首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both circulating and mucosal antibodies are considered important for protection against infection by influenza virus in humans and animals. However, current inactivated vaccines administered by intramuscular injection using a syringe and needle elicit primarily circulating antibodies. In this study, we report that epidermal powder immunization (EPI) via a unique powder delivery system elicits both serum and mucosal antibodies to an inactivated influenza virus vaccine. Serum antibody responses to influenza vaccine following EPI were enhanced by codelivery of cholera toxin (CT), a synthetic oligodeoxynucleotide containing immunostimulatory CpG motifs (CpG DNA), or the combination of these two adjuvants. In addition, secretory immunoglobulin A (sIgA) antibodies were detected in the saliva and mucosal lavages of the small intestine, trachea, and vaginal tract, although the titers were much lower than the IgG titers. The local origin of the sIgA antibodies was further shown by measuring antibodies released from cultured tracheal and small intestinal fragments and by detecting antigen-specific IgA-secreting cells in the lamina propria using ELISPOT assays. EPI with a single dose of influenza vaccine containing CT or CT and CpG DNA conferred complete protection against lethal challenges with an influenza virus isolated 30 years ago, whereas a prime and boost immunizations were required for protection in the absence of an adjuvant. The ability to elicit augmented circulating antibody and mucosal antibody responses makes EPI a promising alternative to needle injection for administering vaccines against influenza and other diseases.  相似文献   

2.
For many vaccines the amount of antibodies induced has a positive correlation with the likelihood of clinical protection from disease. Mean antibody level is therefore frequently used as a serological surrogate endpoint for vaccine efficacy. In addition, a dichotomous surrogate endpoint is often defined: seroprotection. We explore the relationship between mean antibody level, seroprotection and clinical protection from influenza, using a simple statistical model. The model reveals that the relationship depends not only on the mean but also on the dispersion of the antibody levels, the threshold for clinical protection and the clinical protection curve. The consequences for the interpretation of mean antibody levels and seroprotection rates in terms of clinical protection from influenza are discussed.  相似文献   

3.
Zhang F  Chen J  Fang F  Zhou Y  Wu J  Chang H  Zhang R  Wang F  Li X  Wang H  Ma G  Chen Z 《DNA and cell biology》2005,24(11):758-765
Maternal immunization is the major form of protection against many infectious diseases in early life. In this report, transmission of vaccine-specific maternal antibodies and protection of offspring against a lethal influenza virus challenge were studied. Adult female BALB/c mice were immunized intramuscularly with plasmid DNAs encoding influenza virus hemagglutinin (HA), neuraminidase (NA), or mixture of the two plasmids. The levels of specific antibodies in sera of offspring at different ages and the survival rates following the lethal viral challenge were valued. The results showed effective transmission of maternal antibodies and long-lasting protection in offspring. Along with the growth of offspring, the antibody titers in vivo decreased and the ability against virus infection decreased accordingly. The HA-specific maternal antibodies protected the offspring from a lethal influenza infection up to 2 weeks old, and the NA-specific maternal antibodies protected offspring up to 4 weeks old. Furthermore, antibodies transferred by the mother immunized with the mixture of HA and NA DNAs protected the offspring up to 6 weeks old. This suggests that maternal immunization with a mixture of HA and NA DNAs provide the most effective protection against the virus challenge for the offspring of mice.  相似文献   

4.
The immunogenicity of a novel particulate oral influenza vaccine was examined in terms of antibody response and protection in mice. Oral immunization with chicken erythrocytes (CRBC) adsorbed with gamma-irradiated influenza A virus induced high levels of immunoglobulin G antibodies and protection in the lung compared with gamma-irradiated virus administered alone or CRBC. Immunoglobulin A antibodies were the predominant antibodies in nasal washings, and their presence did not correlate with protection as well as immunoglobulin G antibodies. Immunity was not specific for the immunizing virus subtype, as antibodies and enhanced lung clearance of virus were demonstrated with different virus subtypes. However, mice were not protected when challenged with live influenza B virus. The antibody response and the degree of protection were dependent on both the concentration of virus adsorbed to CRBC and number of CRBC adsorbed to virus. Virus-adsorbed CRBC given subcutaneously failed to induce antibodies or protection. Oral immunization with A/Qld/6/72 (H3N2) virus gave a high level of protection over 12 weeks, which could be demonstrated with different subtypes. Protection correlated with antibody levels in the lung determined by both enzyme-linked immunosorbent and hemagglutination inhibition assays, although the levels detected by the latter declined over time.  相似文献   

