首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysosomes concentrate juxtanuclearly in the region around the microtubule-organizing center by interaction with microtubules. Different experimental and physiological conditions can induce these organelles to move to the cell periphery by a mechanism implying a plus-end-directed microtubule-motor protein (a kinesin-like motor). The responsible kinesin-superfamily protein, however, is unknown. We have identified a new mouse isoform of the kinesin superfamily, KIF2beta, an alternatively spliced isoform of the known, neuronal kinesin, KIF2. Developmental expression pattern and cell-type analysis in vivo and in vitro reveal that KIF2beta is abundant at early developmental stages of the hippocampus but is then downregulated in differentiated neuronal cells, and it is mainly or uniquely expressed in non-neuronal cells while KIF2 remains exclusively neuronal. Electron microscopy of mouse fibroblasts and immunofluorescence of KIF2beta-transiently-transfected fibroblasts show KIF2 and KIF2beta primarily associated with lysosomes, and this association can be disrupted by detergent treatment. In KIF2beta-overexpressing cells, lysosomes (labeled with anti-lysosome-associated membrane protein-1) become abnormally large and peripherally located at some distance from their usual perinuclear positions. Overexpression of KIF2 or KIF2beta does not change the size or distribution of early, late and recycling endosomes nor does overexpression of different kinesin superfamily proteins result in changes in lysosome size or positioning. These results implicate KIF2beta as a motor responsible for the peripheral translocation of lysosomes.  相似文献   

2.
Different classes of endosomes exhibit a characteristic intracellular steady-state distribution governed by interactions with the cytoskeleton. We found a kinesin-3, KIF16B, that transports early endosomes to the plus end of microtubules in a process regulated by the small GTPase Rab5 and its effector, the phosphatidylinositol-3-OH kinase hVPS34. In vivo, KIF16B overexpression relocated early endosomes to the cell periphery and inhibited transport to the degradative pathway. Conversely, expression of dominant-negative mutants or ablation of KIF16B by RNAi caused the clustering of early endosomes to the perinuclear region, delayed receptor recycling to the plasma membrane, and accelerated degradation. These results suggest that KIF16B, by regulating the plus end motility of early endosomes, modulates the intracellular localization of early endosomes and the balance between receptor recycling and degradation. We propose that this mechanism could have important implications for signaling.  相似文献   

3.

Background

Enhanced lysosomal trafficking is associated with metastatic cancer. In an attempt to discover cancer relevant lysosomal motor proteins, we compared the lysosomal proteomes from parental MCF-7 breast cancer cells with those from highly invasive MCF-7 cells that express an active form of the ErbB2 (ΔN-ErbB2).

Methodology/Principal Findings

Mass spectrometry analysis identified kinesin heavy chain protein KIF5B as the only microtubule motor associated with the lysosomes in MCF-7 cells, and ectopic ΔN-ErbB2 enhanced its lysosomal association. KIF5B associated with lysosomes also in HeLa cervix carcinoma cells as analyzed by subcellular fractionation. The depletion of KIF5B triggered peripheral aggregations of lysosomes followed by lysosomal destabilization, and cell death in HeLa cells. Lysosomal exocytosis in response to plasma membrane damage as well as fluid phase endocytosis functioned, however, normally in these cells. Both HeLa and MCF-7 cells appeared to express similar levels of the KIF5B isoform but the death phenotype was weaker in KIF5B-depleted MCF-7 cells. Surprisingly, KIF5B depletion inhibited the rapamycin-induced accumulation of autophagosomes in MCF-7 cells. In KIF5B-depleted cells the autophagosomes formed and accumulated in the close proximity to the Golgi apparatus, whereas in the control cells they appeared uniformly distributed in the cytoplasm.

