被引:3,自引:0,他引:3  
用免疫组织化学方法结合图象分析技术对饥饿状态大鼠胰岛A、B细胞中胰因糖素和胰岛素的免疫反应强度进行定量分析。结果表明:与正常对照相比,饥饿大鼠胰岛细胞中的Glu含量明显下降,B细胞中Ins含量明显升高。提示饥饿可导致Glu释放增加,Ins和减少。与饥饿5天大鼠线要比较,饥饿5天后静脉注射葡萄糖组90min后胰岛内Glu含量明显升高,Ins含量无显著变化。提示:静脉注射葡萄糖要快速作用下胰岛A细胞,  相似文献   

4.
The metabolism and action of insulin and glucagon were investigated in goats during mid lactating (50 days postpartum) and during the dry period. The animals were fed hay and concentrate during lactation (1:1) and only hay during dry period. Pulse doses of unlabelled insulin and glucagon were injected intravenously. The disappearance of insulin from the circulation was faster during lactation than during dry period; the metabolic clearance rate of insulin was significantly increased during lactation. In contrast, the kinetic parameters of glucagon disappearance were very similar during the two periods. Basal plasma hormones (i.e. before hormone injection) were higher during lactation than during dry period; the molar ratio insulin:glucagon was left unchanged. The increase in plasma insulin following glucagon-stimulated hyperglycaemia was similar during the two periods. The ability of insulin to elicit a decrease in blood glucose was markedly impaired during lactation when compared to dry period. In contrast the ability of glucagon to increase blood glucose was slightly improved during lactation. Those endocrine changes could be related to the effect of both lactation and diet.  相似文献   

5.
The role of Ca2+ in the secretion of insulin and glucagon was investigated by studying the effects of Ca2+ ionophores on hormone secretion from isolated perifused islets of Langerhans. Ionophore X537A (100 muM), which binds alkaline earth cations and also complexes some univalent cations, caused a rapid transient increase in insulin and glucagon secretion which was not dependent on the presence of Ca2+ in the perifusion medium. Ionophore A23187 (100 muM), which specifically binds bivalent cations at neutral pH values, similarly increased insulin secretion in complete and Ca2+-free medium, but only stimulated glucagon release in the presence of extracellular Ca2+. Since the stimulatory effects of both ionophores were associated with an increased Ca2+ flux in the islets, these experiments support the hypothesis that Ca2+ may trigger the release of insulin and suggest that it is also involved in the secretion of glucagon. The basal rate of both insulin and glucagon release was significantly increased when Ca2+ was omitted from the perifusion medium, but it is proposed that this finding may be due to adverse effects on cell-membrane function under these conditions.  相似文献   

6.
The effects of micelles of nonionic, zwitterionic, anionic and cationic surfactants and lipids on the conformation of glucagon and insulin have been investigated by circular dichroism and intrinsic protein fluorescence. The influence of these amphipathic compounds on the hydrolysis, monitored by HPLC, of glucagon and insulin by trypsin and chymotrypsin has also been studied. The alpha-helix content of glucagon was increased to a similar extent by all the micelles, irrespective of their charge and of whether they were synthetic surfactants or phospholipids. The amphipathic compounds always induced a blue-shift in the wavelength of maximum emission of fluorescence of glucagon of about 9 nm, whereas the fluorescence intensity was increased in some cases and decreased in others. The circular dichroism of insulin was also modified in some cases. Some amphipathic compounds protected glucagon against proteolysis by trypsin and chymotrypsin very markedly, whereas others did not protect at all or only slightly protected the hormone. Two hypotheses have been formulated to explain the different results. Hydrolysis of insulin was generally not influenced by surfactants and lipids.  相似文献   

