首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genome damaging events, such as gamma-irradiation exposure, result in the induction of pathways that activate DNA repair mechanisms, halt cell cycle progression, and/or trigger apoptosis. We have investigated the effects of gamma-irradiation on cellular levels of the Ku autoantigens. Ku70 and Ku80 have been shown to form a heterodimeric complex that can bind tightly to free DNA ends and activate the protein kinase DNA-PKcs. We have found that irradiation results in an up-regulation of cellular levels of Ku70, but not Ku80, and that this enhanced level of Ku70 accumulates within the nucleus. Further, we uncovered that the postirradiation up-regulation of Ku70 utilizes a mechanism that is dependent on both p53 and damage response protein kinase ATM (ataxia-telangiectasia-mutated); however, the activation of DNA-PK does not require Ku70 up-regulation. These findings suggest that Ku70 up-regulation provides the cell with a means of assuring either proper DNA repair or an appropriate response to DNA damage independent of DNA-PKcs activation.  相似文献   

2.
Ku70 and Ku80 play an essential role in the DNA double-strand break (DSB) repair pathway, i.e., nonhomologous DNA-end-joining (NHEJ). No accumulation mechanisms of Ku70 at DSBs have been clarified in detail, although the accumulation mechanism of Ku70 at DSBs plays key roles in regulating the NHEJ activity. Here, we show the essential domains for the accumulation and function of Ku70 at DSBs in living lung epithelial cells. Our results showed that EGFP-Ku70 accumulation at DSBs began immediately after irradiation. Our findings demonstrate that three domains of Ku70, i.e., the α/β, DNA-binding, and Ku80-binding domains, but not the SAP domain, are necessary for the accumulation at or recognition of DSBs in the early stage after irradiation. Moreover, our findings demonstrate that the leucine at amino acid 385 of Ku70 in the Ku80-binding domain, but not the three target amino acids for acetylation in the DNA-binding domain, is involved in the localization and accumulation of Ku70 at DSBs. Furthermore, accumulations of XRCC4 and XLF, but not that of Artemis, at DSBs are dependent on the presence of Ku70. These findings suggest that Artemis can work in not only the Ku-dependent repair process, but also the Ku-independent process at DSBs in living epithelial cells.  相似文献   

3.
4.
DNA double-strand breaks are a serious threat to genome stability and cell viability. One of the major pathways for the repair of DNA double-strand breaks in human cells is nonhomologous end-joining. Biochemical and genetic studies have shown that the DNA-dependent protein kinase (DNA-PK), XRCC4, DNA ligase IV, and Artemis are essential components of the nonhomologous end-joining pathway. DNA-PK is composed of a large catalytic subunit, DNA-PKcs, and a heterodimer of Ku70 and Ku80 subunits. Current models predict that the Ku heterodimer binds to ends of double-stranded DNA, then recruits DNA-PKcs to form the active protein kinase complex. XRCC4 and DNA ligase IV are subsequently required for ligation of the DNA ends. Magnesium-ATP and the protein kinase activity of DNA-PKcs are essential for DNA double-strand break repair. However, little is known about the physiological targets of DNA-PK. We have previously shown that DNA-PKcs and Ku undergo autophosphorylation, and that this correlates with loss of protein kinase activity. Here we show, using electron spectroscopic imaging, that DNA-PKcs and Ku interact with multiple DNA molecules to form large protein-DNA complexes that converge at the base of multiple DNA loops. The number of large protein complexes and the amount of DNA associated with them were dramatically reduced under conditions that promote phosphorylation of DNA-PK. Moreover, treatment of autophosphorylated DNA-PK with the protein phosphatase 1 catalytic subunit restored complex formation. We propose that autophosphorylation of DNA-PK plays an important regulatory role in DNA double-strand break repair by regulating the assembly and disassembly of the DNA-PK-DNA complex.  相似文献   

5.
S Jin  D T Weaver 《The EMBO journal》1997,16(22):6874-6885
Heterodimers of the 70 and 80 kDa Ku autoantigens (Ku70 and Ku80) activate the DNA-dependent protein kinase (DNA-PK). Mutations in any of the three subunits of this protein kinase (Ku70, Ku80 and DNA-PKcs) lead to sensitivity to ionizing radiation (IR) and to DNA double-strand breaks, and V(D)J recombination product formation defects. Here we show that the IR repair, DNA end binding and DNA-PK defects in Ku70-/- embryonic stem cells can be counteracted by introducing epitope-tagged wild-type Ku70 cDNA. Truncations and chimeras of Ku70 were used to identify the regions necessary for DNA end binding and IR repair. Site-specific mutational analysis revealed a core region of Ku70 responsible for DNA end binding and heterodimerization. The propensity for Ku70 to associate with Ku80 and to bind DNA correlates with the ability to activate DNA-PK, although two mutants showed that the roles of Ku70 in DNA-PK activation and IR repair are separate. Mutation of DNA-PK autophosphorylation sites and other structural motifs in Ku70 showed that these sites are not necessary for IR repair in vivo. These studies reveal Ku70 features required for double-strand break repair.  相似文献   