Conclusions/Significance

Our data identify KIF5B as a cancer relevant lysosomal motor protein with additional functions in autophagosome formation.  相似文献   

4.
Insulin stimulates glucose uptake in muscle and adipose cells by mobilizing intracellular membrane vesicles containing GLUT4 glucose transporter proteins to the plasma membrane. Here we show in live cultured adipocytes that intracellular membranes containing GLUT4-yellow fluorescent protein (YFP) move along tubulin-cyan fluorescent protein-labeled microtubules in response to insulin by a mechanism that is insensitive to the phosphatidylinositol 3 (PI3)-kinase inhibitor wortmannin. Insulin increased by several fold the observed frequencies, but not velocities, of long-range movements of GLUT4-YFP on microtubules, both away from and towards the perinuclear region. Genomics screens show conventional kinesin KIF5B is highly expressed in adipocytes and this kinesin is partially co-localized with perinuclear GLUT4. Dominant-negative mutants of conventional kinesin light chain blocked outward GLUT4 vesicle movements and translocation of exofacial Myc-tagged GLUT4-green fluorescent protein to the plasma membrane in response to insulin. These data reveal that insulin signaling targets the engagement or initiates the movement of GLUT4-containing membranes on microtubules via conventional kinesin through a PI3-kinase-independent mechanism. This insulin signaling pathway regulating KIF5B function appears to be required for GLUT4 translocation to the plasma membrane.  相似文献   

5.
The presence of protein aggregates is common in neurodegenerative disorders; however, the real cause and effect of these aggregates during neurodegeneration is still a matter of investigation. We hypothesize that impairment of intracellular traffic may appear in the absence of protein inclusions and might trigger protein aggregation. In the present study, we aimed to evaluate mitochondria mobility as well as protein and messenger RNA expression of KIF1B and KIF5 that are molecular motors for neuronal anterograde traffic, in hippocampus, substantia nigra, and locus coeruleus of 10-month-old Lewis rats and cultured cells, from these same areas, following exposure to low doses of rotenone that do not lead to protein inclusions. The present study showed alteration in KIF1B and KIF5 expression, as well as in mitochondria mobility prior to protein aggregation involved in neurodegenerative disorders. These findings suggest that change in intracellular trafficking might be critical and one of the primary events for impairment of cell physiology during neurodegeneration associated with protein inclusions.  相似文献   

6.
驱动蛋白与肿瘤的发生有密切联系,但对 KIF26B驱动蛋白在非小细胞肺癌的表达和相关功能作用的研究甚少。为了探索KIF26B在非小细胞肺癌中的表达水平及潜在机制,通过干扰KIF26B后探索对非小细胞肺癌增殖、侵袭、迁移、细胞周期、凋亡以及相关蛋白表达量的影响。对mRNA TCGA 数据库信息分析得出,KIF26B基因在非小细胞肺癌中高表达。qRT-PCR 检测 KIF26B在几株常见非小细胞肺癌细胞系中的表达水平,筛选出 KIF26B在A549 和 NCI-H292细胞系中高表达。利用 RNA干扰技术(RNA interference, RNAi)敲低 A549 和 NCI-H292细胞的 KIF26B基因,通过CCK8、采用实时细胞分析仪、平板克隆及 Transwell 实验检测敲低 KIF26B基因后的生物学功能,免疫印迹法检测蛋白表达水平。结果显示,敲低KIF26B后A549 和 NCI-H292细胞增殖明显降低,侵袭及迁移能力明显减弱。敲低KIF26B后阻碍了A549 和 NCI-H292细胞从G1期向S期的转变,同时凋亡细胞明显增多,与之相关的细胞周期蛋白 D1、Bcl-2、E-cadherin和Vimentin的表达水平显著下调,同时活化的半胱天冬酶-3(active Caspase-3)和其剪切底物 PARP1 的剪切体(cleaved PARP1)表达水平显著上调。结果表明KIF26B可能作为非小细胞肺癌发生的促癌基因,参与了非小细胞肺癌的发生及发展过程。KIF26B有望成为非小细胞肺癌治疗的潜在靶点。  相似文献   

