首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Products of Ig kappa L chain gene rearrangement in a variety of human B cell samples were investigated by sequential Southern blot hybridization analysis. By application of four region-specific probes (C kappa, J kappa, U' kappa and kappa de) a complete spectrum of kappa rearrangements, including both predicted and novel products, were detected. Nearly 30% of the products detected reflect multiple recombination of the kappa locus. The kappa-deleting element was responsible for 70% of the multiple rearrangements that were detected. Interestingly, eight kappa-expressing samples exhibited rearrangement of the kappa-deleting element. The remaining multiple recombination products were characteristic of double V kappa-J kappa rearrangement. This frequency reveals that secondary V-J rearrangement may significantly contribute to the expression of kappa L chains in humans.  相似文献   

2.
We have analyzed the structure of Ig kappa chain genes in B cell lines derived from a human individual who cannot synthesize any kappa chains, and whose Igs all contain lambda chains (1). We have characterized secondary DNA recombination events at two kappa alleles which have undergone misaligned V-J recombinations. One such secondary recombination has joined the flanking sequences of a V kappa and a J kappa 2 gene segment as if it were the reciprocal product of a V-J kappa 2 recombination, and resulted in the displacement of the recombined VJ kappa 1 gene segments from the C kappa locus. The non-rearranged form of the V kappa fragment which had recombined with the J kappa 2 flank was cloned. Nucleotide sequencing of this fragment identified a V kappa gene that differed by at least 38% from all previously sequenced human V kappa genes. The other V-J kappa segment analyzed has undergone a secondary recombination at a different site from that described above, at a site within the intervening sequence between the J kappa and C kappa gene segments, similar to the location of secondary recombinations which have occurred in lambda + B cell lines from mice and humans (2,3). These results prove that multiple recombinations can occur at one J kappa-C kappa locus.  相似文献   

3.
We previously isolated a cDNA encoding the 60-kDa murine protein (RBP-J kappa protein) that specifically binds to the immunoglobulin J kappa recombination signal sequence. The RBP-J kappa gene is highly conserved in a wide variety of organisms including man, Xenopus, Drosophila, and yeast. We have isolated and characterized the Drosophila homologue of the RBP-J kappa gene. The Drosophila RBP-J kappa gene was mapped to the polytene region 35BC of chromosome 2. The nucleotide sequence of this gene indicates that it is not one of the known genes located in the 35 BC region. The nucleotide and amino acid sequences of the Drosophila and mouse RBP-J kappa genes are 60 and 75% homologous, respectively. The central 248-residue regions of RBP-J kappa proteins of the two species are 93% homologous and include the 40-residue integrase motif. The Drosophila RBP-J kappa protein expressed in COS cells bound to the J kappa recognition sequence with the same specificity as the murine counterpart. These results suggest that Drosophila may have a site-specific recombination system which utilizes the immunoglobulin recombination signal sequence. Implications for evolution of immunoglobulin gene rearrangement were also discussed.  相似文献   

4.
How immunoglobulin V kappa genes rearrange   总被引:19,自引:0,他引:19  
Recombination at the immunoglobulin kappa light chain locus creates a complete variable region gene and its reciprocal product. The results presented here show that reciprocal products may be substrates for secondary recombination and that at least one V kappa group rearranges by inversion.  相似文献   

5.
Immunoglobulins (Ig) secreted from a plasma cell contain either kappa or lambda light chains, but not both. This phenomenon is termed isotypic kappa-lambda exclusion. While kappa-producing cells have their lambda chain genes in germline configuration, in most lambda-producing cells the kappa chain genes are either non-productively rearranged or deleted. To investigate the molecular mechanism for isotypic kappa-lambda exclusion, in particular the role of the Ig kappa intron enhancer, we replaced this enhancer by a neomycin resistance (neoR) gene in embryonic stem (ES) cells. B cells heterozygous for the mutation undergo V kappa-J kappa recombination exclusively in the intact Ig kappa locus but not in the mutated Ig kappa locus. Homozygous mutant mice exhibited no rearrangements in their Ig kappa loci. However, splenic B cell numbers were only slightly reduced as compared with the wild-type, and all B cells expressed lambda chain bearing surface Ig. These findings demonstrate that rearrangement in the Ig kappa locus is not essential for lambda gene rearrangement. We also generated homozygous mutant mice in which the neoR gene was inserted at the 3' end of the Ig kappa intron enhancer. Unexpectedly, mere insertion of the neoR gene showed some suppressive effect on V kappa-J kappa recombination. However, the much more pronounced inhibition of V kappa-J kappa recombination by the replacement of the Ig kappa intron enhancer suggests that this enhancer is essential for V kappa-J kappa recombination.  相似文献   

