首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein kinase C (PKC) isoforms exert specific intracellular functions, but the different isoforms display little substrate specificity in vitro. Selective PKC isoform targeting may be a mechanism to achieve specificity. We used a green fluorescent fusion protein (GFP) to test the hypothesis that local changes in [Ca(2+)](i) regulate translocation of PKCalpha and that different modes of Ca(2+) and Ca(2+) release play a role in PKCalpha targeting. We constructed deletion mutants of PKCalpha to analyze the Ca(2+)-sensitive domains and their role in targeting. Confocal microscopy was used and [Ca(2+)](i) was measured by fluo-3. The fusion protein PKCalpha-GFP was expressed in vascular smooth muscle cells and showed a cytosolic distribution similar to the wild-type PKCalpha protein. The Ca(2+) ionophore ionomycin induced a speckled cytosolic PKCalpha-GFP distribution, followed by membrane translocation, while depolarization by KCl induced primarily membrane translocation. Selective voltage-operated Ca(2+) channel opening led to a localized accumulation of PKCalpha-GFP near the plasma membrane. Opening Ca(2+) stores with InsP(3), thapsigargin, or ryanodine induced a specific PKCalpha-GFP targeting to distinct intracellular areas. The G-protein-coupled receptor agonist thrombin induced a rapid translocation of the fusion protein to focal domains. The tyrosine kinase receptor agonist PDGF induced Ca(2+) influx and led to a linear PKCalpha-GFP membrane association. PKCalpha-GFP deletion mutants demonstrated that the C2 domain, but not the catalytic subunit, is necessary for Ca(2+)-induced PKCalpha targeting. Targeting was also abolished when the ATP binding site was deleted. We conclude that PKCalpha can rapidly be translocated to distinct intracellular or membrane domains by local increases in [Ca(2+)](i). The targeting mechanism is dependent on the C2 and ATP binding site of the enzyme. Localized [Ca(2+)](i) changes determine the spatial and temporal targeting of PKCalpha.  相似文献   

2.
Elevation of the intracellular calcium concentration ([Ca2+]i) to levels below 1 microm alters synaptic transmission and induces short-term plasticity. To identify calcium sensors involved in this signalling, we investigated soluble C2 domain-containing proteins and found that both DOC2A and DOC2B are modulated by submicromolar calcium levels. Fluorescent-tagged DOC2A and DOC2B translocated to plasma membranes after [Ca2+]i elevation. DOC2B translocation preceded DOC2A translocation in cells co-expressing both isoforms. Half-maximal translocation occurred at 450 and 175 nm[Ca2+]i for DOC2A and DOC2B, respectively. This large difference in calcium sensitivity was accompanied by a modest kinetic difference (halftimes, respectively, 2.6 and 2.0 s). The calcium sensitivity of DOC2 isoforms can be explained by predicted topologies of their C2A domains. Consistently, neutralization of aspartates D218 and D220 in DOC2B changed its calcium affinity. In neurones, both DOC2 isoforms were reversibly recruited to the plasma membrane during trains of action potentials. Consistent with its higher calcium sensitivity, DOC2B translocated at lower depolarization frequencies. Styryl dye uptake experiments in hippocampal neurones suggest that the overexpression of mutated DOC2B alters the synaptic activity. We conclude that both DOC2A and DOC2B are regulated by neuronal activity, and hypothesize that their calcium-dependent translocation may regulate synaptic activity.  相似文献   

