首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The leukocyte function-associated molecule-1 (LFA-1) plays a key role in cell adhesion processes between cells of the immune system. We investigated the mechanism that may regulate LFA-1-ligand interactions, which result in cell-cell adhesion. To this end we employed an intriguing anti-LFA-1 alpha mAb (NKI-L16), capable of inducing rather than inhibiting cell adhesion. Aggregation induced by NKI-L16 or Fab fragments thereof is not the result of signals transmitted through LFA-1. The antibody was found to recognize a unique Ca2(+)-dependent activation epitope of LFA-1, which is essentially absent on resting lymphocytes, but becomes induced upon in vitro culture. Expression of this epitope correlates well with the capacity of cells to rapidly aggregate upon stimulation by PMA or through the TCR/CD3 complex, indicating that expression of the NKI-L16 epitope is essential for LFA-1 to mediate adhesion. However, expression of the NKI-L16 epitope in itself is not sufficient for cell binding since cloned T lymphocytes express the NKI-L16 epitope constitutively at high levels, but do not aggregate spontaneously. Based on these observations we propose the existence of three distinct forms of LFA-1: (a) an inactive form, which does not, or only partially exposes the NKI-L16 epitope, found on resting cells; (b) an intermediate, NKI-L16+ form, expressed by mature or previously activated cells; and (c) an active (NKI-L16+) form of LFA-1, capable of high affinity ligand binding, obtained after specific triggering of a lymphocyte through the TCR/CD3 complex, by PMA, or by binding of NKI-L16 antibodies.  相似文献   

3.
Intracellular signals are required to activate the leukocyte-specific adhesion receptor lymphocyte function-associated molecule-1 (LFA-1; CD11a/CD18) to bind its ligand, intracellular adhesion molecule-1 (ICAM-1). In this study, we investigated the role of the cytoskeleton in LFA-1 activation and demonstrate that filamentous actin (F-actin) can both enhance and inhibit LFA-1-mediated adhesion, depending on the distribution of LFA-1 on the cell surface. We observed that LFA-1 is already clustered on the cell surface of interleukin-2/phytohemagglutinin-activated lymphocytes. These cells bind strongly ICAM-1 and disruption of the actin cytoskeleton inhibits adhesion. In contrast to interleukin-2/phytohemagglutinin-activated peripheral blood lymphocytes, resting lymphocytes, which display a homogenous cell surface distribution of LFA-1, respond poorly to intracellular signals to bind ICAM-1, unless the actin cytoskeleton is disrupted. On resting peripheral blood lymphocytes, uncoupling of LFA-1 from the actin cytoskeleton induces clustering of LFA-1 and this, along with induction of a high-affinity form of LFA-1, via "inside-out" signaling, results in enhanced binding to ICAM-1, which is dependent on intact intermediate filaments, microtubules, and metabolic energy. We hypothesize that linkage of LFA-1 to cytoskeletal elements prevents movement of LFA-1 over the cell surface, thus inhibiting clustering and strong ligand binding. Release from these cytoskeletal elements allows lateral movement and activation of LFA-1, resulting in ligand binding and "outside-in" signaling, that subsequently stimulates actin polymerization and stabilizes cell adhesion.  相似文献   

4.
Lymphocyte-fibroblast adhesion induced by interferon-gamma   总被引:3,自引:0,他引:3  
Adhesion of lymphocytes to vascular endothelium is thought to be of importance in regulating the passage of lymphocytes from the circulation to areas of inflammation. Evidence suggests the presence of site-specific lymphocyte receptor molecules on the endothelial cell surface which can be modulated by soluble immune factors. The factors responsible for maintaining lymphocyte infiltration at tissue sites are unknown. We have examined the adherence of human peripheral blood T lymphocytes to human fibroblast monolayers in vitro and the role of interferon-gamma in enhancing adherence. Treatment of fibroblasts with interferon-gamma resulted in an increase in the number of adherent T cells in a dose- and time-dependent manner. Enhanced adhesion was noted as early as 4 hr after interferon stimulation (291 +/- 7 T cells/field vs 51 +/- 10 without IFN stimulation) and binding was further increased by lengthening the exposure time of fibroblasts to interferon up to 72 hr (475 +/- 86 T cells/field). Kinetic and inhibition experiments using monoclonal antibody to HLA-DR demonstrated that adhesion of T lymphocytes to interferon-stimulated fibroblasts proceeds by a mechanism independent of DR induction. In addition, adherence was not histocompatibility antigen-restricted, as adherence to autologous and allogeneic fibroblast monolayers was not significantly different. Nonadherent T cells, collected at the end of adhesion assays, were deficient in their capacity to bind to a second interferon-treated monolayer, suggesting the depletion of a subpopulation of T cells responsible for adhesion. Alterations of fibroblasts in vivo by immune cell-derived cytokines may be an important mechanism for the localization of lymphocytes at sites of connective tissue inflammation.  相似文献   