6.
Non-homologous end-joining (NHEJ) of DNA double-strand breaks (DSBs) is mediated by two protein complexes comprising Ku80/Ku70/DNA-PKcs/Artemis and XRCC4/LigaseIV/XLF. Loss of Ku or XRCC4/LigaseIV function compromises the rejoining of radiation-induced DSBs and leads to defective V(D)J recombination. In this study, we sought to define how XRCC4 and Ku80 affect NHEJ of site-directed chromosomal DSBs in murine fibroblasts. We employed a recently developed reporter system based on the rejoining of I-SceI endonuclease-induced DSBs. We found that the frequency of NHEJ was reduced by more than 20-fold in XRCC4−/− compared to XRCC4+/+ cells, while a Ku80 knock-out reduced the rejoining efficiency by only 1.4-fold. In contrast, lack of either XRCC4 or Ku80 increased end degradation and shifted repair towards a mode that used longer terminal microhomologies for rejoining. However, both proteins proved to be essential for the repair of radiation-induced DSBs. The remarkably different phenotype of XRCC4- and Ku80-deficient cells with regard to the repair of enzyme-induced DSBs mirrors the embryonic lethality of XRCC4 knock-out mice as opposed to the viability of the Ku80 knock-out. Thus, I-SceI-induced breaks may resemble DSBs arising during normal DNA metabolism and mouse development. The removal of these breaks likely has different genetic requirements than the repair of radiation-induced DSBs.  相似文献   

7.
Inositol hexakisphosphate (InsP(6)) is a member of the inositol polyphosphate group that participates in numerous intracellular signaling pathways. Cheung and colleagues previously reported that InsP(6) stimulated double-strand break repair by nonhomologous end joining (NHEJ) in cell-free extracts and that InsP(6) binding by the Ku70/80 subunit of the DNA-dependent protein kinase (DNA-PK) was required for stimulation of NHEJ in vitro. This report describes InsP(6)-dependent phosphorylation of two NHEJ factors, XRCC4 and XLF, in partially purified human cell extracts. XRCC4 and XLF are known substrates for DNA-PK, which does not require InsP(6) for protein kinase activity. Consistent with a role for DNA-PK in these reactions, InsP(6)-dependent phosphorylation of XRCC4 and XLF was DNA dependent and not observed in the presence of DNA-PK inhibitors. Depletion of the Ku70/80 DNA-, InsP(6)-binding subunit of DNA-PK resulted in loss of InsP(6)-dependent phosphorylation and showed a requirement for Ku70/80 in these reactions. Complementation of Ku70/80-depleted reactions with recombinant wild-type Ku70/80 restored InsP(6)-dependent phosphorylation of XRCC4 and XLF. In contrast, addition of a Ku70/80 mutant with reduced InsP(6) binding failed to restore InsP(6)-dependent phosphorylation. While additional protein kinases may participate in InsP(6)-dependent phosphorylation of XRCC4 and XLF, data presented here describe a clear requirement for DNA-PK in these phosphorylation events. Furthermore, these data suggest that binding of the inositol polyphosphate InsP(6) by Ku70/80 may modulate the substrate specificity of the phosphoinositide-3-kinase-related protein kinase DNA-PK.  相似文献   

8.
9.
The Ku70/80 heterodimer is a major player in non-homologous end joining and the repair of DNA double-strand breaks. Studies suggest that once bound to a DNA double-strand break, Ku recruits the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) to form the DNA-dependent protein kinase holoenzyme complex (DNA-PK). We previously identified four DNA-PK phosphorylation sites on the Ku70/80 heterodimer: serine 6 of Ku70, serine 577 and 580 and threonine 715 of Ku80. This raised the interesting possibility that DNA-PK-dependent phosphorylation of Ku could provide a mechanism for the regulation of non-homologous end joining. Here, using mass spectrometry and phosphospecific antibodies we confirm that these sites are phosphorylated in vitro by purified DNA-PK. However, we show that neither DNA-PK nor the related protein kinase ataxia-telangiectasia mutated (ATM) is required for phosphorylation of Ku at these sites in vivo. Furthermore, Ku containing serine/threonine to alanine mutations at these sites was fully able to complement the radiation sensitivity of Ku negative mammalian cells indicating that phosphorylation at these sites is not required for non-homologous end joining. Interestingly, both Ku70 and Ku80 were phosphorylated in cells treated with the protein phosphatase inhibitor okadaic acid under conditions known to inactivate protein phosphatase 2A-like protein phosphatases. Moreover, okadaic acid-induced phosphorylation of Ku80 was inhibited by nanomolar concentrations of the protein kinase inhibitor staurosporine. These results suggest that the phosphorylation of Ku70 and Ku80 is regulated by a protein phosphatase 2A-like protein phosphatase and a staurosporine sensitive protein kinase in vivo, but that DNA-PK-mediated phosphorylation of Ku is not required for DNA double-strand break repair.  相似文献   