3.
Increased intracellular Ca(2+) concentrations ([Ca(2+)](i)) promote cytosolic phospholipase A(2) (cPLA(2)) translocation to intracellular membranes. The specific membranes to which cPLA(2) translocates and the [Ca(2+)](i) signals required were investigated. Plasmids of EGFP fused to full-length cPLA(2) (EGFP-FL) or to the cPLA(2) C2 domain (EGFP-C2) were used in Ca(2+)/EGFP imaging experiments of cells treated with [Ca(2+)](i)-mobilizing agonists. EGFP-FL and -C2 translocated to Golgi in response to sustained [Ca(2+)](i) greater than approximately 100-125 nm and to Golgi, ER, and perinuclear membranes (PNM) at [Ca(2+)](i) greater than approximately 210-280 nm. In response to short duration [Ca(2+)](i) transients, EGFP-C2 translocated to Golgi, ER, and PNM, but EGFP-FL translocation was restricted to Golgi. However, EGFP-FL translocated to Golgi, ER, and PNM in response to long duration transients. In response to declining [Ca(2+)](i), EGFP-C2 readily dissociated from Golgi, but EGFP-FL dissociation was delayed. Agonist-induced arachidonic acid release was proportional to the [Ca(2+)](i) and to the extent of cPLA(2) translocation. In summary, we find that the differential translocation of cPLA(2) to Golgi or to ER and PNM is a function of [Ca(2+)](i) amplitude and duration. These results suggest that the cPLA(2) C2 domain regulates differential, Ca(2+)-dependent membrane targeting and that the catalytic domain regulates both the rate of translocation and enzyme residence.  相似文献   

4.
Ca(2+)-dependent fusion of transport vesicles at their target can be enhanced by intracellular Ca2+ and diacylglycerol. Diacylglycerol induces translocation of the vesicle priming factor Munc13 and association of the secretory vesicle protein DOC2B to the membrane. Here we demonstrate that a rise in intracellular Ca2+ is sufficient for a Munc13-independent recruitment of DOC2B to the target membrane. This novel mechanism occurred readily in the absence of Munc13 and was not influenced by DOC2B mutations that abolish Munc13 binding. Purified DOC2B (expressed as a bacterial fusion protein) bound phospholipids in a Ca(2+)-dependent way, suggesting that the translocation is the result of a C2 domain activation mechanism. Ca(2+)-induced translocation was also observed in cultured neurons expressing DOC2B-enhanced green fluorescent protein. In this case, however, various degrees of membrane association occurred under resting conditions, suggesting that physiological Ca2+ concentrations modulate DOC2B localization. Depolarization of the neurons induced a complete translocation of DOC2B-enhanced green fluorescent protein to the target membrane within 5 s. We hypothesize that this novel Ca(2+)-induced activity of DOC2B functions synergistically with diacylglycerol-induced Munc13 binding to enhance exocytosis during episodes of high secretory activity.  相似文献   

5.
Effects of extracellular calcium ([Ca(2+)](ext)) on parathyroid cells are mainly due to the activation of a plasma membrane calcium receptor (CaR) coupled with release of intracellular calcium. In addition, high [Ca(2+)](ext) activates the sphingomyelin pathway in bovine parathyroid cells, generating ceramides and sphingosine. This study explored the direct effects of synthetic ceramides on [Ca(2+)](i) in human parathyroid cells. Cells from five parathyroid adenomas removed from patients with primary hyperparathyroidism were dispersed and maintained in primary culture. Intracellular calcium concentration ([Ca(2+)](i)) [Ca(2+)](i) was monitored using standard quantitative fluorescence microscopy in Fura-2/AM-loaded cells. Laser scanning microscopy was used to monitor the intracellular distribution of a fluorescent ceramide analogue (BODIPY-C5). After addition of 10 microM C2-ceramide (N-acetyl-d-erythro-sphingosine), [Ca(2+)](i) increased rapidly (30-60 s) to a peak three times above basal levels in 70% of cells (37/55 cells in four experiments). This effect appeared to be due to release of Ca(2+) from intracellular stores rather than Ca(2+) entry from the extracellular medium. C2-responsive cells had a smaller [Ca(2+)](i) response to subsequent stimulation with the CaR agonist-neomycin (1 mM). These responses were specific to C2 since C6-ceramide (N-hexanoyl-d-erythro-sphingosine) did not affect basal [Ca(2+)](i) nor the responses to an increase in [Ca(2+)](ext) and to neomycin. C5-BODIPY generated intense perinuclear fluorescence, suggesting targeting of the ceramides to the Golgi apparatus. These data demonstrate that endogenous generation of ceramides has the potential to modulate changes in [Ca(2+)](i) and secretion in response to [Ca(2+)](ext) in human parathyroid cells.  相似文献   