5.
Elderly humans over 65 years old are at great risk to pathogenesis by influenza virus infection. However, although influenza vaccines provide effective protection in healthy young adults, protection of elderly adults is substantially lower even with a good match between the vaccine and the circulating influenza virus. To gain insight of the underlying mechanism for the reduced immunogenicity of influenza vaccines in the aged population, we investigated immunogenicity of influenza virus-like particle vaccines in aged mice, which represent a useful model for studying aging associated impairment in immune responses. Specifically, we investigated the effect of inhibiting regulatory T cells in aged mice on induction of protective immune responses by influenza vaccines. Our results showed that injecting anti-CD25 antibodies could down-regulate CD25 on the surface of regulatory T cells and significantly increase the levels of antibody responses induced by VLP immunization in aged mice. Further, the profiles of antibody responses were also changed towards Th1 type by regulatory T cell blockage in aged mice. Moreover, aged mice that were treated by anti-CD25 antibodies prior to vaccination were more effectively protected against lethal influenza virus challenge.  相似文献   

6.
Current influenza virus vaccines contain H1N1 (phylogenetic group 1 hemagglutinin), H3N2 (phylogenetic group 2 hemagglutinin), and influenza B virus components. These vaccines induce good protection against closely matched strains by predominantly eliciting antibodies against the membrane distal globular head domain of their respective viral hemagglutinins. This domain, however, undergoes rapid antigenic drift, allowing the virus to escape neutralizing antibody responses. The membrane proximal stalk domain of the hemagglutinin is much more conserved compared to the head domain. In recent years, a growing collection of antibodies that neutralize a broad range of influenza virus strains and subtypes by binding to this domain has been isolated. Here, we demonstrate that a vaccination strategy based on the stalk domain of the H3 hemagglutinin (group 2) induces in mice broadly neutralizing anti-stalk antibodies that are highly cross-reactive to heterologous H3, H10, H14, H15, and H7 (derived from the novel Chinese H7N9 virus) hemagglutinins. Furthermore, we demonstrate that these antibodies confer broad protection against influenza viruses expressing various group 2 hemagglutinins, including an H7 subtype. Through passive transfer experiments, we show that the protection is mediated mainly by neutralizing antibodies against the stalk domain. Our data suggest that, in mice, a vaccine strategy based on the hemagglutinin stalk domain can protect against viruses expressing divergent group 2 hemagglutinins.  相似文献   

7.
Seasonal epidemics of influenza virus result in ∼36,000 deaths annually in the United States. Current vaccines against influenza virus elicit an antibody response specific for the envelope glycoproteins. However, high mutation rates result in the emergence of new viral serotypes, which elude neutralization by preexisting antibodies. T lymphocytes have been reported to be capable of mediating heterosubtypic protection through recognition of internal, more conserved, influenza virus proteins. Here, we demonstrate using a recombinant influenza virus expressing the LCMV GP33-41 epitope that influenza virus-specific CD8+ T cells and virus-specific non-neutralizing antibodies each are relatively ineffective at conferring heterosubtypic protective immunity alone. However, when combined virus-specific CD8 T cells and non-neutralizing antibodies cooperatively elicit robust protective immunity. This synergistic improvement in protective immunity is dependent, at least in part, on alveolar macrophages and/or other lung phagocytes. Overall, our studies suggest that an influenza vaccine capable of eliciting both CD8+ T cells and antibodies specific for highly conserved influenza proteins may be able to provide heterosubtypic protection in humans, and act as the basis for a potential “universal” vaccine.  相似文献   

8.
Current influenza vaccines are believed to confer protection against a narrow range of virus strains. The identification of broadly influenza neutralizing antibodies (bnAbs) has triggered efforts to develop vaccines providing ‘universal’ protection against influenza. Several bnAbs were isolated from humans recently vaccinated with conventional influenza vaccines, suggesting that such vaccines could, in principle, be broadly protective. Assessing the breadth-of-protection conferred to humans by influenza vaccines is hampered by the lack of in vitro correlates for broad protection. We designed and employed a novel human-to-mouse serum transfer and challenge model to analyze protective responses in serum samples from clinical trial subjects. One dose of seasonal vaccine induces humoral protection not only against vaccine-homologous H1N1 challenge, but also against H5N1 challenge. This heterosubtypic protection is neither detected, nor accurately predicted by in vitro immunogenicity assays. Moreover, heterosubtypic protection is transient and not boosted by repeated inoculations. Strategies to increase the breadth and duration of the protective response against influenza are required to obtain ‘universal’ protection against influenza by vaccination. In the absence of known correlates of protection for broadly protective vaccines, the human-to-mouse serum transfer and challenge model described here may aid the development of such vaccines.  相似文献   