7.
The effects of beta-selective blockade with metoprolol on the glucagon blood plasma level during insulin-induced hypoglycemia were studied in 20 control dogs, and 20 alloxan diabetic dogs. The results indicate that the sensitivity to exogenous insulin is increased in alloxan diabetes glucose counterregulatory mechanisms are impaired. After insulin administration glucagon concentration increased much more and quicker in the control group than in diabetic dogs. Beta-blockade with metoprolol increased glucagon secretion in both groups.  相似文献   

8.
The endocrine pancreas of the grass lizard, Mabuya quinquetaenia-ta, and of the desert lizard, Uromastyx aegyptia, was investigated histologically and immunohistochemically. In both lizard species four cell types were observed in the endocrine pancreas, namely insulin (B), glucagon (A), somatostatin (D) and pancreatic polypeptide (PP) cells. In both species in B, A and D cells could be detected by their cross-reactivity with antisera raised against mammalian insulin, glucagon and somatostatin. However, these cells showed different tinctorial propertis in the two lizard species. In both species the endocrine tissues were concentrated in the splenic lobe of the pancreas. In the grass lizard the endocrine tissue in the splenic lobe of consisted mainly of B, A and D cells and in the ventral lobe the major cell types were PP and D cells. In the desert lizard, on the other hand, the frequency and the pattern of orientation of B, A and D cells were the same in both the splenic and the ventral lobes, but PP cells in the ventral lobe outnumbered those of the splenic lobe. The PP and D cells scattered in the exocrine parenchyma and the long protrusions which they exhibited suggested that these cell exerted paracrine control on the acinar cells. It is speculated that this control by PP cells may be trophic and by D cells inhibitory.  相似文献   

9.
When adult male rats were fasted for 24 or 72 h there was no change in the pancreatic content of insulin or glucagon, but the somatostatin content increased at 72 h. This contrasts with earlier reports of reduced pancreatic somatostatin after fasting. After a 48-hour fast there was an increase in the concentration of duodenal somatostatin, and a tendency toward reduced concentrations in stomach, jejunum, and ileum. When duodenal mucosa and muscle extracts were chromatographed the relative amounts of putative somatostatin-28 and somatostatin-14 were unchanged. Insulin secretion from the perfused pancreata of 72-hour-fasted rats was markedly reduced, but glucagon and somatostatin secretion was indistinguishable from that of fed controls. These results indicate that in spite of the marked alterations of nutrient metabolism and insulin secretion which occur during fasting, the pancreatic content of insulin, glucagon and somatostatin and the gut concentration of somatostatin are well maintained.  相似文献   

10.
When rats received glucagon or insulin every 2 h after partial hepatectomy (Hx), hepatic putrescine content was increased above control levels at 6 and 12 h, respectively. When the two hormones were combined, the increased levels were additive. Hepatic ornithine decarboxylase activity was above control levels at 12 h after insulin treatment. Hepatic spermidine N1-acetyltransferase activity was enhanced at 6 h only when glucagon was dosed. Putrescine administration from 0 to 4 h or from 6 to 10 h increased hepatic DNA synthesis to similar levels 22 h after Hx. These results suggest that glucagon and insulin additively stimulate hepatic putrescine production after Hx. This may explain the cooperative stimulation of liver regeneration by both hormones.  相似文献   

11.
The control of insulin and glucagon secretion from isolated pancreatic islets of lean and genetically obese mice has been compared. The enlarged islets of obese mouse pancreas and islets of obese mouse pancreas and islets of obese mice maintained on a restricted diet manifested a greater response to glucose stimulation of insulin secretion than the lean mice islets. The glucagon content of the islets, the secretion of glucagon in a medium containing 150 mg% glucose and the stimulation of glucagon secretion by arginine did not differ significantly in the two groups. Adrenaline stimulated glucagon secretion in vitro from obese mice but not from lean mice. Antinsulin serum injections into obese mice increased the plasma glucagon levels about twofold and had no effect on glucagon levels in lean mice, although the level of hyperglycaemia was the same in both groups. It is suggested that the suppression of glucagon release by glucose requires a higher concentration of insulin in the obese mouse pancreas than in lean mice.  相似文献   