6.
Modulation of intracellular calcium ([Ca(2+)](i)) by erythropoietin (Epo) is an important signaling pathway controlling erythroid proliferation and differentiation. Transient receptor potential (TRP) channels TRPC3 and homologous TRPC6 are expressed on normal human erythroid precursors, but Epo stimulates an increase in [Ca(2+)](i) through TRPC3 but not TRPC6. Here, the role of specific domains in the different responsiveness of TRPC3 and TRPC6 to erythropoietin was explored. TRPC3 and TRPC6 TRP domains differ in seven amino acids. Substitution of five amino acids (DDKPS) in the TRPC3 TRP domain with those of TRPC6 (EERVN) abolished the Epo-stimulated increase in [Ca(2+)](i). Substitution of EERVN in TRPC6 TRP domain with DDKPS in TRPC3 did not confer Epo responsiveness. However, substitution of TRPC6 TRP with DDKPS from TRPC3 TRP, as well as swapping the TRPC6 distal C terminus (C2) with that of TRPC3, resulted in a chimeric TRPC6 channel with Epo responsiveness similar to TRPC3. Substitution of TRPC6 with TRPC3 TRP and the putative TRPC3 C-terminal AMP-activated protein kinase (AMPK) binding site straddling TRPC3 C1/C2 also resulted in TRPC6 activation. In contrast, substitution of the TRPC3 C-terminal leucine zipper motif or TRPC3 phosphorylation sites Ser-681, Ser-708, or Ser-764 with TRPC6 sequence did not affect TRPC3 Epo responsiveness. TRPC3, but not TRPC6, and TRPC6 chimeras expressing TRPC3 C2 showed significantly increased plasma membrane insertion following Epo stimulation and substantial cytoskeletal association. The TRPC3 TRP domain, distal C terminus (C2), and AMPK binding site are critical elements that confer Epo responsiveness. In particular, the TRPC3 C2 and AMPK site are essential for association of TRPC3 with the cytoskeleton and increased channel translocation to the cell surface in response to Epo stimulation.  相似文献   

7.
Stimulation of secretory cells with muscarinic agonists leads to an increase in the intracellular Ca (2+)concentration ([Ca (2+)]( i)), which activates protein secretion through exocytosis and causes closure of gap junctions between adjacent cells. In addition, the increase in [Ca (2+)](i) activates three different kinds of ion channels: large K(+) channels, Cl(-) channels and non-specific cation channels. The opening of those channels leads to an increase of [Na(+ )] and a decrease of [Cl(-)] and [K(+) ] in the cell. The two components that contribute to the increase in [Ca (2+)]( i) are calcium release from intracellular stores, localised in the endoplasmic reticulum and calcium influx through the plasma membrane. Several models for the regulation of [Ca (2+)](i) have been proposed, including a recently suggested model whereby a distinct pathway involving arachidonic acid is added to the well-established capacitative model. Different hypotheses concerning coupling between the intra-cellular calcium stores and membrane channels co-exist. In addition to a historical overview, recent developments and future challenges are discussed in this review.  相似文献   

