首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The induction of human T cell proliferation by antibodies that cross-link T3 antigens is dependent on functional interactions of anti-T3 antibodies with monocyte Fc receptors. In this report, we used a panel of anti-T3 antibodies of differing heavy chain isotype and a variety of other monoclonal antibodies to analyze several features of the antibody-mediated interactions between T cells and monocytes that are required for mitogenesis. Whereas three IgG2a anti-T3 antibodies were mitogenic for cells from all individuals, IgM and IgG2b anti-T3 antibodies did not induce T cell proliferation in any donor and could block the proliferative responses induced by other mitogenic anti-T3 antibodies. Dose-response analyses with four IgG1 anti-T3 antibodies demonstrated donor heterogeneity as reported by other investigators. However, in contrast to these previous reports, high concentrations of IgG1 anti-T3 antibodies were found to be mitogenic for all donors, indicating that this heterogeneity is based on relative rather than absolute defects in low responder monocytes. Cell mixing experiments in which monocytes from two different low responder donors were co-cultured with T cells and IgG1 anti-T3 antibodies did not identify any complementary defects, suggesting that the low responder phenotype results from a relatively restricted polymorphism. To assess the nature of the signals required for inducing T cell proliferation, nonmitogenic anti-T3 antibodies were co-cultured with other pan-T cell antibodies having the IgG2a isotype. The combination of signals from T3 antigen cross-linkage and those independently generated by other IgG2a antibodies bound to monocyte Fc receptors did not induce T cell proliferation. Hence, it appears that the T3 antigen or closely associated structures must be clustered at the monocyte membrane for mitogenesis. Finally, in competitive inhibition experiments, the isotype specificity of monocyte Fc receptors involved in the induction of T cell proliferation was examined. Two distinct Fc receptor sites, one that binds murine IgG2a and IgG3 antibodies and a second that binds murine IgG1 antibodies, were identified. Murine IgM or IgG2b did not appear to bind either of these receptor sites. Taken together, these data indicate that human monocytes have two distinct Fc receptor sites, which must specifically and directly interact with T cell-bound anti-T3 antibodies for mitogenesis.  相似文献   

2.
Accessory molecules present on the cell surface of cytolytic T lymphocytes (CTL) play an important role in their activation. Antigen-specific recognition by CTL is inhibited by antibodies against Lyt-2, L3T4, or LFA-1 molecules. Presently it is not known whether these molecules function by binding a ligand such as class I or class II on the target cell or by delivering a signal that down-regulates T cell activation. In the present study we utilized anti-T cell antibodies including anti-T3 and anti-T cell receptor (alpha/beta) as well as an anti-Ly-6.2C monoclonal antibody to activate CTL clones to kill irrelevant targets or secrete BLT esterase. The redirected lysis assay system utilizes the fact that heteroconjugates between anti-T3, and anti-T cell receptor, or anti-Ly-6.2C and anti-trinitrophenyl can trigger CTL lysis of trinitrophenyl-coupled targets that did not express antigen. In this system anti-Lyt-2 antibodies as well as anti-LFA-1 antibodies inhibited triggering via T cell receptor-related molecules but not via the anti-Ly-6.2C heteroconjugate. In addition, the anti-Lyt-2 was shown to inhibit conjugate formation in the heteroaggregate assay system suggesting that the anti-Lyt-2 antibodies acted early in inhibiting CTL activity. Similar results were observed in a system in which the CTL clones were triggered to secrete a BLT-esterase-like activity in the absence of target cells. Anti-T3 coated on plastic was shown to activate BLT-esterase secretion. This secretion was inhibited by anti-Lyt-2 and anti-LFA-1. Thus, it would appear that both the Lyt-2 molecule and the LFA-1 molecule act as signal-transducing elements involved in CTL activation. In particular, the Lyt-2 molecule appears to preferentially function in receptor-mediated T cell activation.  相似文献   

