首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platelet-activating factor (PAF), leukotriene B(4) (LTB(4)) and other cytokines have been indicated to be responsible for the neuronal damage in hypoxic-ischemic brain. Diets in omega-3 (n-3) fatty acids appear to have an antiinflammatory effect, which is thought to be due to decrease in active prostaglandins and leukotrienes production after incorporation of these fatty acids into cell membrane phospholipids. We investigated the effect of dietary supplementation with n-3 fatty acids on endogenous PAF and LTB(4) biosynthesis in hypoxic-ischemic brain of young mice. Young mice were randomly divided into four groups: Group 1 mice were fed standard chow (n-3 polyunsaturated fatty acids free); Group 2 and Group 3 mice were given standard diet supplemented with 10% by weight of fish oil, as source of n-3 polyunsaturated fatty acids, for 3 and 6 weeks, respectively. Group 4 mice served as control. We injured the right cerebral hemisphere of young mice by ligating the right common carotid artery and exposing the mice to 8% oxygen for 60 min. Approximately 10-fold increase in PAF concentration was determined in hypoxic-ischemic brain tissue of Group 1 mice. Tissue concentration of PAF showed a profound decline in Group 3 mice compared to Groups 1 and 2 (P<0.01, P<0.05, respectively). LTB(4) was also significantly elevated in the brain of Group 1 mice when compared to the brain of control mice (P<0.001). A striking decline was observed in the concentration of LTB(4) in both Group 2 and Group 3 mice compared to Group 1 mice (P<0.05, P<0.01, respectively). The present study shows that n-3 fatty-acid-enriched diet inhibits endogenous PAF and LTB(4) generation in hypoxic-ischemic brain tissue; however it demonstrates that 6 weeks of dietary supplementation with n-3 fatty acids results in a significant decrease in tissue level of PAF in the brain.  相似文献   

2.
Though hypothermia is the only clinically available treatment for neonatal hypoxic-ischemic encephalopathy (HIE), it is not completely effective in severe cases. We hypothesized that combined treatment with hypothermia and transplantation of human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) would synergistically attenuate severe HIE compared to stand-alone therapy. To induce hypoxia-ischemia (HI), male Sprague-Dawley rats were subjected to 8% oxygen for 120 min after unilateral carotid artery ligation on postnatal day (P) 7. After confirmation of severe HIE involving >50% of the ipsilateral hemisphere volume as determined by diffusion-weighted brain magnetic resonance imaging (MRI) within 2 h after HI, intraventricular MSC transplantation (1 × 105 cells) and/or hypothermia with target temperature at 32°C for 24 h were administered 6 h after induction of HI. Follow-up brain MRI at P12 and P42, sensorimotor function tests at P40–42, evaluation of cytokines in the cerebrospinal fluid (CSF) at P42, and histologic analysis of peri-infarct tissues at P42 were performed. Severe HI resulted in progressively increased brain infarction over time as assessed by serial MRI, increased number of cells positive for terminal deoxynucleotidyl transferase nick-end labeling, microgliosis and astrocytosis, increased CSF cytokine levels, and impaired function in behavioral tests such as rotarod and cylinder tests. All of the abnormalities observed in severe HIE showed greater improvement after combined treatment with hypothermia and MSC transplantation than with either therapy alone. Overall, these findings suggest that combined treatment with hypothermia and human UCB-derived MSC transplantation might be a novel therapeutic modality to improve the prognosis of severe HIE, an intractable disease that currently has no effective treatment.  相似文献   

3.
We compared the effects of early and late stage hypothermia treatment after spinal cord injury. Five groups each consisting of seven rats were included in this study. In Group 1a (Clip applied-non-treatment group) and Group 1b (Clip applied-treated group) the spinal cords were harvested 1 h after the injury. In Group 2a (clip applied, non-treated group) and Group 2b (clip applied-treated group) the injured segments were harvested 24 h after injury. Group 3 was designed as the sham-operated group. The significantly lower levels of TBARS and GSH-Px in Group 2a, as compared with Group 1b suggests that the hypothermia was effective in the early stage of treatment (P < 0.05). In contrast, TBARS and GSH-Px levels were significantly increased at the 24 h timepoint following treatment (P < 0.05).Short-term systemic hypothermia reduces lipid peroxidation in the early stages after spinal cord injury. This beneficial effect disappears 24 h following systemic hypothermic treatment.  相似文献   

4.