8.
A rise in intracellular free Ca(2+) concentration ([Ca(2+)](i)) is required to activate sperm of all organisms studied. Such elevation of [Ca(2+)](i) can occur either by influx of extracellular Ca(2+) or by release of Ca(2+) from intracellular stores. We have examined these sources of Ca(2+) in sperm from the sea squirt Ascidia ceratodes using mitochondrial translocation to evaluate activation and the Ca(2+)-sensitive dye fura-2 to monitor [Ca(2+)](i) by bulk spectrofluorometry. Sperm activation artificially evoked by incubation in high-pH seawater was inhibited by reducing seawater [Ca(2+)], as well as by the presence of high [K(+)](o) or the Ca channel blockers pimozide, penfluridol, or Ni(2+), but not nifedipine or Co(2+). The accompanying rise in [Ca(2+)](i) was also blocked by pimozide or penfluridol. These results indicate that activation produced by alkaline incubation involves opening of plasmalemmal voltage-dependent Ca channels and Ca(2+) entry to initiate mitochondrial translocation. Incubation in thimerosal or thapsigargin, but not ryanodine (even if combined with caffeine pretreatment), evoked sperm activation. Activation by thimerosal was insensitive to reduced external calcium and to Ca channel blockers. Sperm [Ca(2+)](i) increased upon incubation in high-pH or thimerosal-containing seawater, but only the high-pH-dependent elevation in [Ca(2+)](i) could be inhibited by pimozide or penfluridol. Treatment with the protonophore CCCP indicated that only a small percentage of sperm could release enough Ca(2+) from mitochondria to cause activation. Inositol 1,4,5-trisphosphate (IP(3)) delivered by liposomes or by permeabilization increased sperm activation. Both of these effects were blocked by heparin. We conclude that high external pH induces intracellular alkalization that directly or indirectly activates plasma membrane voltage-dependent Ca channels allowing entry of external Ca(2+) and that thimerosal stimulates release of Ca(2+) from IP(3)-sensitive intracellular stores.  相似文献   

9.
A role for protein kinase C during rat egg activation   总被引:2,自引:0,他引:2  
Upon sperm-egg interaction, an increase in intracellular calcium concentration ([Ca(2+)](i)) is observed. Several studies reported that cortical reaction (CR) can be triggered not only by a [Ca(2+)](i) rise but also by protein kinase C (PKC) activation. Because the CR is regarded as a Ca(2+)-dependent exocytotic process and because the calcium-dependent conventional PKCs (cPKC) alpha and beta II are considered as exocytosis mediators in various cell systems, we chose to study activation of the cPKC in the rat egg during in vivo fertilization and parthenogenetic activation. By using immunohistochemistry and confocal microscopy techniques, we demonstrated, for the first time, the activation of the cPKC alpha, beta I, and beta II during in vivo fertilization. All three isozymes examined presented translocation to the egg's plasma membrane as early as the sperm-binding stage. However, the kinetics of their translocation was not identical. Activation of cPKC alpha was obtained by the phorbol ester 12-O-tetradecanoyl phorbol-13-acetate (TPA) or by 1-oleoyl-2-acetylglycerol (OAG) but not by the calcium ionophore ionomycin. PKC alpha translocation was first detected 5-10 min after exposure to TPA and reached a maximum at 20 min, whereas in eggs activated by OAG, translocation of PKC alpha was observed almost immediately and reached a maximum within 5 min. These results suggest that, although [Ca(2+)](i) elevation on its own does not activate PKC alpha, it may accelerate OAG-induced PKC alpha activation. We also demonstrate a successful inhibition of the CR by a myristoylated PKC pseudosubstrate (myrPKCPsi), a specific PKC inhibitor. Our study suggests that exocytosis can be triggered independently either by a [Ca(2+)](i) rise or by PKC.  相似文献   

10.
Lai JN  Wang OY  Lin VH  Liao CF  Tarng DC  Chien EJ 《Steroids》2012,77(10):1017-1024
Progesterone is an endogenous immunomodulator that is able to suppress T cell activation during pregnancy. An increased intracellular free calcium concentration ([Ca(2+)](i)), acidification, and an inhibition of Na(+)/H(+)-exchange 1 (NHE1) are associated with this progesterone rapid non-genomic response that involves plasma membrane sites. Such acidification, when induced by phytohemagglutinin, is calcium dependent in PKC down-regulated T cells. We investigated the relationship between this rapid response involving the [Ca(2+)](i) increase and various membrane progesterone receptors (mPRs). In addition, we explored whether the induction of acidification in T cells by progesterone is a direct result of the [Ca(2+)](i) increase. The results show that the intracellular calcium elevation caused by progesterone is inhibited by SKF96365, U73122, and 2-APB, but not by pertussis toxin or U73343. The elevation is enhanced by the protein tyrosine kinase inhibitor staurosporine and the protein kinase C inhibitors Ro318220 and Go6983. These findings suggest that progesterone does not stimulate the [Ca(2+)](i) increase via the Gi coupled mPR(α). Furthermore, progesterone-induced acidification was found to be dependent on Ca(2+) entry and blocked by the inorganic channel blocker, Ni(2+). However, BAPTA, an intracellular calcium chelator, was found to prevent progesterone-induced acidification but not the inhibition of NHE1. This implies that acidification by progesterone is a direct result of the [Ca(2+)](i) increase and does not directly involve NHE1. Taken together, further investigations are needed to explore whether one or more mPRs or PGRMC1 are involved in bringing about the T cell rapid response that results in the [Ca(2+)](i) increase and inhibition of NHE1.  相似文献   