7.
SNARE expression and distribution during 3T3-L1 adipocyte differentiation   总被引:3,自引:0,他引:3  
Differentiation of 3T3-L1 cells into adipocytes presupposes the expression of the glucose transporter isoform GLUT4 and the acquisition of insulin-dependent GLUT4 translocation from intracellular storage vesicles to plasma membrane. This ability to translocate GLUT4 depends on the presence of a set of proteins of the SNARE category that are essential in the fusion step. The expression and levels of some of these SNARE proteins are altered during 3T3-L1 differentiation. Levels of the v-SNARE protein cellubrevin and of the t-SNARE protein syntaxin 4 were increased in this process in parallel to GLUT4. However, the levels of SNAP-23, another t-SNARE, were maintained during differentiation. Immunofluorescence images of SNAP-23 showed the initial distribution of this protein in a perinuclear region before differentiation and its redistribution towards plasma membrane in the adipocyte form. These results suggest a capital role in the expression levels and cellular distribution, during 3T3-L1 differentiation, of SNARE proteins involved in the late steps of GLUT4 translocation.  相似文献   

8.
LIM kinase (LIMK) plays a critical role in stimulus-induced remodeling of the actin cytoskeleton by linking signals from the Rho family GTPases to changes in cofilin activity. Recent studies have shown an important role for LIMK1 signaling in tumor cell invasion through regulating actin dynamics. In this study, we investigate the role of LIMK1 in intracellular vesicle trafficking of lysosomes/endosomes. We analyzed by confocal immunofluorescence microscopy the cellular distribution of lysosomal proteins and the endocytosis of an endocytic tracer, epidermal growth factor (EGF), in LIMK1-transfected cells. We found in these cells an abnormal dispersed translocation of lysosomes stained for LIMPII and cathepsin D throughout the cytoplasm. The small punctate structures that stained for these lysosomal proteins were redistributed to the periphery of the cell. Computational 3D-image analysis of confocal immunofluorescence micrographs further demonstrated that these vesicles did not colocalize with the transferrin receptor, an early endosomal marker. Furthermore, LIMPII-positive lysosomes did not colocalize with early endosomes labeled with endocytosed Texas red-transferrin. These results indicate that there is no mixing between dispersed lysosomes and early endosomes in the LIMK1-transfected cells. Moreover, LIMK1 overexpression resulted in a marked retardation in the receptor-mediated internalization of Texas red-labeled EGF in comparison with mock-transfected cells. At 30 min after internalization, most of the Texas red-EGF staining overlapped with LIMPII-positive late endosomes/lysosomes in mock-transfected cells, whereas in LIMK1 transfectants only a small fraction of internalized EGF colocalized with LIMPII-positive structures in the perinuclear region. Taken together, the findings presented in this paper suggest that LIMK1 has a role in regulating vesicle trafficking of lysosomes and endosomes in invasive tumor cells.  相似文献   

9.
Lamellipodia formation necessary for epithelial cell migration and invasion is accomplished by rearrangement of the actin cytoskeleton at the leading edge through membrane transport of WAVE2. However, how WAVE2 is transported to the cell periphery where lamellipodia are formed remains to be established. We report here that hepatocyte growth factor (HGF) promoted lamellipodia formation and intracellular transport of WAVE2 to the cell periphery, depending on Rac1 activity, in MDA-MB-231 human breast cancer cells. Immunoblot analyses indicating the coimmunoprecipitation of WAVE2 with kinesin heavy chain KIF5B, one of the motor proteins, and IQGAP1 suggest that KIF5B and IQGAP1 formed a complex with WAVE2 in serum-starved cells and increased in their amount after HGF stimulation. Both downregulation of KIF5B by the small interfering RNA and depolymerization of microtubules with nocodazole abrogated the HGF-induced lamellipodia formation and WAVE2 transport. Therefore, we propose here that the promotion of lamellipodia formation by HGF in MDA-MB-231 cells is Rac1-dependent and requires KIF5B-mediated transport of WAVE2 and IQGAP1 to the cell periphery along microtubules.  相似文献   

10.
11.
People homozygous for mutations in the Niemann-Pick type C1 (NPC1) gene have physiological defects, including excess accumulation of intracellular cholesterol and other lipids, that lead to drastic neural and liver degeneration. The NPC1 multipass transmembrane protein is resident in late endosomes and lysosomes, but its functions are unknown. We find that organelles containing functional NPC1-fluorescent protein fusions undergo dramatic movements, some in association with extending strands of endoplasmic reticulum. In NPC1 mutant cells the NPC1-bearing organelles that normally move at high speed between perinuclear regions and the periphery of the cell are largely absent. Pulse-chase experiments with dialkylindocarbocyanine low-density lipoprotein showed that NPC1 organelles function late in the endocytic pathway; NPC1 protein may aid the partitioning of endocytic and lysosomal compartments. The close connection between NPC1 and the drug U18666A, which causes NPC1-like organelle defects, was established by rescuing drug-treated cells with overproduced NPC1. U18666A inhibits outward movements of NPC1 organelles, trapping membranes and cholesterol in perinuclear organelles similar to those in NPC1 mutant cells, even when cells are grown in lipoprotein-depleted serum. We conclude that NPC1 protein promotes the creation and/or movement of particular late endosomes, which rapidly transport materials to and from the cell periphery.  相似文献   