12.
The insulin receptor (IR) and its signaling appear to be essential for insulin secretion from pancreatic beta-cells. However, much less is known about the role of the IR in alpha-cells. To assess the role of the IR in glucagon and insulin secretion, we engineered adeno-viruses for high efficiency small interference RNA (siRNA)-IR expression in isolated mouse pancreatic islets and lentiviruses for siRNA-IR expression in pancreatic alpha- and beta-cell lines (alpha-TC6 and MIN6) with specific, long term stable IR knockdown. Western blot analysis showed that these strategies resulted in 60-80% reduction of IR protein in islets and alpha- and beta-cell lines. Cell growth was reduced by 35-50% in alpha-TC and MIN6 cells stably expressing siRNA-IR, respectively. Importantly, glucagon secretion, in response to glucose (25 to 2.8 mm), was completely abolished in islets expressing siRNA-IR, whereas secretion increased 1.7-fold in islets expressing control siRNA. In contrast, there was no difference in glucose-stimulated insulin secretion when comparing siRNA-IR and siRNA control, with both groups showing a 1.7-fold increase. Islet glucagon and insulin content were also unaffected by IR knockdown. To further explore the role of the IR, siRNA-IR was stably expressed in pancreatic cell lines, which dramatically suppressed glucose-regulated glucagon secretion in alpha-TC6 cells (3.4-fold) but did not affect GSIS in MIN6 cells. Defects in siRNA-IR-expressing alpha-cells were associated with an alteration in the activity of Akt and p70S6K where insulin-induced phosphorylation of protein kinase B/AKt was greatly reduced while p70S6K activation was enhanced, suggesting that the related pathways play important roles in alpha cell function. This study provides direct evidence that appropriate expression of the IR in alpha-cells is required for glucose-dependent glucagon secretion.  相似文献   

13.
The effects of administration of glucose orally and tolbutamide or arginine intravenously on insulin and glucagon secretion and blood glucose level were studied in normal and thiamine-deficient rats. In thiamine deficiency, insulin secretion and glucose tolerance were impaired during glucose ingestion. Tolbutamide decreased the blood glucose level in both control and thiamine-deficient rats but its stimulatory effect on insulin secretion was minimal in thiamine-deficient rats unlike the control animals. Arginine did not alter substantially the blood glucose or insulin in thiamine-deficient rats, whereas it increased the insulin level in control rats. The fasting plasma glucagon level was high in thiamine deficiency. Tolbutamide increased the plasma glucagon in control rats, but did so only marginally in thiamine-deficient rats. Arginine also increased the glucagon secretion throughout the period of study in control rats. In thiamine-deficient rats the glucagon secretion was pronounced only after 20 min of arginine administration. These results suggest that an unimpaired glucose metabolism is a prerequisite to induce proper insulin secretion. Only proper insulin secretion can check the glucagon secretion rather than the increased glucose level. Hypoglycemia can induce glucagon secretion independent of the insulin level.  相似文献   

14.
Lou PH  Gustavsson N  Wang Y  Radda GK  Han W 《PloS one》2011,6(10):e26671

Background

Secretion of insulin and glucagon is triggered by elevated intracellular calcium levels. Although the precise mechanism by which the calcium signal is coupled to insulin and glucagon granule exocytosis is unclear, synaptotagmin-7 has been shown to be a positive regulator of calcium-dependent insulin and glucagon secretion, and may function as a calcium sensor for insulin and glucagon granule exocytosis. Deletion of synaptotagmin-7 leads to impaired glucose-stimulated insulin secretion and nearly abolished Ca2+-dependent glucagon secretion in mice. Under non-stressed resting state, however, synaptotagmin-7 KO mice exhibit normal insulin level but severely reduced glucagon level.