3.
《Cellular immunology》1986,102(1):21-32
To examine the hypothesis that the antigen-specific T cell receptor (TcR) can function independently from the T3 complex on cytolytic T lymphocyte (CTL) clones, the physical and functional association of the T3 molecular complex and the T cell receptor has been examined on CTL clones that are differentially susceptible to inhibition by anti-T3 antibodies. From a panel of nine DPw2-specific CTL clones derived from the same donor, two clones (8.4 and 8.8) that were the most disparate in their susceptibility to inhibition by anti-T3 antibody were chosen for study. No significant differences were found between 8.4 and 8.8 for: (1) the levels of cell surface expression of the T3 complex and the TcR; (2) the ability to modulate T3 cell surface molecules; and (3) the capacity of the TcR to comodulate with the T3 complex. Modulation of the T3 complex from clone 8.4 did not significantly affect cytolytic activity, and incubation of modulated 8.4 with additional anti-T3 antibody did not inhibit cytolytic activity. Although no T3 function for clone 8.4 could be demonstrated by simply blocking cytolytic activity with anti-T3 antibody, addition of limiting quantities of anti-T11 (but not anti-T4, anti-Tac, or anti-LFA-1) antibodies plus anti-T3 produced a marked synergistic inhibition of cytolysis. These results suggest that: (1) CTL clones that are resistant to inhibition by anti-T3 antibodies actually have a physical and functional association between the T3 complex and the TcR; and (2) the ability to demonstrate a functional role for T3 by antibody blocking may, in some cases, require limiting the involvement of the T11 molecule in CTL-target interactions. The most likely explanation for the observed heterogeneity in susceptibility to blocking by anti-T3 antibodies is, therefore, thought to be that individual CTL clones possess TcR with differential avidity for specific targets.  相似文献   

4.
Most mature human T lymphocytes express both the multichain T3 (CD3)/Ti T cell receptor for antigen (TCR), and the biochemically distinct 55-kDa T11 (CD2) glycoprotein. Stimulating the T11 molecule causes profound T cell proliferation and functional activation in vitro, but the relationship of T11-mediated activation to antigenic stimulation of T lymphocytes in vivo remains unknown. We now present evidence that T11 function is directly linked to TCR components in T3/Ti+ T11+ human T cells. First, we found that stimulating peripheral blood T cells with the mitogenic combination of anti-T11(2) cells with the mitogenic combination of anti-T11(2) plus anti-T11(3) monoclonal antibodies caused the phosphorylation of TCR T3 chains. The predominance of T3-gamma-phosphorylation that occurred in anti-T11(2) plus anti-T11(3)-treated T cells is similar to the pattern previously observed in antigen-stimulated T cell clones. Second, T11 function depended upon concurrent cell-surface expression of the TCR. Thus, when peripheral blood T cells were deprived of cell surface T3/Ti by anti-T3 modulation, anti-T11(2) plus anti-T11(3)-induced mitogenesis and transmembrane signal generation in the form of calcium mobilization were inhibited. The mechanism of TCR-T11 interdependence was investigated in a series of TCR-deficient variants of a T cell lymphoblastoid cell line. T3/Ti negative variants expressed cell surface T11, but anti-T11(2) plus anti-T11(3) failed to cause detectable calcium mobilization. The TCR-deficient variants also failed to express T11(3) activation epitopes after incubation with anti-T11(2) antibodies, suggesting that T11(3) expression is an essential and TCR-dependent intermediate in the T11 activation mechanism in these cells. Taken together, our results suggest that T11 function depends upon cell-surface expression of TCR in many T3/Ti+ T11+ T lymphocytes, and T11-mediated activation is intimately interconnected with TCR activation mechanisms. A model in which stimulating signals delivered via T11 may be a part of antigenic activation of T lymphocytes is presented.  相似文献   

5.
Clonally distributed (clonotypic) antigen receptors on human T lymphocytes (alpha and beta chains) are associated with three invariable T3 polypeptide chains (T3 gamma, delta and epsilon), together forming the T3/T cell receptor complex. Monoclonal antibodies prepared against the two 20-kd T3 polypeptide chains demonstrated that T3-delta and T3-epsilon are distinct polypeptide chains. Only one monoclonal antibody (anti-T3-delta chain) reacted with the T cell surface as judged by indirect immunofluorescence, and by its mitogenicity for quiescent peripheral blood lymphocytes. Immunohistological staining and immunoprecipitation experiments showed that both the T3-delta and T3-epsilon chains are T cell-specific. As seen with the anti-alpha/beta chain reagent WT-31, anti-T3-delta chain monoclonal antibodies stained medullary thymocytes more intensely than cortical thymocytes, whereas the difference between the staining of cortical and medullary thymocytes was generally not apparent with anti-T3-epsilon chain antibodies. Because of this specificity and their ability to react with both the denatured and the native forms of each polypeptide chain, these new monoclonal reagents will be useful tools in studies of the biosynthesis and cell surface expression of the T3/T cell receptor complex during normal and malignant thymic differentiation.  相似文献   