9.
Heterosubtypic immunity (HSI) is defined as cross-protection against influenza virus of a different serotype than the virus initially encountered and is thought to be mediated by influenza virus-specific cytotoxic T lymphocytes (CTL). Since gamma interferon (IFN-gamma) stimulates cytotoxic cells, including antigen-specific CTL which may control virus replication by secretion of antiviral cytokines such as tumor necrosis factor alpha and IFN-gamma, we have investigated the mechanism of HSI by analyzing the role of IFN-gamma for HSI in IFN-gamma gene-deleted (IFN-gamma(-/-)) mice. It has been reported that IFN-gamma is not required for recovery from primary infection with influenza virus but is important for HSI. Here, we conclusively show that IFN-gamma is not required for induction of secondary influenza virus-specific CTL responses in mediastinal lymph nodes and HSI to lethal influenza A virus infection. Although T helper 2 (Th2)-type cytokines were upregulated in the lungs of IFN-gamma(-/-) mice after virus challenge, either Th1- or Th2-biased responses could provide heterosubtypic protection. Furthermore, titers of serum-neutralizing and cross-reactive antibodies to conserved nucleoprotein in IFN-gamma(-/-) mice did not differ significantly from those in immunocompetent mice. These results indicate that lack of IFN-gamma does not impair cross-reactive virus-specific immune responses and HSI to lethal infection with influenza virus. Our findings provide new insight for the mechanisms of HSI and should be valuable in the development of protective mucosal vaccines against variant virus strains, such as influenza and human immunodeficiency virus.  相似文献   

10.
We characterized human monoclonal antibodies (MAbs) cloned from influenza virus-infected patients and from influenza vaccine recipients by complement-dependent lysis (CDL) assay. Most MAbs active in CDL were neutralizing, but not all neutralizing MAbs can mediate CDL. Two of the three stalk-specific neutralizing MAbs tested were able to mediate CDL and were more cross-reactive to temporally distant H1N1 strains than the conventional hemagglutination-inhibiting and neutralizing MAbs. One of the stalk-specific MAbs was subtype cross-reactive to H1 and H2 hemagglutinins, suggesting a role for stalk-specific antibodies in protection against influenza illness, especially by a novel viral subtype which can cause pandemics.  相似文献   

11.
This study sought to define the role of memory lymphocytes in the protection from homologous influenza A virus re-challenge in rhesus macaques. Depleting monoclonal antibodies (mAb) were administered to the animals prior to their second experimental inoculation with a human seasonal influenza A virus strain. Treatment with either anti-CD8α or anti-CD20 mAbs prior to re-challenge had minimal effect on influenza A virus replication. Thus, in non-human primates with pre-existing anti-influenza A antibodies, memory B cells and CD8α+ T cells do not contribute to the control of virus replication after re-challenge with a homologous strain of influenza A virus.  相似文献   

12.
2002~2004年兰州市流感疫苗免疫效果分析   总被引:2,自引:0,他引:2  
2002~2004年每年9~11月在兰州市对我省使用流感疫苗进行血清学考核,3年用血凝抑制试验(H I)分别检测44、52、49人疫苗免疫前后不同4种血清型流感病毒的抗体水平。结果显示,接种疫苗者30~35 d后流感病毒4个血清型流感病毒H I抗体均有不同程度的增长,H1N1、H3N2、B(Yam agata)、B(V ictorian)保护率(≥1∶40)分别为91.72%、91.72%、81.63%和59.38%;免疫后人体H I抗体滴度的几何均数(GMT)分别为1∶221.76、1∶189.58、1∶71.04和1∶43.04;较接种前H I抗体滴度≥4倍的分别占53.79%(78/145)、58.62%(84/145)、75.51%(37/49)和58.37%(56/96)。血清学检测表明流感疫苗免疫效果好,免疫成功率高。  相似文献   