Methodology/Principal Findings

We studied energy expenditure and metabolism in synaptotagmin-7 KO and control mice using indirect calorimetry and biochemical techniques. Synaptotagmin-7 KO mice had lower body weight and body fat content, and exhibited higher oxygen consumption and basal metabolic rate. Respiratory exchange ratio (RER) was lower in synaptotagmin-7 KO mice, suggesting an increased use of lipid in their energy production. Consistent with lower RER, gene expression profiles suggest enhanced lipolysis and increased capacity for fatty acid transport and oxidation in synaptotagmin-7 KO mice. Furthermore, expression of uncoupling protein 3 (UCP3) in skeletal muscle was approximately doubled in the KO mice compared with control mice.

Conclusions

These results show that the lean phenotype in synaptotagmin-7 KO mice was mostly attributed to increased lipolysis and energy expenditure, and suggest that reduced glucagon level may have broad influence on the overall metabolism in the mouse model.  相似文献   

15.
Summary The endocrine pancreas of the grass lizard, Mabuya quinquetaeniata, and of the desert lizard, Uromastyx aegyptia, was investigated histologically and immunohistochemically. In both lizard species four cell types were observed in the endocrine pancreas, namely insulin (B), glucagon (A), somatostatin (D) and pancreatic polyeptide (PP) cells. In both species the B, A and D cells could be detected by their cross-reactivity with antisera raised against mammalian insulin, glucagon and somatostatin. However, these cells showed different tinctorial properties in the two lizard species. In both species the endocrine tissues were concentrated in the splenic lobe of the pancreas. In the grass lizard the endocrine tissue in the splenic lobe consisted mainly of B, A and D cells and in the ventral lobe the major cell types were PP and D cells. In the desert lizard, on the other hand, the frequency and the pattern of orientation of B, A and D cells were the same in both the splenic and the ventral lobes, but PP cells in the ventral lobe outnumbered those of the splenic lobe. The PP and D cells scattered in the exocrine parenchyma and the long protrusions which they exhibited suggested that these cells exerted paracrine control on the acinar cells. It is speculated that this control by PP cells may be trophic and by D cells inhibitory.  相似文献   

16.
饥饿状态大鼠胰腺胰高血糖素和胰岛素变化的定量分析   总被引:2,自引:0,他引:2  
用免疫组织化学方法结合图象分析技术对饥饿状态大鼠胰岛A、B细胞中胰高血糖素(Glucagon,Glu)和胰岛素(Insulin,Ins)的免疫反应强度进行定量分析。结果表明:与正常对照相比,饥饿大鼠胰岛A细胞中的Glu含量明显下降,B细胞中Ins含量明显升高。提示饥饿可导致Glu释放增加,Ins释放减少。与饥饿5天大鼠组相比较,饥饿5天后静脉注射葡萄糖组90min后胰岛内Glu含量明显升高,Ins含量无显著变化。提示:静脉注射葡萄糖可快速作用于胰岛A细胞,减少Glu释放,但其对B细胞作用缓慢。从而为进一步阐明葡萄糖对胰岛A、B细胞的不同作用机制提供形态学依据。  相似文献   

17.
Postprandial changes in blood glucose, insulin and glucagon were examined in 7 non-insulin dependent diabetic patients, before and after 3 days' treatment with the somatostatin analogue, octreotide (50 ug injected subcutaneously thricedaily). After octreotide injection, postprandial rises in plasma insulin and glucagon were significantly flattened. The postprandial glycaemic rise was delayed but the area under the glycaemic curve was not increased. Animal studies have suggested that octreotide inhibits growth hormone and glucagon secretion much more powerfully than native somatostatin, while relatively sparing insulin secretion. However, the present findings suggest that this analogue is not sufficiently selective to be therapeutically useful in non-insulin dependent diabetes.  相似文献   