12.
Insulin stimulates glucose transport by promoting translocation of GLUT4 proteins from the perinuclear compartment to the cell surface. It has been previously suggested that the microtubule-associated motor protein kinesin, which transports cargo toward the plus end of microtubules, plays a role in translocating GLUT4 vesicles to the cell surface. In this study, we investigated the role of Rab4, a small GTPase-binding protein, and the motor protein KIF3 (kinesin II in mice) in insulin-induced GLUT4 exocytosis in 3T3-L1 adipocytes. Photoaffinity labeling of Rab4 with [gamma-(32)P]GTP-azidoanilide showed that insulin stimulated Rab4 GTP loading and that this insulin effect was inhibited by pretreatment with the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor LY294002 or expression of dominant-negative protein kinase C-lambda (PKC-lambda). Consistent with previous reports, expression of dominant-negative Rab4 (N121I) decreased insulin-induced GLUT4 translocation by 45%. Microinjection of an anti-KIF3 antibody into 3T3-L1 adipocytes decreased insulin-induced GLUT4 exocytosis by 65% but had no effect on endocytosis. Coimmunoprecipitation experiments showed that Rab4, but not Rab5, physically associated with KIF3, and this was confirmed by showing in vitro association using glutathione S-transferase-Rab4. A microtubule capture assay demonstrated that insulin stimulation increased the activity for the binding of KIF3 to microtubules and that this activation was inhibited by pretreatment with the PI3-kinase inhibitor LY294002 or expression of dominant-negative PKC-lambda. Taken together, these data indicate that (i) insulin signaling stimulates Rab4 activity, the association of Rab4 with kinesin, and the interaction of KIF3 with microtubules and (ii) this process is mediated by insulin-induced PI3-kinase-dependent PKC-lambda activation and participates in GLUT4 exocytosis in 3T3-L1 adipocytes.  相似文献   

13.
The kinesin superfamily motor protein KIF1B has been shown to transport mitochondria. Here, we describe an isoform of KIF1B, KIF1Bbeta, that is distinct from KIF1B in its cargo binding domain. KIF1B knockout mice die at birth from apnea due to nervous system defects. Death of knockout neurons in culture can be rescued by expression of the beta isoform. The KIF1B heterozygotes have a defect in transporting synaptic vesicle precursors and suffer from progressive muscle weakness similar to human neuropathies. Charcot-Marie-Tooth disease type 2A was previously mapped to an interval containing KIF1B. We show that CMT2A patients contain a loss-of-function mutation in the motor domain of the KIF1B gene. This is clear indication that defects in axonal transport due to a mutated motor protein can underlie human peripheral neuropathy.  相似文献   

14.
Proper targeting of the βPAK-interacting exchange factor (βPIX)/G protein-coupled receptor kinase-interacting target protein (GIT) complex into distinct cellular compartments is essential for its diverse functions including neurite extension and synaptogenesis. However, the mechanism for translocation of this complex is still unknown. In the present study, we reported that the conventional kinesin, called kinesin-1, can transport the βPIX/GIT complex. Additionally, βPIX bind to KIF5A, a neuronal isoform of kinesin-1 heavy chain, but not KIF1 and KIF3. Mapping analysis revealed that the tail of KIF5s and LZ domain of βPIX were the respective binding domains. Silencing KIF5A or the expression of a variety of mutant forms of KIF5A inhibited βPIX targeting the neurite tips in PC12 cells. Fur-thermore, truncated mutants of βPIX without LZ domain did not interact with KIF5A, and were unable to target the neurite tips in PC12 cells. These results defined kinesin-1 as a motor protein of βPIX, and may provide new insights into βPIX/GIT complex-dependent neuronal pathophysiology.  相似文献   