11.
[Ca(2+)](i) oscillations can either depend on oscillatory inositol-1,4,5-trisphosphate (InsP(3)) formation by phospholipase C (PLC) or rely on local feedback mechanisms involving the InsP(3) receptor. To assess the PLC activity underlying carbachol-induced [Ca(2+)](i) oscillations in single HEK293 cells, we co-imaged [Ca(2+)](i) with fluorescent fusion proteins of protein kinase C (PKC) isotypes and the PH domain of PLC-delta 1 (PLC-delta 1(PH)). The translocation of PKC alpha-YFP in single cells followed two discrete patterns. Upon maximally effective agonist concentrations, a fast association and delayed dissociation (k(on)>k(off)) was the predominant pattern. The delayed dissociation has been linked to diacylglycerol formation. Upon stimulation with submaximally effective agonist concentrations as well as during regenerative [Ca(2+)](i) waves, we mainly observed short translocations with k(on) approximately equal to k(off). Translocation time courses and efficiencies of the diacylglycerol-sensing PKC epsilon-CFP and the InsP(3)/phosphatidylinositol-4,5-bisphosphate-sensing YFP-PLC-delta 1(PH) were closely correlated. Significant PLC activity was only detectable upon strong receptor stimulation, which typically failed to trigger [Ca(2+)](i) oscillations. During [Ca(2+)](i) oscillations induced by submaximal receptor stimulation, YFP-PLC-delta 1(PH) did not translocate, whereas a fluorescent PKC epsilon fusion protein has been reported to exhibit a slow, non-oscillatory accumulation at the plasma membrane. We conclude that carbachol-induced [Ca(2+)](i) oscillations in HEK293 cells develop at low levels of presumably non-oscillatory PLC activity.  相似文献   

12.
Application of protein kinases A and C inhibitors to the prothoracic glands cells of the silkworm, Bombyx mori, resulted in slow and gradual increases in intracellular Ca(2+) ([Ca(2+)](i)). Pharmacological manipulation of the Ca(2+) signalling cascades in the prothoracic gland cells of B. mori suggests that these increases of [Ca(2+)](i) are mediated neither by voltage-gated Ca(2+) channels nor by intracellular Ca(2+) stores. Rather they result from slow Ca(2+) leak from plasma membrane Ca(2+) channels that are sensitive to agents that inhibit capacitative Ca(2+) entry and are abolished in the absence of extracellular Ca(2+). Okadaic acid, an inhibitor of PP1 and PP2A phosphatases, blocked the increase in [Ca(2+)](i) produced by the inhibitors of protein kinase A and C. The combined results indicate that the capacitative Ca(2+) entry channels in prothoracic gland cells of B. mori are probably modulated by protein kinases A and C.  相似文献   