Background

Perinatal asphyxia (PA) is a leading cause of mortality and morbidity in newborns: its prognosis depends both on the severity of the asphyxia and on the immediate resuscitation to restore oxygen supply and blood circulation. Therefore, we investigated whether measurement of S100B, a consolidated marker of brain injury, in salivary fluid of PA newborns may constitute a useful tool for the early detection of asphyxia-related brain injury.

Methods

We conducted a cross-sectional study in 292 full-term newborns admitted to our NICUs, of whom 48 suffered PA and 244 healthy controls admitted at our NICUs. Saliva S100B levels measurement longitudinally after birth; routine laboratory variables, neurological patterns, cerebral ultrasound and, magnetic resonance imaging were performed. The primary end-point was the presence of neurological abnormalities at 12-months after birth.

Results

S100B salivary levels were significantly (P<0.001) higher in newborns with PA than in normal infants. When asphyxiated infants were subdivided according to a good (Group A; n = 15) or poor (Group B; n = 33) neurological outcome at 12-months, S100B was significantly higher at all monitoring time-points in Group B than in Group A or controls (P<0.001, for all). A cut-off >3.25 MoM S100B achieved a sensitivity of 100% (CI5-95%: 89.3%-100%) and a specificity of 100% (CI5-95%: 98.6%-100%) as a single marker for predicting the occurrence of abnormal neurological outcome (area under the ROC curve: 1.000; CI5-95%: 0.987-1.0).

Conclusions

S100B protein measurement in saliva, soon after birth, is a useful tool to identify which asphyxiated infants are at risk of neurological sequelae.  相似文献   

5.
BackgroundNeonatal encephalopathy following birth asphyxia is a major predictor of long-term neurological impairment. Therapeutic hypothermia is currently the standard of care to prevent brain injury in asphyxiated newborns but is not protective in all cases. More robust and versatile treatment options are needed. Angiogenesis is a demonstrated therapeutic target in adult stroke. However, no systematic study examines the expression of angiogenesis-related markers following birth asphyxia in human newborns.ObjectiveThis study aimed to evaluate the expression of angiogenesis-related protein markers in asphyxiated newborns developing and not developing brain injury compared to healthy control newborns.Design/MethodsTwelve asphyxiated newborns treated with hypothermia were prospectively enrolled; six developed eventual brain injury and six did not. Four healthy control newborns were also included. We used Rules-Based Medicine multi-analyte profiling and protein array technologies to study the plasma concentration of 49 angiogenesis-related proteins. Mean protein concentrations were compared between each group of newborns.ResultsCompared to healthy newborns, asphyxiated newborns not developing brain injury showed up-regulation of pro-angiogenic proteins, including fatty acid binding protein-4, glucose-6-phosphate isomerase, neuropilin-1, and receptor tyrosine-protein kinase erbB-3; this up-regulation was not evident in asphyxiated newborns eventually developing brain injury. Also, asphyxiated newborns developing brain injury showed a decreased expression of anti-angiogenic proteins, including insulin-growth factor binding proteins -1, -4, and -6, compared to healthy newborns.ConclusionsThese findings suggest that angiogenesis pathways are dysregulated following birth asphyxia and are putatively involved in brain injury pathology and recovery.  相似文献   

6.

Background

Sports-related head trauma is common but still there is no established laboratory test used in the diagnostics of minimal or mild traumatic brain injuries. Further the effects of recurrent head trauma on brain injury markers are unknown. The purpose of this study was to investigate the relationship between Olympic (amateur) boxing and cerebrospinal fluid (CSF) brain injury biomarkers.

Methods

The study was designed as a prospective cohort study. Thirty Olympic boxers with a minimum of 45 bouts and 25 non-boxing matched controls were included in the study. CSF samples were collected by lumbar puncture 1–6 days after a bout and after a rest period for at least 14 days. The controls were tested once. Biomarkers for acute and chronic brain injury were analysed.

Results

NFL (mean ± SD, 532±553 vs 135±51 ng/L p = 0.001), GFAP (496±238 vs 247±147 ng/L p<0.001), T-tau (58±26 vs 49±21 ng/L p<0.025) and S-100B (0.76±0.29 vs 0.60±0.23 ng/L p = 0.03) concentrations were significantly increased after boxing compared to controls. NFL (402±434 ng/L p = 0.004) and GFAP (369±113 ng/L p = 0.001) concentrations remained elevated after the rest period.