15.
The Ran-binding protein 2 (RanBP2) is a large mosaic protein with a pleiotropic role in cell function. Although the contribution of each partner and domain of RanBP2 to its biological functions are not understood, physiological deficits of RanBP2 downregulate glucose catabolism and energy homeostasis and lead to delocalization of mitochondria components in photosensory neurons. The kinesin-binding domain (KBD) of RanBP2 associates selectively in the central nervous system (CNS), and directly, with the ubiquitous and CNS-specific kinesins, KIF5B and KIF5C, respectively, but not with the highly homologous KIF5A. Here, we determine the molecular and biological bases of the selective interaction between RanBP2 and KIF5B/KIF5C. This interaction is conferred by a approximately 100-residue segment, comprising a portion of the coiled-coil and globular tail cargo-binding domains of KIF5B/KIF5C. A single residue conserved in KIF5B and KIF5C, but not KIF5A, confers KIF5-isotype-specific association with RanBP2. This interaction is also mediated by a conserved leucine-like heptad motif present in KIF5s and KBD of RanBP2. Selective inhibition of the interaction between KBD of RanBP2 and KIF5B/KIF5C in cell lines causes perinuclear clustering of mitochondria, but not of lysosomes, deficits in mitochondrial membrane potential and ultimately, cell shrinkage. Collectively, the data provide a rationale of the KIF5 subtype-specific interaction with RanBP2 and support a novel kinesin-dependent role of RanBP2 in mitochondria transport and function. The data also strengthen a model whereby the selection of a large array of cargoes for transport by a restricted number of motor proteins is mediated by adaptor proteins such as RanBP2.  相似文献   

16.
Protein kinase C (PKC) isoforms are key mediators in hormone, growth factor, and neurotransmitter triggered pathways of cell activation (Nishizuka: Science 233:305-312, 1986; Nature 334:661-665, 1988). Stimulation of kinase activity by diacylglycerol and calcium often leads to translocation of PKC from the cytosol to a particulate fraction (Kraft and Anderson: Nature 301:621-623, 1983). The beta isoform of PKC is translocated and degraded much more rapidly than the alpha isoform in phorbolester-stimulated rat basophilic leukemia (RBL) cells (Huang et al.: J. Biol. Chem. 264:4238-4243, 1989). We report here immunofluorescence evidence that the distributions of PKC alpha and beta are strikingly different in antigen-activated RBL cells. PKC beta associates with perinuclear filaments and filaments that extend from the perinuclear area to the cell periphery whereas PKC alpha concentrates in regions of the cell periphery. This distribution of PKC beta is distinctly different from that of actin filaments and microtubules as determined by phalloidin staining and by anti-tubulin antibody labeling. In contrast, the staining patterns obtained with antibodies to PKC beta and to the intermediate filament protein vimentin are almost identical, indicating that PKC beta associates with vimentin filaments. These bundles of 100 A filaments may provide docking sites for interactions of PKC beta with its substrates and thus confer specificity to the actions of this isoform.  相似文献   

17.
Stbd1 is a protein of previously unknown function that is most prevalent in liver and muscle, the major sites for storage of the energy reserve glycogen. The protein is predicted to contain a hydrophobic N terminus and a C-terminal CBM20 glycan binding domain. Here, we show that Stbd1 binds to glycogen in vitro and that endogenous Stbd1 locates to perinuclear compartments in cultured mouse FL83B or Rat1 cells. When overexpressed in COSM9 cells, Stbd1 concentrated at enlarged perinuclear structures, co-localized with glycogen, the late endosomal/lysosomal marker LAMP1 and the autophagy protein GABARAPL1. Mutant Stbd1 lacking the N-terminal hydrophobic segment had a diffuse distribution throughout the cell. Point mutations in the CBM20 domain did not change the perinuclear localization of Stbd1, but glycogen was no longer concentrated in this compartment. Stable overexpression of glycogen synthase in Rat1WT4 cells resulted in accumulation of glycogen as massive perinuclear deposits, where a large fraction of the detectable Stbd1 co-localized. Starvation of Rat1WT4 cells for glucose resulted in dissipation of the massive glycogen stores into numerous and much smaller glycogen deposits that retained Stbd1. In vitro, in cells, and in animal models, Stbd1 consistently tracked with glycogen. We conclude that Stbd1 is involved in glycogen metabolism by binding to glycogen and anchoring it to membranes, thereby affecting its cellular localization and its intracellular trafficking to lysosomes.  相似文献   