13.
Resident tissue macrophages mediate early innate immune responses to microbial infection. Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) is activated in macrophages during phagocytosis of non-opsonized yeast (zymosan) triggering arachidonic acid release and eicosanoid production. cPLA(2)alpha translocates from cytosol to membrane in response to intracellular calcium concentration ([Ca(2+)](i)) increases. Enhanced green fluorescent protein (EGFP)-cPLA(2)alpha translocated to forming phagosomes, surrounding the zymosan particle by 5 min and completely overlapping with early endosome (Rab5) and plasma membrane (F4/80) markers but only partially overlapping with resident endoplasmic reticulum proteins (GRP78 and cyclooxygenase 2). EGFP-cPLA(2)alpha also localized to membrane ruffles during phagocytosis. Zymosan induced an initial high amplitude calcium transient that preceded particle uptake followed by a low amplitude sustained calcium increase. Both phases were required for optimal phagocytosis. Extracellular calcium chelation prevented only the sustained phase but allowed a limited number of phagocytic events, which were accompanied by translocation of cPLA(2)alpha to the phagosome although [Ca(2+)](i) remained at resting levels. The results demonstrate that cPLA(2)alpha targets the phagosome membrane, which may serve as a source of arachidonic acid for eicosanoid production.  相似文献   

14.
The interplay between activated G proteins and intracellular calcium ([Ca(2+)](i)) in the regulation of secretion was studied in the macrophage, coupling membrane capacitance with calcium-sensitive microfluorimetry. Intracellular elevation of either the nonhydrolyzable analogue of GTP, guanosine-5'-O-(3-thiotriphosphate) (GTP gamma S), or [Ca(2+)](i) enhanced the amplitude and shortened the time course of stimulus-induced secretion in a dose-dependent manner. Both the ionophore- and the stimulus-induced secretory response were abolished in the presence of guanosine-5'-O-(2-thiodiphosphate) (GDP beta S). The K(d) of Ca(2+)-driven secretion was independent of GTP gamma S concentration, whereas the K(d) of the GTP gamma S-driven response decreased from 63 to 31 microM in the presence of saturating concentrations of [Ca(2+)](i). The time course of stimulus-induced secretion was dependent upon the concentration of [Ca(2+)](i). The time course of GTP gamma S-driven secretion was concentration-independent at high levels of [Ca(2+)](i), suggesting that a calcium-dependent translocation/binding step was rate-limiting. Our data strongly support a model in which [Ca(2+)](i) and activated G proteins act independently of one another in the sequential regulation of macrophage secretion. [Ca(2+)](i) appears to play a role in the recruitment and priming of vesicles from reserve intracellular pools at a step that is upstream of G protein activation. While activated, G proteins appear to play a key role in fusion of docked vesicles. Thus, secretion can result either from activating more G proteins or from elevating [Ca(2+)](i) at basal levels of G protein activation.  相似文献   

15.
The present study was designed to investigate the possible effects of peroxynitrite (ONOO(-)) on the intracellular calcium concentration ([Ca(2+)](i)) of mesenteric arteriolar smooth muscle cells (ASMCs), and to reveal the underlying mechanisms by using fluorescence imaging analysis. The results showed that ONOO(-) could exert a concentration- and time-dependent but also a dual effect on [Ca(2+)](i). Bolus administration with a low concentration of ONOO(-) (25 microM) decreased [Ca(2+)](i), whereas higher concentrations (50 or 100 microM) increased [Ca(2+)](i) persistently. Further experiments demonstrated that pretreatment of ASMCs with calcium-free medium completely abolished [Ca(2+)](i) increase by 100 microM ONOO(-). Additionally, nifedipine, an antagonist of selective L-type voltage-gated calcium channels (VGCCs), delayed the [Ca(2+)](i) response to ONOO(-), and ryanodine, an inhibitor of intracellular calcium release from the sarcoplasmic reticulum, effectively antagonized [Ca(2+)](i) increase during the late stage of ONOO(-) exposure. Furthermore, [Ca(2+)](i) alteration by ONOO(-) appeared to be intimately associated with the subsequent membrane potential changes. Although the mechanisms by which ONOO(-) alters [Ca(2+)](i) are complex, we conclude that a series of variables such as external calcium influx, activation of VGCCs, intracellular calcium release, and membrane potential changes are involved. The decrease of [Ca(2+)](i) in ASMCs by a low concentration of ONOO(-) may participate in the pathogenesis of low vasoreactivity in shock, and the increase of [Ca(2+)](i) by high concentrations of ONOO(-) may lead to calcium overload with cellular injury.  相似文献   