6.
Recent studies have demonstrated that the 50KD T11 molecule is a surface component of a macrophage-independent alternative pathway of human T cell activation that is unrelated to the T3/Ti antigen-MHC receptor complex. Given the expression of T11 on all human thymocytes, it was of interest to determine whether they could be activated via this pathway. The triggering of T11 by monoclonal antibodies anti-T112 and anti-T113, directed at two unique epitopes on the molecule, induced IL 2 receptor expression on both T3+ and T3- thymocytes but did not induce IL 2 production. Consequently, in contrast to peripheral blood T cells, thymocytes did not proliferate in response to anti-T112 and anti-T113 in the absence of exogenous IL 2. These studies suggest that IL 2 receptor gene activation precedes IL 2 gene activation in T cell development. The ability of the alternative pathway of T cell activation to induce IL 2 receptor expression on T3- thymocytes implies that the T11 molecule may have an important role in early thymocyte ontogeny.  相似文献   

7.
When T lymphocytes from human blood or lymphoid organs are prepared by the sheep red blood cell (SRBC) rosetting procedure, glycoproteins of the SRBC membrane interact intimately with the CD2 (T11) molecule on the T cell surface. We now show that rosette formation has measurable short- and long-term effects upon the T cells. First, for a period of 24-48 hr after rosetting, the signal transducing and activation functions of the T3/Ti T cell antigen receptor complex is paralyzed for anti-T3-induced calcium mobilization, with a concomitant decrease in proliferative response to mitogens or stimulatory anti-T3 antibodies. Calcium mobilization through the alternate pathway of T cell activation, the T11/CD2 SRBC receptor, was also inhibited by rosetting. Second, rosetting appears to confer a partial stimulatory signal through the T11/CD2 pathway. Thus, 72 hr or more after rosetting, there was increased expression of the T11(3) activation epitope, and rosetted T cells were stimulated to proliferate in the presence of anti-T11(3) antibodies alone. These results provide further details on the effects of SRBC-T cell interactions, with important methodological implications. Moreover, they suggest a hitherto unrecognized down-regulatory effect of engaging the CD2 molecule, and provide further evidence that the T cell receptor is functionally interconnected to the CD2 activation pathway.  相似文献   

8.
IgG anti-T cell autoantibodies are common in SLE serum, react preferentially with activated lymphocytes, and exert early-phase inhibitory effects on antigen-induced T cell proliferation. Little is known about the target molecules in this system, however, because the low titer and low avidity of the most interesting antibodies limit their utility in conventional immunoprecipitation analyses. Therefore, Western blotting was used to demonstrate binding of IgG in anti-T cell antibody-positive SLE sera to four surface membrane molecules shared by peripheral T cells and HSB-2 cells. Molecules of Mr 90,000 and 55,000 were particularly reactive: each target was stained by IgG anti-lymphocyte antibodies in 11 patient sera (approximately 85%) in the panel. Targets of Mr 37,000 and 105,000 were encountered less frequently (six of 13 and one of 13 patients, respectively). It is unlikely that alloantibodies contributed to the staining patterns observed because reactivity with the four targets was consistently present when cell preparations from multiple unrelated donors were examined. The target molecules were localized to the plasma membrane by whole cell absorption/elution experiments, by the failure of chromatin (DNA/histone) to absorb antibodies to these antigens, and through the use of purified membranes as substrate for Western blotting. With the possible exception of the 105,000 Mr molecule, which is a major target in the IgM anti-T cell antibody system, evidence for the existence of neoantigens as a basis for increased reactivity of SLE IgG with activated T cells was not obtained. The identity of the IgG antibody-reactive molecules with respect to known T cell antigens was not determined, although evidence against the existence of antibodies to Tac (IL 2 receptor) and the transferrin receptor was obtained in monoclonal antibody pre-clearing experiments. Nonetheless, the observation that a limited number of major IgG autoantibody target antigens on activated peripheral T cells are shared by HSB-2 cells, a primitive T cell line expressing few of the differentiation antigens characteristic of mature T cells, should provide a basis for more definitive characterization of antigens in this system in the future.  相似文献   