18.
The metabolic effects of glucagon and glucagon plus insulin on the isolated rat livers perfused with 10 mM sodium L-lactate as substrate were studied. Glucagon stimulated gluconeogenesis, ketogenesis and ureogenesis at the concentration used of 2.1 nM. The addition of insulin to give a glucagon-to-insulin ratio of 0.2 reversed all the glucagon effects. The glucagon enhancement of gluconeogenesis was accompanied by a rise in cytosolic and mitochondrial state of reduction of the NAD system and a fall in the [ATP]/[ADP] ratio. The analysis of the intermediary metabolite concentrations suggested, as possible sites of glucagon action, the steps between pyruvate and phosphoenolpyruvate as well as the reactions catalyzed by phosphofructokinase and/or fructose bisphosphatase. All the changes in metabolite contents were abolished when insulin was present. Glucagon increased the intramitochondrial concentration of all the metabolites, whose intracellular distribution was calculated. The finding of a significant rise in the calculated intramitochondrial concentration of oxaloacetate points to pyruvate carboxylation as an important site of glucagon interaction with the gluconeogenic pathway. A primary event in the glucagon action redistributing intracellular metabolites seems to be the mitochondrial entry of malate. The possibility is discussed that the changes in metabolite cellular distribution were brought about by the increased cellular state of reduction caused by the hormone.  相似文献   

19.
Glucagon levels are often moderately elevated in diabetes. It is known that glucagon leads to a decrease in hepatic glutathione (GSH) synthesis that in turn is associated with decreased postprandial insulin sensitivity. Given that cAMP pathway controls GSH levels we tested whether insulin sensitivity decreases after intraportal (ipv) administration of a cAMP analog (DBcAMP), and investigated whether glucagon promotes insulin resistance through decreasing hepatic GSH levels.Insulin sensitivity was determined in fed male Sprague-Dawley rats using a modified euglycemic hyperinsulinemic clamp in the postprandial state upon ipv administration of DBcAMP as well as glucagon infusion. Glucagon effects on insulin sensitivity was assessed in the presence or absence of postprandial insulin sensitivity inhibition by administration of L-NMMA. Hepatic GSH and NO content and plasma levels of NO were measured after acute ipv glucagon infusion. Insulin sensitivity was assessed in the fed state and after ipv glucagon infusion in the presence of GSH-E. We founf that DBcAMP and glucagon produce a decrease of insulin sensitivity, in a dose-dependent manner. Glucagon-induced decrease of postprandial insulin sensitivity correlated with decreased hepatic GSH content and was restored by administration of GSH-E. Furthermore, inhibition of postprandial decrease of insulin sensitivity L-NMMA was not overcome by glucagon, but glucagon did not affect hepatic and plasma levels of NO. These results show that glucagon decreases postprandial insulin sensitivity through reducing hepatic GSH levels, an effect that is mimicked by increasing cAMP hepatic levels and requires physiological NO levels. These observations support the hypothesis that glucagon acts via adenylate cyclase to decrease hepatic GSH levels and induce insulin resistance. We suggest that the glucagon-cAMP-GSH axis is a potential therapeutic target to address insulin resistance in pathological conditions.  相似文献   

20.
The effect of somatostatin (SRIF) on glucagon and insulin secretion was examined in fed and fasted sheep. This was related to changes in glucose production. Infusion of SRIF at 80 micrograms/h caused a marked reduction in plasma glucagon concentrations. However, the insulin response to SRIF infusion was not consistent; its concentrations decreased occasionally, but often did not change. The depression of glucagon was not associated with a significant reduction in blood glucose concentrations in either fed or fasted sheep, but was associated with a reduction in glucose production by 12--15%. The inhibitory effect of insulin on glucose production was not markedly increased by glucagon deficiency. Infusion of insulin at 1.17 U/h with SRIF decreased glucose production only an additional 10%. Thus, it appears that under basal conditions pancreatic hormonal influences on hepatic glucose production were relatively small in sheep. This implies that under normal conditions in sheep, substrate supply has a much greater impact on hepatic glucogenesis than do hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号