16.
Cytosolic phospholipase A2 (cPLA2) catalyzes release of arachidonic acid from membranes following translocation to Golgi and endoplasmic reticulum. In response to an intracellular calcium concentration ([Ca2+]i) increase, the C2 domain binds Ca2+ and brings the catalytic domain into proximity with its phospholipid substrate. Because membrane residence is important in the regulation of cPLA2 activity, we explored the contributions of the C2 and catalytic domains in mediating membrane residence using an imaging approach in live cells with fluorescent protein chimeras of cPLA2. The isolated cPLA2 C2 domain associated with Golgi membranes rapidly in proportion to the [Ca2+]i, allowing for its use as a [Ca2+]i indicator. cPLA2 association with Golgi was slower than the isolated C2 domain in response to a [Ca2+]i increase. After [Ca2+]i decrease, cPLA2 remained associated with membrane in a Ca(2+)-independent fashion whereas C2 domain rapidly dissociated. Ca(2+)-independent membrane association was greatly reduced by mutation of Trp464, located at the membrane-exposed face of the catalytic domain, to Gly or Ala. Mutation of Trp464 to Phe supported Ca(2+)-independent association similar to wild type. These results demonstrate a role for the cPLA2 catalytic domain in regulating membrane association and membrane residence time.  相似文献   

17.
The effect of micromolar intracellular levels of ryanodine was tested on the myoplasmic free calcium concentration ([Ca(2+)](i)) measured from a portion of isolated mouse skeletal muscle fibers voltage-clamped at -80 mV. When ryanodine-injected fibers were transiently depolarized to 0 mV, the early decay phase of [Ca(2+)](i) upon membrane repolarization was followed by a steady elevated [Ca(2+)](i) level. This effect could be qualitatively well simulated, assuming that ryanodine binds to release channels that open during depolarization and that ryanodine-bound channels do not close upon repolarization. The amplitude of the postpulse [Ca(2+)](i) elevation depended on the duration of the depolarization, being hardly detectable for pulses shorter than 100 ms, and very prominent for duration pulses of seconds. Within a series of consecutive pulses of the same duration, the effect of ryanodine produced a staircase increase in resting [Ca(2+)](i), the slope of which was approximately twice larger for depolarizations to 0 or +10 mV than to -30 or -20 mV. Overall results are consistent with the "open-locked" state because of ryanodine binding to calcium release channels that open during depolarization. Within the voltage-sensitive range of calcium release, increasing either the amplitude or the duration of the depolarization seems to enhance the fraction of release channels accessible to ryanodine.  相似文献   

18.
Mori MX  Imai Y  Itsuki K  Inoue R 《Biochemistry》2011,50(21):4685-4696
Calcium dynamics and its linked molecular interactions cause a variety of biological responses; thus, exploiting techniques for detecting both concurrently is essential. Here we describe a method for measuring the cytosolic Ca(2+) concentration ([Ca(2+)](i)) and protein-protein interactions within the same cell, using Fura-2 and superenhanced cyan and yellow fluorescence protein (seCFP and seYFP, respectively) FRET imaging techniques. Concentration-independent corrections for bleed-through of Fura-2 into FRET cubes across different time points and [Ca(2+)](i) values allowed for an effective separation of Fura-2 cross-talk signals and seCFP and seYFP cross-talk signals, permitting calculation of [Ca(2+)](i) and FRET with high fidelity. This correction approach was particularly effective at lower [Ca(2+)](i) levels, eliminating bleed-through signals that resulted in an artificial enhancement of FRET. By adopting this correction approach combined with stepwise [Ca(2+)](i) increases produced in living cells, we successfully elucidated steady-state relationships between [Ca(2+)](i) and FRET derived from the interaction of seCFP-tagged calmodulin (CaM) and the seYFP-fused CaM binding domain of myosin light chain kinase. The [Ca(2+)](i) versus FRET relationship for voltage-gated sodium, calcium, and TRPC6 channel CaM binding domains (IQ domain or CBD) revealed distinct sensitivities for [Ca(2+)](i). Moreover, the CaM binding strength at basal or subbasal [Ca(2+)](i) levels provided evidence of CaM tethering or apoCaM binding in living cells. Of the ion channel studies, apoCaM binding was weakest for the TRPC6 channel, suggesting that more global Ca(2+) and CaM changes rather than the local CaM-channel interface domain may be involved in Ca(2+)CaM-mediated regulation of this channel. This simultaneous Fura-2 and CFP- and YFP-based FRET imaging system will thus serve as a simple but powerful means of quantitatively elucidating cellular events associated with Ca(2+)-dependent functions.  相似文献   