9.
We investigated the ability of human T cells to be directed to lyse murine and human tumor targets by antibodies (Ab) to the T11-E rosette (CD2) receptor. We found that the human cytotoxic T lymphocyte clone TBI-6, which is specific for the Epstein-Barr virus-transformed cell line, CM-EBV, could be directed to lyse the Fc receptor-positive murine tumor P388D1, by the combination of anti-T11(2) plus anti-T11(3) Ab. This activation and lysis was demonstrable only with an Fc receptor expressing tumor target and only with those Ab or with anti-T3 (CD3) Ab but not with other anti-T11 Ab or other Ab directed against surface structures on the clone. We therefore constructed heterodimeric Ab consisting of anti-T11(2) or anti-T11(3) Ab and the J5 anti-common acute lymphoblastic leukemic antigen (anti-CALLA) Ab. The purity and retained functional properties of the dimers were demonstrated by sodium dodecyl sulfate-polyacrylamide gels, fluorescence-activated cell sorter analysis on relevant cells, and by the ability of these conjugates to activate human peripheral blood lymphocytes to proliferate. These heterodimeric Ab conjugates were shown to be able to direct the lysis of CALLA+ targets by TBI-6. The specificity of this lysis was demonstrated by the inability of these heterodimers to direct the lysis of CALLA- targets by the cytotoxic T lymphocyte clone, and by the ability of excess free J5, but not an irrelevant Ab of the same isotype, to block this type of lysis. The potential clinical significance of these reagents is discussed.  相似文献   

10.
The immunologic responses to anti-T4 and anti-T11 mAb infusions were assessed in subjects with chronic progressive multiple sclerosis as part of phase I clinical studies. Eight subjects received five daily infusions (0.2 mg/kg/day) of either anti-T11 (CD2) or anti-T4 (CD4) murine mAb. It was found that in vivo anti-T cell mAb infusions specifically suppress in vitro measurements of the human immune response; anti-T11 mAb blocked T cell activation via the CD2 SRBC-binding protein, and anti-T4 mAb infusions abolished PWM-induced Ig synthesis without lysis of the CD4+ T cell subpopulations. With repeated infusions of the anti-T11 mAb in three subjects, anti-mouse antibodies were found in the circulation. Although the majority of human anti-mouse antibody was not isotype specific, significant anti-idiotypic-like activity was observed after repeated infusions in two of three subjects. The human anti-mouse antibodies were almost exclusively of the IgG isotype. The magnitude of the human anti-mouse response was significantly less after administration of either anti-T11 or anti-T4 as compared with anti-T12 mAb. Murine anti-T cell mAb can provide a specific, benign form of acute immunosuppression in humans. However, repeated administration of these reagents in more chronic diseases can result in anti-Id-like antibodies that block binding of the anti-T cell mAb to the T cell surface.  相似文献   

11.
T cell activation may be triggered either through the T3-Ti antigen receptor complex or via an alternative macrophage-independent pathway involving the 50KD T11 sheep erythrocyte-binding glycoprotein. Monoclonal antibodies anti-T11(2) and anti-T11(3), directed at distinct epitopes of the T11 molecule, trigger mature T cells to proliferate and express their functional programs, and induce expression of IL 2 receptors on both T3+ and T3- thymocytes. We now show that a non-mitogenic anti-T3 antibody blocks activation via the T11 pathway of not only peripheral blood T cells, but also T3+ thymocytes. Anti-T3 does not affect surface expression of T11 or the rapid augmentation of T11(3) expression after incubation of cells with anti-T11(2). However, anti-T3 inhibits generation of IL 2 receptors and production of IL 2 by T lineage cells cultured with anti-T11(2) plus anti-T11(3). In contrast, modulation of the T11 molecule by a non-mitogenic anti-T11 antibody does not inhibit activation of T cells by a mitogenic anti-T3 antibody. The ability of anti-T3 to block expression of IL 2 receptors on both thymocytes and mature T cells activated by the T11 pathway suggests that a regulatory interaction may be important during T cell ontogeny to provide a mechanism for inhibiting expansion of autoreactive clones.  相似文献   