Conclusion

Increased CSF levels of T-tau, NFL, GFAP, and S-100B in >80% of the boxers demonstrate that both the acute and the cumulative effect of head trauma in Olympic boxing may induce CSF biomarker changes that suggest minor central nervous injuries. The lack of normalization of NFL and GFAP after the rest period in a subgroup of boxers may indicate ongoing degeneration. The recurrent head trauma in boxing may be associated with increased risk of chronic traumatic brain injury.  相似文献   

7.
目的应用自制降温线圈发展一种硬膜外局部低温治疗方法,对其降温效能和安全性进行评估。方法SD大鼠随机分为常温对照组(Nor组)、硬膜外局部低温组(LH组)和全身低温组(SH组),对LH组和SH组分别实施硬膜外局部降温和全身降温,观察降温前后同侧脑温、对侧脑温、肛温以及呼吸、心率、血压变化,降温后24h对各组大鼠进行神经功能评测,取脑组织标本行光镜、电镜检查,并检测脑组织水、钠、钾离子含量和血脑屏障通透性。结果降温后,LH组大鼠的降温侧脑温在数分钟内从(36.5±0.3)℃下降到(31.4±0.4)℃并维持稳定,其对侧脑温和肛温无明显下降,R、HR和MABP无明显变化;SH组降温后双侧脑温、肛温均出现降低,降温后HR下降。降温后,LH组和SH组大鼠神经功能评分正常,光镜和电镜下脑组织无损伤表现,其脑组织水、钠、钾离子含量和血脑屏障通透性与常温对照组比较无统计学差异。结论应用这种硬膜外局部低温方法可以达到与全身降温一样的效果,且不会引起生命体征波动及对脑组织产生急性损害。  相似文献   

8.
Therapeutic hypothermia is standard of care for infants with hypoxic ischemic encephalopathy. Murine models of hypoxic-ischemic injury exist; however, a well-established mouse model of therapeutic hypothermia following hypoxic-ischemic injury is lacking. The goal of this study was to develop a full-term-equivalent murine model of therapeutic hypothermia after hypoxia-ischemia and examine magnetic resonance imaging, behavior, and histology in a region and sex specific manner. Hypoxic-ischemic injury was induced at postnatal day 10 in C57BL6 mice using a modified Vannucci model. Mice were randomized to control, hypothermia (31˚C for 4h), or normothermia (36˚C) following hypoxic-ischemic injury and stratified by sex. T2-weighted magnetic resonance imaging was obtained at postnatal day 18 and 30 and regional and total cerebral and cerebellar volumes measured. Behavioral assessments were performed on postnatal day 14, 21, and 28. On postnatal day 18, normothermic mice had smaller cerebral volumes (p < 0.001 vs. controls and p = 0.009 vs. hypothermia), while at postnatal day 30 both injured groups had smaller volumes than controls. When stratified by sex, only normothermia treated male mice had smaller cerebral volumes (p = 0.001 vs. control; p = 0.008 vs. hypothermia) at postnatal day 18, which persisted at postnatal day 30 (p = 0.001 vs. control). Female mice had similar cerebral volumes between groups at both day 18 and 30. Cerebellar volumes of hypothermia treated male mice differed from control at day 18, but not at 30. Four hours of therapeutic hypothermia in this murine hypoxic-ischemic injury model provides sustained neuroprotection in the cerebrum of male mice. Due to variable degree of injury in female mice, response to therapeutic hypothermia is difficult to discern. Deficits in female behavior tests are not fully explained by imaging measures and likely represent injury not detectable by volume measurements alone.  相似文献   

9.

Background

Neonatal death in full-term infants who suffer from perinatal asphyxia (PA) is a major subject of investigation, since few tools exist to predict patients at risk of ominous outcome. We studied the possibility that urine S100B measurement may identify which PA-affected infants are at risk of early postnatal death.