5.
In this study we have examined the cellular and molecular specificity of lymphocyte interaction with fibroblasts. Using mitogen-activated T-cells, we found that attachment to fibroblasts was highly sensitive to protease treatment, and to an antibody raised against the purified lymphocyte plasma membrane, but it was not mediated by the MEL-14 surface antigen or phosphomannosyl receptors. Lymphocyte interaction with fibroblasts was also unaffected by monoclonal antibodies against the LFA-1, Mac-1, and Class II MHC antigen complexes. In contrast, adhesion of both T- and B-lymphocytes was strongly inhibited by fucoidan, a polymer of sulphated fucose, whereas fucose, mannan, and mannose 6-phosphate had no effect. Both B- and T-lymphoid cell lines were able to recognise and adhere to fibroblasts, although the marked differences between the attachment of the different types of cell did not appear to be related to their immunological function. The attachment of most of the cell lines was prevented by the presence of fucoidan, whereas the inhibition of binding of each of the lymphoid lines in the presence of the anti-T-lymphocyte plasma membrane antibody varied widely. These findings suggest that lymphocyte attachment to fibroblasts involves multiple cell surface receptors, and that these are expressed at different levels on specific T- and B-cells.  相似文献   

6.
In a variety of lymphocyte interactions, lymphocyte function-associated antigen-1 (LFA-1) plays an important role as an accessory mechanism mediating cell adhesion. We tested the possibility that LFA-1 could also be involved in the specific binding of lymphocytes to high endothelial venules (HEV) during homing. Antibodies against LFA-1 but not against various other cell surface molecules (except the putative gp90 homing receptor defined by the MEL-14 antibody) were found to inhibit in vitro adherence of lymphocytes to HEV in frozen sections of lymph nodes. Binding of T cell lines to HEV was also inhibited by anti-LFA-1 antibody. Using sublines selected for differential expression of the MEL-14 antigen, MEL-14 high cells (which bind well to HEV) were less susceptible to inhibition by anti-LFA-1 than poor binders with low levels of the homing receptor, supporting the model of LFA-1 being an accessory mechanism strengthening weak interactions between cells. Parallel results were found in vivo where anti-LFA-1 antibodies reduced the migration of normal lymphocytes into lymph nodes and Peyer's patches by 40 to 60%. Localization in the lung, especially of activated lymphocytes, was also impaired, although to a lesser extent. These findings suggest that LFA-1 plays an accessory role in cellular interactions relevant for lymphocyte migration.  相似文献   