13.
Human-to-human transmission of influenza viruses is a serious public health threat, yet the precise role of immunity from previous infections on the susceptibility to airborne infection is still unknown. Using the ferret model, we examined the roles of exposure duration and heterosubtypic immunity on influenza transmission. We demonstrate that a 48 hour exposure is sufficient for efficient transmission of H1N1 and H3N2 viruses. To test pre-existing immunity, a gap of 8–12 weeks between primary and secondary infections was imposed to reduce innate responses and ensure robust infection of donor animals with heterosubtypic viruses. We found that pre-existing H3N2 immunity did not significantly block transmission of the 2009 H1N1pandemic (H1N1pdm09) virus to immune animals. Surprisingly, airborne transmission of seasonal H3N2 influenza strains was abrogated in recipient animals with H1N1pdm09 pre-existing immunity. This protection from natural infection with H3N2 virus was independent of neutralizing antibodies. Pre-existing immunity with influenza B virus did not block H3N2 virus transmission, indicating that the protection was likely driven by the adaptive immune response. We demonstrate that pre-existing immunity can impact susceptibility to heterologous influenza virus strains, and implicate a novel correlate of protection that can limit the spread of respiratory pathogens through the air.  相似文献   

14.
Influenza viruses are respiratory pathogens that continue to pose a significantly high risk of morbidity and mortality of humans worldwide. Vaccination is one of the most effective strategies for minimizing damages by influenza outbreaks. In addition, rapid development and production of efficient vaccine with convenient administration is required in case of influenza pandemic. In this study, we generated recombinant influenza virus hemagglutinin protein 1 (sHA1) of 2009 pandemic influenza virus as a vaccine candidate using a well-established bacterial expression system and administered it into mice via sublingual (s.l.) route. We found that s.l. immunization with the recombinant sHA1 plus cholera toxin (CT) induced mucosal antibodies as well as systemic antibodies including neutralizing Abs and provided complete protection against infection with pandemic influenza virus A/CA/04/09 (H1N1) in mice. Indeed, the protection efficacy was comparable with that induced by intramuscular (i.m.) immunization route utilized as general administration route of influenza vaccine. These results suggest that s.l. vaccination with the recombinant non-glycosylated HA1 protein offers an alternative strategy to control influenza outbreaks including pandemics.  相似文献   

15.
The widespread influenza virus infection further emphasizes the need for novel vaccine strategies that effectively reduce the impact of epidemic as well as pandemic influenza. Conventional influenza vaccines generally induce virus neutralizing antibody responses which are specific for a few antigenically related strains within the same subtype. However, antibodies directed against the conserved stalk domain of HA could neutralize multiple subtypes of influenza virus and thus provide broad-spectrum protection. In this study, we designed and constructed a recombinant baculovirus-based vaccine, rBac-HA virus, that expresses full-length HA of pandemic H1N1 influenza virus (A/California/04/09) on the viral envelope. We demonstrated that repeated intranasal immunizations with rBac-HA virus induced HA stalk-specific antibody responses and protective immunity against homologous as well as heterosubtypic virus challenge. The adoptive transfer experiment shows that the cross-protection is conferred by the immune sera which contain HA stalk-specific antibodies. These results warrant further development of rBac-HA virus as a broad-protective vaccine against influenza. The vaccine induced protection against infection with the same subtype as well as different subtype, promising a potential universal vaccine for broad protection against different subtypes to control influenza outbreaks including pandemic.  相似文献   

16.

Background

During the recent H1N1 influenza pandemic, excess morbidity and mortality was seen in young but not older adults suggesting that prior infection with influenza strains may have protected older subjects. In contrast, a history of recent seasonal trivalent vaccine in younger adults was not associated with protection.

Methods and Findings

To study hemagglutinin (HA) antibody responses in influenza immunization and infection, we have studied the day 7 plasma cell repertoires of subjects immunized with seasonal trivalent inactivated influenza vaccine (TIV) and compared them to the plasma cell repertoires of subjects experimentally infected (EI) with influenza H3N2 A/Wisconsin/67/2005. The majority of circulating plasma cells after TIV produced influenza-specific antibodies, while most plasma cells after EI produced antibodies that did not react with influenza HA. While anti-HA antibodies from TIV subjects were primarily reactive with single or few HA strains, anti-HA antibodies from EI subjects were isolated that reacted with multiple HA strains. Plasma cell-derived anti-HA antibodies from TIV subjects showed more evidence of clonal expansion compared with antibodies from EI subjects. From an H3N2-infected subject, we isolated a 4-member clonal lineage of broadly cross-reactive antibodies that bound to multiple HA subtypes and neutralized both H1N1 and H3N2 viruses. This broad reactivity was not detected in post-infection plasma suggesting this broadly reactive clonal lineage was not immunodominant in this subject.