Methodology/Principal Findings

In a cross-sectional study between January 1, 2001 and December 1, 2006 we measured S100B protein in urine collected from term infants (n = 132), 60 of whom suffered PA. According to their outcome at 7 days, infants with PA were subsequently classified either as asphyxiated infants complicated by hypoxic ischemic encephalopathy with no ominous outcome (HIE Group; n = 48), or as newborns who died within the first post-natal week (Ominous Outcome Group; n = 12). Routine laboratory variables, cerebral ultrasound, neurological patterns and urine concentrations of S100B protein were determined at first urination and after 24, 48 and 96 hours. The severity of illness in the first 24 hours after birth was measured using the Score for Neonatal Acute Physiology-Perinatal Extension (SNAP-PE). Urine S100B levels were higher from the first urination in the ominous outcome group than in healthy or HIE Groups (p<0.001 for all), and progressively increased. Multiple logistic regression analysis showed a significant correlation between S100B concentrations and the occurrence of neonatal death. At a cut-off >1.0 µg/L S100B had a sensitivity/specificity of 100% for predicting neonatal death.

Conclusions/Significance

Increased S100B protein urine levels in term newborns suffering PA seem to suggest a higher risk of neonatal death for these infants.  相似文献   

10.
Although accumulating evidence suggests that increased extracellular glutamate concentrations may play an important role in hypoxic-ischemic brain injury, dopamine and other catecholamines also seem to be involved. The N-methyl-D-aspartate receptor antagonist MK 801 and moderate hypothermia (32-34 degrees C) are each known to be neuroprotective, but their combined effect on the release and metabolism of neurotransmitters is unknown. Seven-day-old pups (n: 150) underwent right common carotid artery ligation to induce hemispheric ischemia, and were later subjected to 120 minutes of hypoxia with 8% O2 and 92% N2O. Half the rats (Group I, n: 74) were subjected to normothermic conditions throughout the hypoxic period. Moderate hypothermia (30-32 degrees C) was induced in the other pups (Group II, n: 76) immediately after artery occlusion, and was maintained throughout the hypoxic period. Prior to inducing hypoxia, half of the rats in each group (Groups IA and IIA) received vehicle solution (0.9% NaCI) and the other rats (Groups IB and IIB) received MK 801 (0.5 mg/kg) subcutaneously at 45 and 120 minutes after occlusion. Intracerebral temperature was recorded every 15 minutes after occlusion. Infarct area (n: 40) was calculated after staining with 2% 2,3,5 triphenyltetrazolium chloride. Neuronal damage (n: 42) was assessed by quantifying CA1-CA3 neuronal loss at five hippocampal levels. The amount of damage to the monoamine system of the corpus striatum was determined based on the dopamine and 3,4 dihydroxyphenylacetic acid levels in the corpus striatum in both hemispheres (n: 46), as measured by high-pressure liquid chromatography and compared with normal control pups' values (n: 10). The normothermia/saline-treated pups had significantly larger infarct areas than the MK 801 only, hypothermia only, or MK 801/hypothermia combination groups. Neuropathological examination and striatal tissue monoamine data also confirmed marked neuronal damage in this group. Although MK 801 treatment alone resulted in significantly smaller infarct area and less tissue damage than was observed in the normothermia/saline-treated group, the moderate hypothermia and the MK 801/hypothermia combination treatment groups both exhibited better neuronal protection, especially in the corpus striatum. The rats that received combined treatment also had a significantly lower mortality rate.  相似文献   

11.
目的:rt-PA溶栓为缺血性卒中最有效的治疗方法,脑血流再通后挽救濒临死亡的神经细胞同时,也可能发生更为严重而持久的脑缺血再灌注损伤。本研究探讨联合应用局部亚低温(32-35℃)及硫酸镁对局灶性脑缺血再灌注大鼠的保护作用及其可能机制。方法:通过线栓法建立大鼠大脑中动脉阻塞(MCAO)及再通模型,将50只雄性Wistar大鼠随机分为假手术组、常温组、亚低温组、硫酸镁组、亚低温+硫酸镁组,每组10例,采用Longa神经功能评分、TTC染色、干湿重法、TUNEL技术,检测和比较各组脑缺血再灌注后大鼠的神经功能、脑梗死体积、脑组织含水量及凋亡细胞数。结果:与常温组相比,亚低温组与亚低温+硫酸镁组的梗死体积、神经功能评分、脑组织含水量、凋亡细胞数均明显降低,差异有显著意义(P0.05);而与亚低温组相比,亚低温+硫酸镁组局灶脑缺血大鼠的脑梗死体积、神经功能评分、脑组织含水量、凋亡细胞数均显著减少,差异有显著意义(P0.05)。结论:与单独应用亚低温相比,局部亚低温与硫酸镁联合应用,对局灶性脑缺血再灌注大鼠可发挥更有效的脑保护作用。其机制可能与抑制脑缺血再灌注后凋亡及减轻脑水肿有关。二者联用可能为缺血性卒中患者提供一种减轻溶栓后再灌注损伤的有效脑保护方法。  相似文献   