7.
Intercellular adhesion molecule-1 (ICAM-1) on the surface of cultured umbilical vein and saphenous vein endothelial cells was upregulated between 2.5- and 40-fold by rIL-1, rTNF, LPS and rIFN gamma corresponding to up to 5 X 10(6) sites/cell. Endothelial cell ICAM-1 was a single band of 90 kD in SDS-PAGE. Purified endothelial cell ICAM-1 reconstituted into liposomes and bound to plastic was an excellent substrate for both JY B lymphoblastoid cell and T lymphoblast adhesion. Adhesion to endothelial cell ICAM-1 in planar membranes was blocked completely by monoclonal antibodies to lymphocyte function associated antigen-1 (LFA-1) or ICAM-1. Adhesion to artificial membranes was most sensitive to ICAM-1 density within the physiological range found on resting and stimulated endothelial cells. Adhesion of JY B lymphoblastoid cells, normal and genetically LFA-1 deficient T lymphoblasts and resting peripheral blood lymphocytes to endothelial cell monolayers was also assayed. In summary, LFA-1 dependent (60-90% of total adhesion) and LFA-1-independent basal adhesion was observed and the use of both adhesion pathways by different interacting cell pairs was increased by monokine or lipopolysaccharide stimulation of endothelial cells. The LFA-1-dependent adhesion could be further subdivided into an LFA-1/ICAM-1-dependent component which was increased by cytokines and a basal LFA-1-dependent, ICAM-1-independent component which did not appear to be affected by cytokines. We conclude that ICAM-1 is a regulated ligand for lymphocyte-endothelial cell adhesion, but at least two other major adhesion pathways exist.  相似文献   

8.
We have previously reported that stimulation of human fibroblasts (FB) with interferon-gamma (IFN-gamma) leads to their increased adhesiveness for resting peripheral blood T lymphocytes. With the use of blocking monoclonal antibodies, we determined that intercellular adhesion molecule-1 (ICAM-1) and its T cell ligand, lymphocyte function-associated antigen-1 (LFA-1) are the major, if not only ligands involved in this system. Using an ELISA, we have confirmed earlier reported observations that IFN-gamma induces an increase of ICAM-1 expression on the surface of FB suggesting that this increase mediates lymphocyte adhesion. However, we show that treatment of FB with IL-1, while leading to comparable increases in ICAM-1 synthesis and expression, failed to induce increased adhesion. In contrast, treatment of fibroblasts with the phorbol ester, TPA, stimulated ICAM-1-dependent adhesion without an increase in ICAM-1 surface expression. This suggested that the detection of ICAM-1 by monoclonal antibody techniques may not always correlate with its functional capabilities. The contrasting effects of IFN-gamma and IL-1 on ICAM-1-dependent FB adhesion suggest that qualitative as well as quantitative alterations of the ICAM-1 molecule may regulate ligand interaction.  相似文献   

9.
CD47 is a ubiquitously expressed plasma membrane protein, also known as Integrin Associated Protein, that modulates cell adhesion both through alteration of the avidity of integrin binding and through interaction with its own ligands, the extracellular matrix protein thrombospondin (TSP) and the plasma membrane response regulator SIRPalpha1. We now show that CD47 expression on fibroblasts can induce intercellular adhesion resulting in cell aggregation in the absence of active integrins, SIRPalpha1 binding, and detectable TSP. CD47-expressing cells preferentially bind to other CD47-expressing cells, and intercellular adhesion requires stimulation by serum or a CD47-binding peptide from TSP. Cell-cell adhesion is inhibited by pertussis toxin and C. difficile toxin B, and both adherent and aggregating CD47-expressing fibroblasts have more rac in the GTP bound state than CD47-deficient cells. Spontaneous migration of Jurkat lymphocytes through a fibroblast monolayer is decreased by fibroblast expression of CD47, consistent with an increased barrier function of the CD47 expressing cells. The lymphocyte chemoattractant SDF-1alpha stimulates migration of Jurkat cells through this monolayer only if both the lymphocytes and fibroblasts express CD47, and the inhibition of migration by a CD47-interacting peptide from TSP similarly requires CD47 expression on both cell types. Thus, signaling dependent on both heterotrimeric and rho family GTPases can induce CD47 to participate in cell-cell interactions independent of known ligands that enhance intercellular adhesion and modulate cell migration.  相似文献   