12.
Monoclonal antibodies that bind to the T cell MHC-antigen recognition complex (anti-T3 or anti-Ti) are known to either mimic ligand binding and activate T cells or block ligand binding, leading to an inhibition of T cell activation. In the present experiments, we demonstrate a direct inhibitory effect on the growth of human T cells by anti-T3 or anti-Ti antibodies. The proliferation of human peripheral blood T cells preactivated by exposure to PHA was inhibited in a specific manner by anti-T3. Colony formation in soft agar by REX cells, a leukemic cell line of early T cell phenotype, was completely inhibited by anti-T3 or anti-Ti antibodies, whereas isotype-matched antibodies to a variety of other T cell markers had no effect. Growth of REX cells in suspension culture was not affected by anti-T3 or anti-Ti. A cell line, T3.N1, was established from an agar colony of anti-T3-resistant REX cells. T3.N1 was phenotypically identical to REX except for failure to express any detectable T3 or Ti surface antigen. T3.N1 colony formation in soft agar was not inhibited by anti-T3 or anti-Ti. There was no rise in [Ca2+]i of T3.N1 cells after anti-T3 or anti-Ti exposure. These results indicate that in addition to the well-known positive regulatory effects of ligand binding to the T3/Ti complex, T3/Ti binding can also result in a down-regulatory signal for human T cell growth.  相似文献   

13.
We recently identified defective monocyte accessory function as the cause of T cell unresponsiveness to the mitogenic activity of OKT3 antibody in cultures of peripheral blood mononuclear cells (PBMC) from five healthy subjects, members of one family. We now report that the underlying abnormality in nonresponders is at the level of monocyte Fc gamma receptors for murine IgG2a. T cell unresponsiveness was not restricted to the signal provided by OKT3 but occurred also for two other anti-T3 antibodies of the IgG2a subclass, in contrast to a normal proliferative response to IgG1 anti-T3 antibodies in one of the OKT3 nonresponders. By using cytofluorography, we found that monocytes from responders but not from nonresponders bound OKT3-FITC to their membrane. The binding could be blocked by mouse IgG2a and by human IgG, but not by mouse IgG1 nor by serum albumin. The data suggest that, through specific Fc gamma receptors for murine IgG2a, monocytes bind the Fc portion of OKT3 during T cell activation. The function of this Fc gamma receptor binding was further studied by culturing PBMC from nonresponders on plates coated with affinity-purified goat anti-mouse IgG antibodies as a substitute for monocyte Fc gamma receptors. The addition of OKT3 to nonresponder PBMC, cultured on such plates, resulted in T cell activation, as evidenced by thymidine incorporation, IL 2 production, and expression of IL 2 receptors. Soluble anti-mouse IgG was not able to substitute for monocyte Fc gamma receptors. The results demonstrate the existence of polymorphism in monocyte Fc gamma receptors for murine IgG2a. They also substantiate that an essential helper function of monocytes in T cell activation by anti-T3 is to provide a matrix for multimeric binding of the Fc portion of the anti-T3 antibodies in order to cross-link T3 molecules.  相似文献   

14.
It has been demonstrated that the T4+2H4+ subset functioned as a suppressor inducer cell, whereas the reciprocal T4+2H4- subset provided help for B cell Ig production. In the present studies, a series of monoclonal antibodies to cell surface structures expressed on these subsets of cells were examined for their effects on the proliferative and immunoregulatory functions generated in AMLR. We demonstrated that anti-T4 antibody preferentially inhibited the proliferative response of the T4+2H4+ but not T4+2H4- cells against self-MHC antigens. In contrast, anti-T3 and anti-Ia antibodies inhibited the response of both subsets of cells. This subset preference of anti-T4 antibody was not attributable to either the isolation procedures used or a shift in the kinetics of proliferation to autologous self-MHC antigens. Moreover, both IL 2 production and the immunoregulatory function of the T4+2H4+ subset was profoundly inhibited by anti-T4 antibody, whereas the T4+2H4- subset was minimally influenced. In the absence of Ia molecules, T4+2H4+ but not T4+2H4- cell proliferation was inhibited with anti-T4 antibody. Together, these results suggest that the T4 molecule plays a distinct functional role in the differential triggering of subsets of T4+ cells.  相似文献   