18.
Insulin-regulated aminopeptidase (IRAP) is an abundant cargo protein of Glut4 storage vesicles (GSVs) that traffics to and from the plasma membrane in response to insulin. We used the amino terminus cytoplasmic domain of IRAP, residues 1-109, as an affinity reagent to identify cytosolic proteins that might be involved in GSV trafficking. In this way, we identified p115, a peripheral membrane protein known to be involved in membrane trafficking. In murine adipocytes, we determined that p115 was localized to the perinuclear region by immunofluorescence and throughout the cell by fractionation. By immunofluorescence, p115 partially colocalizes with GLUT4 and IRAP in the perinuclear region of cultured fat cells. The amino terminus of p115 binds to IRAP and overexpression of a N-terminal construct results in its colocalization with GLUT4 throughout the cell. Insulin-stimulated GLUT4 translocation is completely inhibited under these conditions. Overexpression of p115 C-terminus has no significant effect on GLUT4 distribution and translocation. Finally, expression of the p115 N-terminus construct has no effect on the distribution and trafficking of GLUT1. These data suggest that p115 has an important and specific role in insulin-stimulated Glut4 translocation, probably by way of tethering insulin-sensitive Glut4 vesicles at an as yet unknown intracellular site.  相似文献   

19.
Renal cell carcinoma (RCC) is a common urinary system cancer with high morbidity and mortality rate. Clear cell renal cell carcinoma (ccRCC) is a highly aggressive and common type of RCC. More and effective therapeutic targets are badly needed for the treatment of ccRCC. Kinesin family protein (KIF)20B, also named M-phase phosphoprotein 1, was reported as a microtubule-associated, plus-end-directed kinesin. KIF20B was involved in multiple cellular processes such as cytokinesis. Multiple studies indicated the oncogenic role for KIF20B in several types of tumors, including breast cancer and bladder cancer. However, the possible role of KIF20B in the progression of renal carcinoma is still unknown. Herein, our study demonstrated that KIF20B was relatively highly expressed in ccRCC tissues. In addition, KIF20B was inversely related to the clinical features including tumor size and T stage. We further found that inhibition of the KIF20B expression by a specific short hairpin RNA obviously reduces proliferation of ccRCC cells both in vitro and in vivo. Our study reveals the involvement of KIF20B in ccRCC progression. Generally, KIF20B is a promising novel therapeutic for the treatment of clear cell RCC.  相似文献   

20.
Expression of NCS-1 (neuronal calcium sensor-1, also termed frequenin) in 3T3L1 adipocytes strongly inhibited insulin-stimulated translocation of GLUT4 and insulin-responsive aminopeptidase. The effect of NCS-1 was specific for GLUT4 and the insulin-responsive aminopeptidase translocation as there was no effect on the trafficking of the cation-independent mannose 6-phosphate receptor or the GLUT1 glucose transporter isoform. Moreover, NCS-1 showed partial colocalization with GLUT4-EGFP in the perinuclear region. The inhibitory action of NCS-1 was independent of calcium sequestration since neither treatment with ionomycin nor endothelin-1, both of which elevated the intracellular calcium concentration, restored insulin-stimulated GLUT4 translocation. Furthermore, NCS-1 did not alter the insulin-stimulated protein kinase B (PKB/Akt) phosphorylation or the recruitment of Cbl to the plasma membrane. In contrast, expression of the NCS-1 effector phosphatidylinositol 4-kinase (PI 4-kinase) inhibited insulin-stimulated GLUT4 translocation, whereas co-transfection with an inactive PI 4-kinase mutant prevented the NCS-1-induced inhibition. These data demonstrate that PI 4-kinase functions to negatively regulate GLUT4 translocation through its interaction with NCS-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号