12.
Nitric oxide (NO) and prostaglandins (PG) play important roles in delayed mechanisms of brain injury. While NO disrupts oxidative metabolism, prostaglandins are responsible for free radical attack in reperfusion interval. Relatively little is known about neuroprotection exerted at this level in perinatal models. The aim of this study was to investigate the effect of indomethacin and aminoguanidine on endogenous inducible nitric oxide synthase (iNOS) biosynthesis and neuroprotection in the newborn rats with hypoxic ischemic cerebral injury.Seven-day old rat pups with model of hypoxic-ischemic cerebral injury were randomly divided into four study groups. Group C (n=18; served as a control) pups were given physiologic saline (SF). Group I (n=18) pups were treated with indomethacin at a dose of 0,2 mg/kg per 12 h. Group A (n=20) pups were treated with aminoguanidine at a dose of 300 mg/kg per 8 h. Administration of drugs and SF were begun half an hour after hypoxic-ischemic insult in these groups. Group I+A (n=18) pups were treated with indomethacin at a single dose of 0.2 mg/kg 1 h before hypoxia-ischemia followed by aminoguanidine as in group A. Drugs and SF were administered for three consecutive days. On the tenth day, rat pups were decapitated and coronal sections at the level of dorsal hippocampal region of brains were evaluated. In the histopathologic examination; the mean infarcted area in group I+A was significantly lower than the control group (P<0.05). Although there was no statistically significant difference between treatment groups in terms of iNOS expression, the risk of iNOS expression was 7 times less for group I (CI: 1.6-30.8, P=0.01), 19.8 times less for group A (CI: 3.8-104, P=0.001) and 12.3 times less for group I+A (CI: 2.5-59, P=0.002) compared to group C. In conclusion, only indomethacin administration before hypoxic ischemia and followed by aminoguanidine was more effective to reduce infarct area, but we did not find any difference between treatment groups and control group for iNOS expression. So we suggest that this neuroprotection may not be related to depression of iNOS expression.  相似文献   

13.
The aim of this study was to evaluate the effect of mild hypothermia on the coagulation-fibrinolysis system and physiological anticoagulants after cardiopulmonary resuscitation (CPR). A total of 20 male Wuzhishan miniature pigs underwent 8 min of untreated ventricular fibrillation and CPR. Of these, 16 were successfully resuscitated and were randomized into the mild hypothermia group (MH, n = 8) or the control normothermia group (CN, n = 8). Mild hypothermia (33°C) was induced intravascularly, and this temperature was maintained for 12 h before pigs were actively rewarmed. The CN group received normothermic post-cardiac arrest (CA) care for 72 h. Four animals were in the sham operation group (SO). Blood samples were taken at baseline, and 0.5, 6, 12, 24, and 72 h after ROSC. Whole-body mild hypothermia impaired blood coagulation during cooling, but attenuated blood coagulation impairment at 72 h after ROSC. Mild hypothermia also increased serum levels of physiological anticoagulants, such as PRO C and AT-III during cooling and after rewarming, decreased EPCR and TFPI levels during cooling but not after rewarming, and inhibited fibrinolysis and platelet activation during cooling and after rewarming. Finally, mild hypothermia did not affect coagulation-fibrinolysis, physiological anticoagulants, or platelet activation during rewarming. Thus, our findings indicate that mild hypothermia exerted an anticoagulant effect during cooling, which may have inhibitory effects on microthrombus formation. Furthermore, mild hypothermia inhibited fibrinolysis and platelet activation during cooling and attenuated blood coagulation impairment after rewarming. Slow rewarming had no obvious adverse effects on blood coagulation.  相似文献   