Conclusion

The presence of broadly reactive subdominant antibody responses in some EI subjects suggests that improved vaccine designs that make broadly reactive antibody responses immunodominant could protect against novel influenza strains.  相似文献   

17.
The discovery of broadly neutralizing antibodies that recognize highly conserved epitopes in the membrane-proximal region of influenza virus hemagglutinin (HA) has revitalized efforts to develop a universal influenza virus vaccine. This effort will likely require novel immunogens that contain these epitopes but lack the variable and immunodominant epitopes located in the globular head of HA. As a first step toward developing such an immunogen, we investigated whether the 20-residue A-helix of the HA2 chain that forms the major component of the epitope of broadly neutralizing antibodies CR6261, F10, and others is sufficient by itself to elicit antibodies with similarly broad antiviral activity. Here, we report the multivalent display of the A-helix on icosahedral virus-like particles (VLPs) derived from the capsid of Flock House virus. Mice immunized with VLPs displaying 180 copies/particle of the A-helix produced antibodies that recognized trimeric HA and the elicited antibodies had binding characteristics similar to those of CR6261 and F10: they recognized multiple HA subtypes from group 1 but not from group 2. However, the anti-A-helix antibodies did not neutralize influenza virus. These results indicate that further engineering of the transplanted peptide is required and that display of additional regions of the epitope may be necessary to achieve protection.  相似文献   

18.
A single intraperitoneal injection of pregnant mice with a monovalent Formalin-inactivated influenza A virus vaccine protected their offspring against a lethal challenge dose of the same influenza A virus H3N2, H2N2, and H1N1 subtypes, as well as against challenge with the other two subtypes. Degree of protection was vaccine dose related. Cross-fostering of neonates indicated that protection was conferred by breast milk antibodies. Serum virus-specific neutralizing antibodies in the mothers and neonates correlated with resistance to vaccine virus, but were detected against other subtypes only in a complement enhancement test or when high doses of vaccine were given.  相似文献   

19.
Jang YH  Byun YH  Lee YJ  Lee YH  Lee KH  Seong BL 《Journal of virology》2012,86(10):5953-5958
The rapid transmission of the pandemic 2009 H1N1 influenza virus (pH1N1) among humans has raised the concern of a potential emergence of reassortment between pH1N1 and highly pathogenic influenza strains, especially the avian H5N1 influenza virus. Here, we report that the cold-adapted pH1N1 live attenuated vaccine (CApH1N1) elicits cross-reactive immunity to seasonal and H5 influenza A viruses in the mouse model. Immunization with CApH1N1 induced both systemic and mucosal antibodies with broad reactivity to seasonal and H5 strains, including HAPI H5N1 and the avian H5N2 virus, providing complete protection against heterologous and heterosubtypic lethal challenges. Our results not only accentuate the merit of using live attenuated influenza virus vaccines in view of cross-reactivity but also represent the potential of CApH1N1 live vaccine for mitigating the clinical severity of infections that arise from reassortments between pH1N1 and highly pathogenic H5 subtype viruses.  相似文献   

20.
The prevalence of antibodies to the haemagglutinins of two influenza A subtype, H1N1 and H3N2 and influenza B in sera collected from 1986 to 1988 from persons of different ages and from 10 locations in 5 ecological zones of Nigeria was determined. The levels of influenza antibodies in the sera varies with age and ecological zones of the country. A total of 1,022 sera were tested, of which 732 (71.6%) were positive for influenza antibodies. The prevalence of antibodies at titre 1:10 varied between 31.1% in the derived savannah and 94.4% in the swamp forest. The prevalence in the other zones were: rain forest 63.9%, guinea savannah 86.0% and 78.0% in sudan savannah. Reactors with the two influenza A subtypes antigens were more than reactors with influenza B antigens in the country. Antibody levels to influenza A subtypes varied between and within zones. Although there was no significant difference a (P greater than 0.05) in the overall prevalence of antibodies to the two subtypes, more sera had haemagglutination-inhibiting antibody to H1N1 subtype than H3N2 subtype in all the zones except in the rain forest. Prevalence of antibodies to influenza viruses increased with age in all the zones. Overcrowding in big cities and dry, dusty harmattan weather of the northern parts of the country are considered as possible risk factors in the epidemiology of influenza in Nigeria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号