6.
Novel recombinations of the IG kappa-locus that result in allelic exclusion   总被引:3,自引:0,他引:3  
Allelic exclusion of Ig H and L chain gene loci serves to ensure that a B cell expresses a single specificity antibody. The analysis of Abelson murine leukemia virus transformed cells that rearrange the kappa-locus during growth in cell culture has provided the opportunity to characterize intermediate steps in Ig gene rearrangement. By sequential cloning of an Abelson murine leukemia virus transformed cell line we have observed a novel two-step pathway that results in a rearrangement of a V kappa gene segment into the J-C kappa intron. This type of rearrangement effectively excludes functional kappa expression from that allele. A truncated mRNA product resulting from the V kappa signal exon splicing to the C kappa exon is diagnostic of these unique rearrangements. In addition to demonstrating a novel mechanism for allelic exclusion, the two-step pathway described serves to explain how V-intron recombination products were generated in previously described cell lines.  相似文献   

7.
We have produced transgenic mice which synthesize chimeric mouse-rabbit immunoglobulin (Ig) kappa light chains following in vivo recombination of an injected unrearranged kappa gene. The exogenous gene construct contained a mouse germ-line kappa variable (V kappa) gene segment, the mouse germ-line joining (J kappa) locus including the enhancer, and the rabbit b9 constant (C kappa) region. A high level of V-J recombination of the kappa transgene was observed in spleen of the transgenic mice. Surprisingly, a particularly high degree of variability in the exact site of recombination and the presence of non germ-line encoded nucleotides (N-regions) were found at the V-J junction of the rearranged kappa transgene. Furthermore, unlike endogenous kappa genes, rearrangement of the exogenous gene occurred in T-cells of the transgenic mice. These results show that additional sequences, other than the heptamer-nonamer signal sequences and the promoter and enhancer elements, are required to obtain stage- and lineage- specific regulation of Ig kappa light chain gene rearrangement in vivo.  相似文献   

8.
Li S  Garrard WT 《FEBS letters》2003,536(1-3):125-129
To gain insight into the nuclear organization of the mouse Ig kappa locus and how it may relate to the formation of synapses during recombination, we have studied the kinetics of rearrangement of different V kappa gene families to J kappa gene segments in the pre-B cell line, 103bcl2. Remarkably, V kappa gene families separated by more than 3.5 Mb from J kappa gene segments rearranged with nearly identical kinetics to those as close as 18 kb to J kappa gene segments. These results fit a model of nuclear organization in which the entire V kappa J kappa region resides within a single nuclear subcompartment and is capable of exhibiting multiple reversible contacts through diffusion and Brownian motion.  相似文献   

9.
T Furukawa  S Maruyama  M Kawaichi  T Honjo 《Cell》1992,69(7):1191-1197
The J kappa RBP binds to the immunoglobulin recombination signal sequence flanking the kappa-type J segment. We previously isolated the highly conserved homolog of the J kappa RBP gene from D. melanogaster, which is not thought to have immunoglobulin molecules. Using many deficiency mutants and in situ hybridization, we mapped the Drosophila J kappa RBP gene in a region containing two recessive lethal mutations, i.e., br26 and br7, which shows the dominant Suppressor of Hairless (Su(H)) phenotype in heterozygotes. All six Su(H) alleles analyzed at the DNA level contained mutations in the Drosophila J kappa RBP gene. Since the Su(H) mutation affects peripheral nervous system development, the Drosophila J kappa RBP gene product is involved in gene regulation of peripheral nervous system development. The results also imply that the immunoglobulin recombination signal sequence and the target sequence of the Drosophila J kappa RBP protein might have a common evolutionary origin.  相似文献   