14.
目的:检测未足月胎膜早破合并绒毛膜羊膜炎(HCA)孕妇血清淀粉样蛋白A(SAA)、血小板激活因子(PAF)水平,并探讨其临床意义。方法:选择从2013年7月到2017年7月,在我院接受治疗的165例胎膜早破孕产妇作为研究对象。165例患者中,未足月胎膜早破者80例(未足月胎膜早破组),足月胎膜早破者85例(足月胎膜早破组),再根据是否合并HCA分为合并HCA胎膜早破组43例和未合并HCA胎膜早破组122例。另选取同期在我院体检的80例健康孕产妇志愿者作为正常组,对比各组血清SAA和PAF水平,分析合并与未合并HCA胎膜早破组的妊娠结局,利用受试者工作特征(ROC)曲线分析血清SAA和PAF对未足月胎膜早破是否合并HCA的诊断价值。结果:未足月胎膜早破组及足月胎膜早破组的血清SAA和PAF水平均明显高于正常组,且未足月胎膜早破组又高于足月胎膜早破组,差异有统计学意义(P0.05)。未足月胎膜早破组80例患者中HCA发生率为35.00%(28/80),明显高于足月胎膜早破组的17.65%(15/85),差异有统计学意义(P0.05)。合并HCA胎膜早破组的血清SAA和PAF水平均明显高于未合并HCA胎膜早破组,差异有统计学意义(P0.05)。合并HCA的未足月胎膜早破患者血清SAA和PAF水平高于未合并HCA的未足月胎膜早破患者(P0.05)。合并HCA的胎膜早破组的产后大出血、剖宫产以及新生儿肺炎的发生率均明显高于未合并HCA胎膜早破组,差异有统计学意义(P0.05)。根据ROC曲线分析可知,血清SAA和PAF对未足月胎膜早破是否合并HCA的诊断价值较高。结论:血清SAA、PAF水平在未足月胎膜早破合并HCA孕妇中明显升高,二者对此种合并症具有较高的诊断价值。临床诊疗过程中可将SAA及PAF纳入到指标监测体系中,从而为临床治疗提供指导。  相似文献   

15.
Duz B  Oztas E  Erginay T  Erdogan E  Gonul E 《Cryobiology》2007,55(3):279-284
Pericytes are essential components of the blood–brain barrier together with endothelial cells and astrocytes. Any disturbance of brain perfusion may result in blood–brain barrier dysfunction due to pericyte migration from the microvascular wall. The neuroprotective influence of hypothermia on ischemic brain injury has been clearly shown in models of both global and focal ischemia. Leakage of plasma proteins contributes to the extension of neuronal injury and hypothermia has a neuroprotective influence during the ischemic insult. This line of thinking impelled us to investigate the possible role of the pericytes in the occurrence of hypothermic protection during cerebral ischemia.In this study, we examined at the ultrastructural level the effect of moderate hypothermia on microvascular pericyte responses using a rat model of permanent middle cerebral artery occlusion. Twenty rats were divided into four groups. Middle cerebral artery occlusion was performed in all rats except the control group (first group), which was used to determine the pericyte morphology under normal conditions. In the second group, pericyte response to irreversible ischemia under normothermic conditions was examined at the end of the first hour. In the third group, pericyte response to hypoxia was examined under normothermic conditions three hours after ischemia. In the fourth group, temporalis muscle temperature was maintained at 27–29 °C for 1 h after middle cerebral artery occlusion and pericyte response was then examined at the ultrastructural level. In ischemic normothermic conditions at the end of the first hour (Group 2), a separation was observed between pericytes and the basement membrane and this was interpreted as pericyte migration from the microvascular wall. In ischemic normothermic conditions at the end of the third hour (Group 3), basement membrane disorganization and increased space between the basement membranes were seen in addition to the differentiation of second group. In ischemic hypothermic conditions at the end of the first hour (Group 4), pericyte separation or migration from basement membrane were not seen and the blood–brain barrier remained firm. These findings were interpreted by the authors as a possible relationship between pericyte behavior and neural protection during hypothermia. We suggest that hypothermia may delay the pericyte response but not necessarily attenuate it, and should be associated with hypothermic protection.  相似文献   