10.
Intercellular adhesion molecule 1 (ICAM-1, CD54) is a member of the Ig superfamily and is a counterreceptor for the beta 2 integrins: lymphocyte function-associated antigen 1 (LFA-1, CD11a/CD18), complement receptor 1 (MAC-1, CD11b/CD18), and p150,95 (CD11c/CD18). Binding of ICAM-1 to these receptors mediates leukocyte-adhesive functions in immune and inflammatory responses. In this report, we describe a cell-free assay using purified recombinant extracellular domains of LFA-1 and a dimeric immunoadhesin of ICAM-1. The binding of recombinant secreted LFA-1 to ICAM-1 is divalent cation dependent (Mg2+ and Mn2+ promote binding) and sensitive to inhibition by antibodies that block LFA-1-mediated cell adhesion, indicating that its conformation mimics that of LFA-1 on activated lymphocytes. We describe six novel anti-ICAM-1 monoclonal antibodies, two of which are function blocking. Thirty-five point mutants of the ICAM-1 immunoadhesin were generated and residues important for binding of monoclonal antibodies and purified LFA-1 were identified. Nineteen of these mutants bind recombinant LFA-1 equivalently to wild type. Sixteen mutants show a 66-2500-fold decrease in LFA-1 binding yet, with few exceptions, retain binding to the monoclonal antibodies. These mutants, along with modeling studies, define the LFA-1 binding site on ICAM-1 as residues E34, K39, M64, Y66, N68, and Q73, that are predicted to lie on the CDFG beta-sheet of the Ig fold. The mutant G32A also abrogates binding to LFA-1 while retaining binding to all of the antibodies, possibly indicating a direct interaction of this residue with LFA-1. These data have allowed the generation of a highly refined model of the LFA-1 binding site of ICAM-1.  相似文献   

11.
12.
We report the characterization of a novel series of human endothelial cell lines (designated SGHEC) regarding the expression and release of adhesion molecules and their binding of lymphocytes. SGHEC expressed significant levels of intercellular adhesion molecule-1 (ICAM-1; CD54) which increased after stimulation with tumor necrosis factor-α (TNFα), interleukin-1β (IL-1β), or interferon-γ (IFN-γ). Vascular cell adhesion molecule-1 (VCAM-1; CD106) and E-selectin (CD62E) were not detectable on unstimulated SGHEC but substantial levels were expressed after stimulation with either TNFα or IL-1β but not with IFN-γ. The increased expression of ICAM-1 and VCAM-1 was evident after 4 h stimulation and was even higher after 24 h; E-selectin was maximal after 4 h and returned almost to basal levels by 24 h. Substantial quantities of immunoreactive ICAM-1 and VCAM-1 also accumulated as soluble material in the supernatants of TNFα-stimulated SGHEC (VCAM-1 was substantially higher than ICAM-1), but E-selectin remained below the limits of detection. Various quantitative data suggest that this is a controlled release regulated by cytokine and provide support for a physiological function for these soluble molecules. Primary human lymphocytes and lymphoblastoid cell lines expressing lymphocyte function-associated antigen-1 (LFA-1) bound to SGHEC; this binding increased substantially after activation of either cell type. The binding was inhibited by monoclonal antibodies against LFA-1 and, to a lesser extent, ICAM-1, thus demonstrating the importance of these molecules in the observed binding; neither anti-VCAM-1 nor anti-E-selectin antibodies affected the binding. From these various data, we conclude that LFA-1/ICAM-1 interactions are partially responsible for the binding of lymphocytes to endothelial cells. The SGHEC lines should prove useful in investigating leukocyte-endothelial interactions and the mechanism of release of soluble adhesion molecules.  相似文献   

13.
The beta2 integrin LFA-1 (CD11a/CD18) mediates adhesion of lymphocytes to cells expressing ICAM. The strength of this adhesion is regulated by different signals delivered by cytokines and chemokines, and by the TCR in the case of T cells. To determine the receptor-ligand interactions required for adhesion of resting NK cells, Drosophila cells expressing different combinations of ligands of human NK cell receptors were generated. Expression of ICAM-1 alone was sufficient for an adhesion of resting NK cells that was sensitive to inhibitors of src family kinase and of phosphatidylinositol 3-kinase. Binding of resting NK cells to solid-phase ICAM-1 showed similar signaling requirements. A pulse of either IL-2 or IL-15 to resting NK cells resulted in strongly enhanced, actin-dependent adhesion to insect cells expressing ICAM-1 alone. Coexpression of either LFA-3 (CD58) or CD48 with ICAM-1 resulted in strong adhesion by resting NK cells, even in the absence of cytokines. Therefore, receptors for LFA-3 and CD48 on resting NK cells strengthen the adhesion mediated by LFA-1.  相似文献   