10.
Homologous recombination between transferred and chromosomal DNAs provides a means of introducing well-defined, predetermined changes in the chromosomal genes. Here we report that this approach can be used to specifically modify the immunoglobulin genes in mouse hybridoma cells. The test system is based on the Sp6 hybridoma, which synthesizes immunoglobulin M (kappa) specific for the hapten 2,4,6-trinitrophenyl (TNP). As recipient cells, we used the Sp6-derived mutant hybridoma igk14, which has a deletion of the kappa TNP gene and consequently does not synthesize TNP-specific immunoglobulin M. igk14 retains the mu TNP gene and two additional rearranged kappa genes, denoted kappa M21B1 and kappa M21G. As a transfer vector, we used pSV2neo bearing the functionally rearranged TNP-specific V kappa segment. Following DNA transfer by electroporation, we isolated rare transformants which produced normal amounts of the functional kappa TNP chain. Analysis of the DNA of these transformants indicated that in all cases, a functional kappa TNP gene had been formed as the result of a homologous integrative recombination event with the igk14 kappa M21B1 gene. These results suggest that homologous recombination might be used for mapping and introducing immunoglobulin gene mutations and for more conveniently engineering specifically altered immunoglobulins.  相似文献   

11.
Previous characterization of mouse immunoglobulin kappa gene rearrangement products cloned from murine plasmacytomas has indicated that two recombination events can take place on a single kappa allele (R. M. Feddersen and B. G. Van Ness, Proc. Natl. Acad. Sci. USA 82:4792-4797, 1985; M. A. Shapiro and M. Weigert, J. Immunol. 139:3834-3839, 1987). To determine whether multiple recombinations on a single kappa allele can contribute to the formation of productive V-J genes through corrective recombinations, we have examined several Abelson murine leukemia virus-transformed pre-B-cell clones which rearrange the kappa locus during cell culture. Clonal cell lines which had rearranged one kappa allele nonproductively while maintaining the other allele in the germ line configuration were grown, and secondary subclones, which subsequently expressed kappa protein, were isolated and examined for further kappa rearrangement. A full spectrum of rearrangement patterns was observed in this sequential cloning, including productive and nonproductive recombinations of the germ line allele and secondary recombinations of the nonproductive allele. The results show that corrective V-J recombinations, with displacement of the nonproductive kappa gene, occur with a significant frequency (6 of 17 kappa-producing subclones). Both deletion and maintenance of the primary (nonfunctional) V-J join, as a reciprocal product, were observed.  相似文献   

12.
13.
具有同源重叠区的酵母人工染色体(YAC)可以利用酵母细胞减数分裂进行同源重组,从而构建更大的人工染色体基因组,这对生命科学基础研究和生物技术应用研究有着非常重要的意义。本实验以两个含人免疫球蛋白κ链基因簇片段的YAC克隆为材料,通过酵母改型、异型接合、二倍体发孢、单孢子筛选和分子生物学鉴定等技术和方法,利用酵母菌减数分裂同源重组机制,构建了一条包含人的免疫球蛋白κ轻链32个Vκ基因、5个Jκ基因、Cκ基因、Eκ基因和κde基因的YAC重组体,长度约400kb。同时,本实验利用溶壁酶消化法获取单孢子重组体,代替了传统的显微分孢操作。使得利用酵母人工染色体减数分裂同源重组的技术更加简便可行。  相似文献   

14.
Consistent with an ordered immunoglobulin (Ig) gene assembly process during precursor (pre-) B cell differentiation, we find that most Abelson murine leukemia virus (A-MuLV)-transformed pre-B cells derived from scid (severe combined immune deficient) mice actively form aberrant rearrangements of their Ig heavy chain locus but do not rearrange endogenous kappa light chain variable region gene segments. However, we have identified several scid A-MuLV transformants that transcribe the germline Ig kappa light chain constant region and actively rearrange the kappa variable region gene locus. In one case progression to the stage of kappa light chain gene rearrangement did not require expression of Ig mu heavy chains; furthermore, this progression could not be efficiently induced following expression of mu heavy chains from an introduced vector. As observed in pre-B cell lines from normal mice, attempted V kappa-to-J kappa rearrangements in scid transformants occur by inversion at least as frequently as by deletion. The inverted rearrangements result in retention of both products of the recombination event in the chromosome, thus allowing their examination. scid kappa coding sequence joins are aberrant and analogous in structure to previously described scid heavy chain coding joins. In contrast, the recognition signals that flank involved coding segments frequently are joined precisely back-to-back in normal fashion. The scid VDJ recombinase defect therefore does not significantly impair recognition of, site-specific cutting at, or juxtaposition and appropriate ligation of signal sequences. Our finding that the scid defect prevents formation of correct coding but not signal joins distinguishes these events mechanistically.  相似文献   