15.
Treatment of murine lupus with monoclonal anti-T cell antibody   总被引:14,自引:0,他引:14  
Three strains of autoimmune mice (MRL/lpr, NZB/NZW, and BXSB) were treated with repeated injections of rat monoclonal anti-T cell antibody (anti-Thy-1.2) in order to determine 1) the extent and duration of target cell depletion, 2) the effect of T cell depletion on the course of autoimmunity, and 3) the magnitude and consequences of the host immune response to the monoclonal antibody. Mice were treated with 6 mg of anti-Thy-1.2 every 2 wk beginning early in their disease. Treatment produced a substantial reduction in circulating T cells in all three strains. Therapy was beneficial in MRL/lpr mice. It reduced lymphadenopathy, lowered autoantibody concentrations, retarded renal disease, and prolonged life. In contrast, treatment did not improve autoimmunity in NZB/NZW mice, and it caused fatal anaphylaxis in BXSB mice. These findings demonstrate that monoclonal antilymphocyte antibodies can serve as specific probes to examine the cells that contribute to autoimmunity. Moreover, they illustrate the potential therapeutic value of monoclonal antilymphocyte antibodies when a pathogeneic cell subset can be identified. However, the same antibody may have a broad range of effects, from efficacy to severe toxicity, even in diseases that share clinical features.  相似文献   

16.
Four distinct surface molecules on human T cells are defined by the monoclonal antibodies anti-T1, anti-T3 (anti-T3A), anti-T11 and anti-T12. Following cell binding, anti-T3 (anti-T3A) and anti-T1 induce independent modulation of their respective ligands, whereas anti-T11 and anti-T12 do not. To explore the biological consequences of this modulation, we used cloned populations of T4 and T8 cytotoxic T lymphocytes. Anti-T3 (anti-T3A), but not anti-T1, inhibits cytotoxic T lymphocyte effector function by T4 and T8 clones as well as antigen-specific T cell recognition. The latter is not secondary to a generalized inhibitory effect since responsiveness to interleukin 2 is maintained. Moreover, after modulation, cytotoxic T lymphocytes recover cytolytic function in parallel with reexpression of surface T3 molecules. We provide evidence for a direct linkage between antigen recognition by T lymphocytes and surface expression of the T3 molecular complex.  相似文献   

17.
Heteroaggregates containing anti-T3 cross-linked to anti-target cell antibodies have been shown to cause human T cells to lyse target cells that express antigens recognized by the anti-target cell antibody. In this study, we test targeted human T cells for the ability to lyse human tumor cells as a first step toward the application of this phenomenon to tumor immunotherapy. Several monoclonal anti-human tumor antibodies were assayed for binding to a number of human tumor lines and for the ability to promote specific tumor cell lysis when cross-linked with anti-T3. We found that anti-T3 cross-linked to anti-tumor monoclonal antibodies caused cloned human T cells and fresh peripheral blood T cells to lyse the tumor cells with the same specificity as predicted by the binding studies. Peripheral blood T cells were then tested in the presence of various heteroaggregates for the ability to lyse single cell suspensions prepared from fresh tumor or fresh normal tissue. These studies showed that heteroaggregates containing anti-T3 cross-linked to anti-tumor antibody cause fresh human T cells to specifically lyse fresh tumor cells, but not (with one exception) fresh normal cells.  相似文献   