14.
Molecular cloning of murine intercellular adhesion molecule (ICAM-1).   总被引:28,自引:0,他引:28       下载免费PDF全文
K J Horley  C Carpenito  B Baker    F Takei 《The EMBO journal》1989,8(10):2889-2896
We have previously reported a murine lymphocyte surface antigen MALA-2 of approximately 95,000 Mr which is expressed mainly on activated lymphocytes. The rat monoclonal antibody YN1/1 that detects this antigen profoundly inhibits mixed lymphocyte response. We have now purified MALA-2 and determined its partial amino acid sequence. By using non-redundant synthetic oligonucleotides as probes, based on the amino acid sequence, we have isolated two full length cDNA clones encoding MALA-2. The two clones are identical except for the 5' end sequence. Expression of MALA-2 on transfected COS cells is only achieved with one of the two cDNA clones. The nucleotide sequence as well as the deduced amino acid sequence of MALA-2 display striking homology with those of the recently reported human intercellular adhesion molecule ICAM-1. All the unique features of the human ICAM-1, including its homology with the neural adhesion molecule NCAM, its internal repeat structure and the immunoglobulin-like structure, are found in MALA-2. Furthermore, purified MALA-2 crosslinked to a solid support binds Con A blasts that express LFA-1, the putative receptor for ICAM-1, and the binding can be blocked by YN1/1 antibody or antimurine LFA-1 antibody indicating a direct interaction of these molecules in cell adhesion. Therefore, we consider MALA-2 to be the murine homolog of human ICAM-1. Since ICAM-1 is known to be of primary importance in immune responses and inflammatory reactions, having a monoclonal antibody and a mouse model will provide the opportunity to study the functional role of ICAM-1 in vivo.  相似文献   

15.
Species restrictions in immune cell interactions have been demonstrated both in Ag-specific responses of T lymphocytes and the phenomenon of natural attachment. To determine the possible contribution of adhesion receptors to these restrictions, we have studied binding between the murine and human homologues of LFA-1 (CD11a/CD18) and ICAM employing purified human LFA-1 and ICAM-1 (CD54) bound to solid substrates. Murine cell lines bind to purified human LFA-1 through ICAM-1 and at least one other counter-receptor. This provides evidence for multiple counter-receptors for LFA-1 in the mouse as well as in the human. In contrast to binding of murine ICAM-1 to human LFA-1, murine LFA-1 does not bind to human ICAM-1. The species specificity maps to the LFA-1 alpha subunit, because mouse x human hybrid cells expressing the human alpha subunit associated with a mouse beta subunit bind to human ICAM-1, whereas those with a human beta subunit associated with a murine alpha subunit do not. Increased adhesiveness for ICAM-1 stimulated by phorbol esters could be demonstrated for hybrid LFA-1 molecules with human alpha and murine beta subunits.  相似文献   

16.
The leukocyte function-associated antigen-1 (LFA-1) integrin (CD11a/CD18) is an important adhesion molecule for lymphocyte migration and the initiation of an immune response. At the cell surface, LFA-1 activity can be regulated by divalent cations that enhance receptor affinity but also by membrane clustering induced by treatment of cells with substances such as phorbol esters. Membrane clustering leads to increased LFA-1 avidity. We report here that LFA-1-mediated binding of mouse thymocytes or activated T lymphocytes to intercellular adhesion molecule 1 can be rapidly induced by clustering of membrane rafts using antibodies to the glycosylphophatidylinositol-anchored molecule CD24 or cholera toxin (CTx). CD24 and CD18 were found to co-localize in rafts and cross-linking with CTx lead to enhanced LFA-1 clustering. We observed that disruption of raft integrity by lowering the membrane cholesterol content abolished the CTx and the phorbol 12-myristate 13-acetate-induced LFA-1 binding but left the ability to activate LFA-1 with Mg(2+)/EGTA unimpaired. In contrast to activation with Mg(2+)/EGTA, activation via raft clustering was dependent on PI3-kinase, required cytoskeletal mobility, and was accompanied by Tyr phosphorylation of a 18-kDa protein. Our results support the notion that rafts as preformed adhesion platforms could be important for the rapid regulation of lymphocyte adhesion.  相似文献   