19.
To investigate the mechanisms by which low intracellular pH influences calcium signaling, I have injected HCl, and in some experiments CaCl(2), into snail neurons while recording intracellular pH (pH(i)) and calcium concentration ([Ca(2+)](i)) with ion-sensitive microelectrodes. Unlike fluorescent indicators, these do not increase buffering. Slow injections of HCl (changing pH(i) by 0.1-0.2 pH units min(-1)) first decreased [Ca(2+)](i) while pH(i) was still close to normal, but then increased [Ca(2+)](i) when pH(i) fell below 6.8-7. As pH(i) recovered after such an injection, [Ca(2+)](i) started to fall but then increased transiently before returning to its preinjection level. Both the acid-induced decrease and the recovery-induced increase in [Ca(2+)](i) were abolished by cyclopiazonic acid, which empties calcium stores. Caffeine with or without ryanodine lowered [Ca(2+)](i) and converted the acid-induced fall in [Ca(2+)](i) to an increase. Injection of ortho-vanadate increased steady-state [Ca(2+)](i) and its response to acidification, which was again blocked by CPA. The normal initial response to 10 mM caffeine, a transient increase in [Ca(2+)](i), did not occur with pH(i) below 7.1. When HCl was injected during a series of short CaCl(2) injections, the [Ca(2+)](i) transients (recorded as changes in the potential (V(Ca)) of the Ca(2+)-sensitive microelectrode), were reduced by only 20% for a 1 pH unit acidification, as was the rate of recovery after each injection. Calcium transients induced by brief depolarizations, however, were reduced by 60% by a similar acidification. These results suggest that low pH(i) has little effect on the plasma membrane calcium pump (PMCA) but important effects on the calcium stores, including blocking their response to caffeine. Acidosis inhibits spontaneous calcium release via the RYR, and leads to increased store content which is unloaded when pH(i) returns to normal. Spontaneous release is enhanced by the rise in [Ca(2+)](i) caused by inhibiting the PMCA.  相似文献   

20.
Extracellular nucleotides such as ATP have been shown to regulate ion transport processes in a variety of epithelia. This effect is mediated by the activation of plasma membrane P2Y receptors, which leads to Ca(2+) signaling cascade. Ion transport processes (e.g. activation of apical calcium-dependent Cl(-) channels) are then stimulated via an increase in [Ca(2+)](i). Many polarized epithelia express apical and/or basolateral P2Y receptors. To test whether apical and basolateral stimulation of P2Y receptors elicit polarized Ca(2+) signaling and anion secretion, we simultaneously measured the two parameters in polarized epithelia. Although activation of P2Y receptors located at both apical and basolateral membranes evoked an increase in [Ca(2+)](i), only apical P2Y receptors-coupled Ca(2+) release stimulated an increase in anion secretion. Moreover, the calcium influx evoked by apical and basolateral P2Y receptor stimulation is predominately via the basolateral membrane domain. It appears that the apical P2Y receptor-regulated Ca(2+) release and activation of apical Cl(-) channels is compartmentalized in polarized epithelia with basolateral P2Y-stimulated Ca(2+) release failing to activate anion secretion. These data suggest that there may be two distinct ATP-releasable Ca(2+) pools, each coupled to apical and basolateral membrane receptor but linked to the same calcium influx pathway located at the basolateral membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号