18.
A case of Graves' disease with high serum thyroxine (T4) and low triiodothyronine (T3) levels which was therefore initially diagnosed as a T4-thyrotoxicosis is reported. Examination of the serum from the patient showed the presence of unusual protein which bound T3. It was later confirmed as IgG class anti-T3 antibodies. In addition to treatment with methylmercaptoimidazole (MMI), the patient was treated with prednisolone for 30 days (total amount 500 mg). Titers of anti-T3 antibodies in the sera were unchanged before and after prednisolone treatment. Our present case indicates that it is clinically important to bear the presence of autoantibodies in mind to account for a possible error in measuring T3 and T4 by radioimmunoassay (RIA). In the case that RIA determination gives an unexpectedly high or low T3 and/or T4 value, the presence of autoantibodies to them should be considered and a test for them is recommended.  相似文献   

19.
Although considerable data have recently been accumulated regarding the functional role of natural killer (NK) cells, relatively little is known about the factors that regulate NK cell activity. In these studies, we evaluated the role of interleukin 2 (IL 2) and the expression of the IL 2 receptor in the activation and proliferation of human NK cloned cell lines. By using a series of cloned cell lines, we were able to analyze homogeneous populations of NK cells that ordinarily comprise only a small fraction of peripheral blood lymphocytes and are extremely heterogeneous with respect to phenotypes and cytotoxic specificities. In comparison with several T cell clones, we found a much lower density of IL 2 receptors on NK clones, regardless of whether or not these cloned cells had a mature T cell phenotype. Correspondingly, NK clones needed a 10-fold higher concentration of recombinant IL 2 for maximal proliferation. Moreover, blocking studies with specific monoclonal IL 2 receptor antibodies indicated that IL 2 is both necessary and sufficient to induce the proliferation of NK clones. Because the majority of peripheral blood NK cells and NK clones express the T11 E rosette receptor antigen, which has been shown to be an antigen-independent activation pathway for T cells, we were able to study the role of monoclonal anti-T11 antibodies in the activation of various NK clones for which a specific target antigen is not known. In contrast to T cell clones, the induction of IL 2 receptor expression after T11 activation was possible only for some NK clones such as JT10 and JT3, but not for CNK5. Before activation, the IL 2 receptor expression of NK clones was confined to cells in the G2 - M phase, but after T11 activation the more pronounced IL 2 receptor expression became independent of the cell cycle. With respect to the direct proliferative effect of anti-T11 activation that has been noted with T cell clones, only the T3+ (JT10) and not the T3- NK clones could be directly stimulated. Nevertheless, IL 2 receptor expression could be triggered on some T3- clones such as JT3. Because T11-induced proliferation of T cells has been shown to be dependent on both the expression of the IL 2 receptor and on the interaction of this receptor with IL 2, it is proposed that the different responses of NK cells to T11 activation may reflect the ability of the individual clone to produce endogenous IL 2, as well as its ability to express the IL 2 receptor.  相似文献   

20.
Although it is often assumed that anti-T cell antibodies mediate immunosuppression by targeting T cells for destruction, other activities should be considered. To dissect the mechanisms by which anti-L3T4 and anti-interleukin 2 receptor (IL 2R) monoclonal antibodies (Mab) mediate immunosuppression, the effects of anti-L3T4 and two complement-fixing anti-IL 2R Mab of the same isotype, but defining functionally distinct epitopes, were probed in a delayed type hypersensitive (DTH) model using BALB/c as well as two C5-deficient mouse strains. Low doses of anti-L3T4 and the M7/20 anti-IL 2R Mab, which competitively blocks IL 2 binding, inhibit DTH in BALB/c mice whereas an anti-receptor antibody which does not block the IL 2 binding site did not effectively abrogate DTH. Interestingly, anti-L3T4, but not M7/20 anti-IL 2 Mab treatment blocked DTH in the C5-deficient strains. On the other hand, M7/20 does not cause immunosuppression solely by blocking the IL 2R from occupancy by IL 2 because binding to T blasts by M7/20 is equivalent in BALB/c and C5-deficient strains. Consequently, immunosuppression mediated by anti-IL 2R Mab is dependent on both IL 2 receptor site blockade and C5. Clearly, anti-L3T4 and M7/20 have disparate requirements for C5 in mediating immunosuppression. There can be no doubt that factors other than the cellular targeting patterns influence the immunosuppressive activities of Mab. Ideally, anti-T cell Mab should fix complement and inhibit T cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号