16.
Using vascular heat-exchange controller implemented mild hypothermia treatment, the authors established the cerebral vasospasm model in which blood was injected twice into dog’s foramen magnum; and it was discussed the influence of the concentration of endothelin-1 and NO in blood plasma and cerebrospinal fluid through continuing treatment of mild hypothermia at different times in secondary brain vasospasm model after subarachnoid hemorrhage. Thirty healthy mongrel dogs were randomly divided into five groups; artificial cerebrospinal fluid group (group A), normal temperature control group (group C), mild hypothermia 8 h group (group H1), mild hypothermia 16 h group (group H2), and mild hypothermia 32 h group (group H3). The authors injected the artificial CSF into dog’s foramen magnum in group A while the other four groups were injected with autologous arterial blood. The normal group’s temperature maintained 38.5°C. The authors set the temperature at 33.5°C in mild hypothermia groups and this was maintained for 8, 16, and 32 h, respectively. ET-1 and NO levels in the cerebrospinal fluid and plasma were assayed in each group on days 0, 7, 14, and 21. Then the changes of the diameter of blood vessels of cerebral basilar artery and overall performance categories score in each group through application of CT angiography were recorded. In the cerebral vasospasm model which was constructed by injecting the blood to dog twice, mild hypothermia treatment, through the application of vascular heat-exchange controller, could reduce cerebral vasospasm. It was observed that the duration of the mild hypothermia is directly proportional to the longer duration of the relieving of cerebral vasospasm. The reciprocal changes observed in the levels of ET-1 and NO in cerebrospinal fluid and plasma revealed that it might be possible to reduce the cerebral vasospasm by regulating the rising amplitude of ET-1 and the decrease in NO in CSF and plasma.  相似文献   

17.
目的:比较不同亚低温治疗时间对缺氧缺血性脑病患儿疗效及预后的影响,探讨亚低温治疗的最优时间,并且观察此治疗对新生儿有无不良影响。方法:选取我院收治的80例缺氧缺血性脑病(HIE)新生儿作为研究对象,将患儿随机分亚低温治疗48 h组、72 h组、96 h组和常规治疗组,每组20例患儿。所有患儿均给予常规治疗,亚低温组患儿在上述治疗基础上,在出生后6 h内加用选择性头部亚低温治疗。四组患儿生后28 d时进行神经测定(NBNA)评分,出生18月时进行Bayley评分。患儿接受治疗7天后统计血小板减少、电解质紊乱以及血糖紊乱的发生例数。结果:72 h组和96 h组患儿生后NBNA评分、Bayley评分比48 h组和常规治疗组高(P0.05),有统计学差异;72 h组和96 h组的NBNA评分、Bayley评分均没有统计学差异(P0.05),48 h组和常规组的评分也没有统计学差异(P0.05)。亚低温治疗96 h组患儿中,发生血小板减少、电解质紊乱及血糖紊乱等不良反应的比例较48 h组和72 h组明显增多(P0.05),有统计学差异;对比48 h组和72 h组不良反应的患儿比例,没有显著统计学差异(P0.05)。结论:亚低温治疗72 h对HIE患儿的治疗效果优于48 h,产生的副作用小于治疗96 h,建议临床亚低温治疗时间采用72 h以取得最佳治疗效果,产生最小不良反应。  相似文献   

18.
《Cryobiology》2008,56(3):279-284
Pericytes are essential components of the blood–brain barrier together with endothelial cells and astrocytes. Any disturbance of brain perfusion may result in blood–brain barrier dysfunction due to pericyte migration from the microvascular wall. The neuroprotective influence of hypothermia on ischemic brain injury has been clearly shown in models of both global and focal ischemia. Leakage of plasma proteins contributes to the extension of neuronal injury and hypothermia has a neuroprotective influence during the ischemic insult. This line of thinking impelled us to investigate the possible role of the pericytes in the occurrence of hypothermic protection during cerebral ischemia.In this study, we examined at the ultrastructural level the effect of moderate hypothermia on microvascular pericyte responses using a rat model of permanent middle cerebral artery occlusion. Twenty rats were divided into four groups. Middle cerebral artery occlusion was performed in all rats except the control group (first group), which was used to determine the pericyte morphology under normal conditions. In the second group, pericyte response to irreversible ischemia under normothermic conditions was examined at the end of the first hour. In the third group, pericyte response to hypoxia was examined under normothermic conditions three hours after ischemia. In the fourth group, temporalis muscle temperature was maintained at 27–29 °C for 1 h after middle cerebral artery occlusion and pericyte response was then examined at the ultrastructural level. In ischemic normothermic conditions at the end of the first hour (Group 2), a separation was observed between pericytes and the basement membrane and this was interpreted as pericyte migration from the microvascular wall. In ischemic normothermic conditions at the end of the third hour (Group 3), basement membrane disorganization and increased space between the basement membranes were seen in addition to the differentiation of second group. In ischemic hypothermic conditions at the end of the first hour (Group 4), pericyte separation or migration from basement membrane were not seen and the blood–brain barrier remained firm. These findings were interpreted by the authors as a possible relationship between pericyte behavior and neural protection during hypothermia. We suggest that hypothermia may delay the pericyte response but not necessarily attenuate it, and should be associated with hypothermic protection.  相似文献   