15.
DNA binding specificity of the RBP-J kappa protein was extensively examined. The mouse RBP-J kappa protein was originally isolated as a nuclear protein binding to the J kappa type V(D)J recombination signal sequence which consisted of the conserved heptamer (CACTGTG) and nonamer (GGTTTTTGT) sequences separated by a 23-base pair spacer. Electrophoretic mobility shift assay using DNA probes with mutations in various parts of the J kappa recombination signal sequence showed that the RBP-J kappa protein recognized the sequence outside the recombination signal in addition to the heptamer but did not recognize the nonamer sequence and the spacer length at all. Database search identified the best naturally occurring binding motif (CACTGTGGGAACGG) for the RBP-J kappa protein in the promoter region of the m8 gene in the Enhancer of split gene cluster of Drosophila. The binding assay with a series of m8 motif mutants indicated that the protein recognized mostly the GTGGGAA sequence and also interacted weakly with ACT and CG sequences flanking this hepta-nucleotide. Oligonucleotides binding to the RBP-J kappa protein were enriched from a pool of synthetic oligonucleotides containing 20-base random sequences by the repeated electrophoretic mobility shift assay. The enriched oligomer shared a common sequence of CGTGGGAA. All these data indicate that the RBP-J kappa protein recognizes a unique core sequence of CGTGGGAA and does not bind to the V(D)J recombination signal without the flanking sequence.  相似文献   

16.
17.
18.
19.
The variant (6;15) translocations in murine plasmacytomas join the myc oncogene-bearing band of chromosome 15 and the immunoglobulin kappa band of chromosome 6. We recently cloned a region from chromosome 15 linked to C kappa and have now used probes from that region to define the major locus of plasmacytoma variant translocations, which we denote pvt-1. In five of nine plasmacytomas we analysed, the 6;15 translocation resulted from reciprocal recombination between the C kappa locus and a 4.5-kb region of pvt-1. Moreover, nearby we located the region shown by others to have undergone a complex (15;12;6) translocation in plasmacytoma PC7183. All the chromosome 6 breakpoints fell between 1 and 3 kb 5' to C kappa but only two were near J kappa genes. Thus the J kappa -C kappa region appears to be a recombination 'hot spot' in lymphocytes, but the breaks are unlikely to be mediated via V/J recombination enzymes. Comparison of a cloned 108-kb region across pvt-1 and another of 52 kb across c-myc established that the pvt-1 breakpoints lie at least 72 kb from the c-myc promoters. Since c-myc is expressed at a substantial level, the 6;15 translocation apparently activates c-myc. Activation may occur directly, at a remarkable distance along the chromosome, or indirectly, via a putative pvt-1 gene product.  相似文献   

20.
DNA recombination reactions (site-specific and homologous) were monitored in the progeny of transgenic maize plants by bringing together two recombination substrates (docking sites and shuttle vectors) in the zygotes. In one combination of transgenic events, the recombination marker gene (yellow fluorescent protein gene, YFP) was activated in 1%-2% of the zygotes receiving both substrates. In other crosses, chimeric embryos and plants were identified, indicative of late recombination events taking place after the first mitotic division of the zygotes. The docking site structure remained unchanged; therefore, all recovered recombination events were classified as gene conversions. The recombinant YFP-r gene segregated as a single locus in subsequent generations. The recombination products showed evidence of homologous recombination at the 5' end of the YFP marker gene and recombinational rearrangements at the other end, consistent with the conclusion that DNA replication was involved in generation of the recombination products. Here, we demonstrate that maize zygotes are efficient at generating homologous recombination products and that the homologous recombination pathways may successfully compete with other possible DNA repair/recombination mechanisms such as site-specific recombination. These results indicate that maize zygotes provide a permissive environment for homologous recombination, offering a new strategy for gene targeting in maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号