17.
18.
CD73 is a GPI-anchored lymphocyte adhesion molecule possessing an ecto-5'-nucleotidase enzyme activity. In this work, we show that engagement of lymphocyte CD73 increases lymphocyte binding to cultured endothelial cells (EC) in an LFA-1-dependent fashion. Engagement of CD73 by an anti-CD73 mAb 4G4 increases the adhesion of lymphocytes to cultured EC by about 80% compared with that of lymphocytes treated with a negative control Ab, and the increased adhesion can be blocked by an anti-CD18 mAb. The CD73-regulated increase in lymphocyte adhesion is not due to a conformational change leading to high-affinity LFA-1 receptors as assayed using mAb 24 against an activation-induced epitope of the molecule. Instead, CD73 engagement induces clustering of LFA-1 that is inhibitable by calpeptin, indicating involvement of Ca(2+)-dependent activation of a calpain-like enzyme in this process. In conclusion, the results shown here demonstrate that CD73 regulates the avidity of LFA-1 by clustering. This indicates a previously undescribed role for CD73 in controlling the poorly characterized activation step in the multistep cascade of lymphocyte extravasation. Moreover, these results suggest that in physiological conditions the activation step may result in clustering of LFA-1 rather than in an affinity change of the molecule.  相似文献   

19.
Engagement of the surface Ig receptor with anti-IgM antibodies stimulates murine B lymphocytes to markedly increase their expression of the cell adhesion molecules ICAM-1 and LFA-1. Stimulated B cells display increased homotypic adhesiveness and form spontaneous heterotypic conjugates with T lymphocytes. This latter T-B cell interaction is further enhanced if T cells have been previously activated with phorbol esters. In all cases, the formation of cell-cell conjugates is dependent on LFA-1-ICAM-1-mediated interactions as assessed in mAb blocking experiments. B lymphocytes stimulated with anti-IgM display a marked increase in binding to ICAM-1-transfected L cells. This cell-cell interaction is inhibited by anti-LFA-1 mAb binding to the B lymphocyte. Together, these results demonstrate that there is an induction of both ICAM-1 and LFA-1 on stimulated B cells and a corresponding increase in the adhesiveness of these cells. These findings suggest that Ag binding to the surface Ig receptor could prepare a B lymphocyte for subsequent interaction with a T lymphocyte. This provides insight into how efficient T-B collaboration may occur between very infrequent Ag-specific lymphocytes.  相似文献   

20.
We have shown that intercellular adhesion molecule-1 (ICAM-1) (CD54) positive cells are mainly responsible for the natural cytotoxic function of human blood lymphocytes. The evidences were the inhibition of cytotoxicity by anti-ICAM-1 (LB-2) monoclonal antibodies (mAb) and the loss of lytic activity after removal of the ICAM-1+ cells. In addition, the cytotoxic potential of the separated ICAM-1- lymphocyte population after activation appeared in parallel with the expression of this molecule. The ICAM-1+ lymphocytes lysed both LFA-1 (CD11a/CD18 or Leu-CAMa) positive and negative cell lines, and pretreatment of the effectors with the LB-2 mAb also inhibited the lysis of LFA-1- targets. The results point to a yet unrecognized role of ICAM-1 on the lymphocytes. Kinetics experiments suggested that pretreatment of lymphocytes with alpha-ICAM-1 (LB-2) mAb did not inhibit the promptly established lytic interactions but influenced later events, recycling and/or recruitment of effectors. It is possible that the cytotoxic potential is regulated by contacts between the members of the lymphocyte population and that these events occur via their ICAM-1 and LFA-1. Exposure of lymphocytes to NK-sensitive targets for 16 hr elevated their cytotoxic potential. The function of activated lymphocytes was not inhibited by the LB-2 mAb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号