19.
Hypothermia has been proposed as a treatment for reducing neuronal damage in the brain induced by hypoxic ischemia. In the developing brain, hypoxic ischemia-induced injury may give rise to cerebral palsy (CP). However, it is unknown whether hypothermia might affect the development of CP. The purpose of this study was to investigate whether hypothermia would have a protective effect on the brains of immature, 3-day old (P3) mice after a challenge of cerebral ischemia. Cerebral ischemia was induced in P3 mice with a right common carotid artery ligation followed by hypoxia (6% O2, 37°C) for 30 min. Immediately after hypoxic ischemia, mice were exposed to hypothermia (32°C) or normothermia (37°C) for 24 h. At 4 weeks of age, mouse motor development was tested in a behavioral test. Mice were sacrificed at P4, P7, and 5 weeks to examine brain morphology. The laminar structure of the cortex was examined with immunohistochemistry (Cux1/Ctip2); the number of neurons was counted; and the expression of myelin basic protein (MBP) was determined. The hypothermia treatment was associated with improved neurological outcomes in the behavioral test. In the normothermia group, histological analyses indicated reduced numbers of neurons, reduced cortical laminar thickness in the deep, ischemic cortical layers, and significant reduction in MBP expression in the ischemic cortex compared to the contralateral cortex. In the hypothermia group, no reductions were noted in deep cortical layer thickness and in MBP expression in the ischemic cortex compared to the contralateral cortex. At 24 h after the hypothermia treatment prevented the neuronal cell death that had predominantly occurred in the ischemic cortical deep layers with normothermia treatment. Our findings may provide a preclinical basis for testing hypothermal therapies in patients with CP induced by hypoxic ischemia in the preterm period.  相似文献   

20.

Background

Cerebrospinal fluid (CSF) α-synuclein is reduced in synucleinopathies, including dementia with Lewy bodies, and some studies have found increased CSF α-synuclein in Alzheimer’s disease (AD). No study has explored effects of CSF α-synuclein on brain atrophy. Here we tested if baseline CSF α-synuclein affects brain atrophy rates and if these effects vary across brain regions, and across the cognitive spectrum from healthy elders (NL), to patients with mild cognitive impairment (MCI) and AD.

Methods

Baseline CSF α-synuclein measurements and longitudinal structural brain magnetic resonance imaging was performed in 74 NL, 118 MCI patients and 55 AD patients. Effects of baseline CSF α-synuclein on regional atrophy rates were tested in 1) four pre-hoc defined regions possibly associated with Lewy body and/or AD pathology (amygdala, caudate, hippocampus, brainstem), and 2) all available regions of interest. Differences across diagnoses were tested by assessing the interaction of CSF α-synuclein and diagnosis (testing NL versus MCI, and NL versus AD).

Results

The effects of CSF α-synuclein on longitudinal atrophy rates were not significant after correction for multiple comparisons. There were tendencies for effects in AD in caudate (higher atrophy rates in subjects with higher CSF α-synuclein, P=0.046) and brainstem (higher atrophy rates in subjects with lower CSF α-synuclein, P=0.063). CSF α-synuclein had significantly different effects on atrophy rates in NL and AD in brainstem (P=0.037) and caudate (P=0.006). Discussion: With the possible exception of caudate and brainstem, the overall weak effects of CSF α-synuclein on atrophy rates in NL, MCI and AD argues against CSF α-synuclein as a biomarker related to longitudinal brain atrophy in these diagnostic groups. Any effects of CSF α-synuclein may be attenuated by possible simultaneous occurrence of AD-related neuronal injury and concomitant Lewy body pathology, which may elevate and reduce CSF α-synuclein levels, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号