10.
The Ku70/80 heterodimer is central to non-homologous end joining repair of DNA double-strand breaks and the Ku80 gene appears to be essential for human but not rodent cell survival. The Ku70/80 heterodimer is located at telomeres but its precise function in telomere maintenance is not known. In order to examine the role of Ku80 beyond DNA repair in more detail, we have taken a knockdown approach using a human fibroblast strain. Following targeted Ku80 knockdown, telomere defects are observed and the steady state levels of the TRF2 protein are reduced. Inhibitor studies indicate that this loss of TRF2 is mediated by the proteasome and degradation of TRF2 following Ku depletion appears to involve a decrease in chromatin binding of TRF2, suggesting that the Ku heterodimer enhances TRF2 chromatin association and that non-chromatin bound TRF2 is targeted to the proteasome.Key words: Ku80, TRF2, chromatin, telomere, fibroblast  相似文献   

11.
Lee SH  Kim CH 《Molecules and cells》2002,13(2):159-166
DNA-dependent protein kinase (DNA-PK) is a nuclear serine/threonine protein kinase that is activated upon DNA damage generated by ionizing radiation or UV-irradiation. It is a three-protein complex consisting of a 470-kDa catalytic subunit (DNA-PKcs) and the regulatory DNA binding subunits, Ku heterodimer (Ku70 and Ku80). Mouse and human cells deficient in DNA-PKcs are hypersensitive to ionizing radiation and defective in V(D)J recombination, suggesting a role for the kinase in double-strand break repair and recombination. The Ku heterodimer binds to double-strand DNA breaks produced by either DNA damage or recombination, protects DNA ends from degradation, orients DNA ends for re-ligation, and recruits its catalytic subunit and additional factors necessary for successful end-joining. DNA-PK is also involved in an early stage of damage-induced cell cycle arrest, however, it remains unclear how the enzyme senses DNA damage and transmits signals to downstream gene(s) and proteins.  相似文献   

12.
Role of JC virus agnoprotein in DNA repair   总被引:2,自引:0,他引:2  
  相似文献   

13.
In vertebrate cells, DNA double-strand breaks are efficiently repaired by homologous recombination or nonhomologous end-joining (NHEJ). The latter pathway relies on Ku (the Ku70/Ku86 heterodimer), DNA-PKcs, Artemis, Xrcc4, and DNA ligase IV (Lig4). Here, we show that a human pre-B cell line nullizygous for Lig4 exhibits hypersensitivity to topoisomerase II (Top2) inhibitors, demonstrating a crucial role for the NHEJ pathway in repair of Top2-induced DNA damage in vertebrates. We also show that in the chicken DT40 cell line, all NHEJ mutants (i.e., Ku70-, Lig4-, and DNA-PKcs-null cells) are equally hypersensitive to the Top2 inhibitor ICRF-193, indicating that the drug-induced damage is repaired by NHEJ involving DNA-PKcs. Intriguingly, however, DNA-PKcs-null cells display considerably less severe phenotype than other NHEJ mutants in terms of hypersensitivity to VP-16, a Top2 poison that stabilizes cleavable complexes. The results indicate that two distinct NHEJ pathways, involving or not involving DNA-PKcs, are important for the repair of VP-16-induced DNA damage, providing additional evidence for the biological relevance of DNA-PKcs-independent NHEJ. Our results provide significant insights into the mechanisms of repair of Top2-mediated DNA damage, with implications for chemotherapy involving Top2 inhibitors.  相似文献   

14.

Background  

DNA double-strand breaks (DSBs) can occur in response to ionizing radiation (IR), radiomimetic agents and from endogenous DNA-damaging reactive oxygen metabolites. Unrepaired or improperly repaired DSBs are potentially the most lethal form of DNA damage and can result in chromosomal translocations and contribute to the development of cancer. The principal mechanism for the repair of DSBs in humans is non-homologous end-joining (NHEJ). Ku is a key member of the NHEJ pathway and plays an important role in the recognition step when it binds to free DNA termini. Ku then stimulates the assembly and activation of other NHEJ components. DNA binding of Ku is regulated by redox conditions and evidence from our laboratory has demonstrated that Ku undergoes structural changes when oxidized that results in a reduction in DNA binding activity. The C-terminal domain and cysteine 493 of Ku80 were investigated for their contribution to redox regulation of Ku.  相似文献   

15.
The Ku70/80 heterodimer is central to non-homologous end joining repair of DNA double-strand breaks and the Ku80 gene appears to be essential for human but not rodent cell survival. The Ku70/80 heterodimer is located at telomeres but its precise function in telomere maintenance is not known. In order to examine the role of Ku80 fibroblast strain. Following targeted Ku80 knockdown, telomere defects are observed and the steady state levels of the TRF2 protein are reduced. Inhibitor studies indicate that this loss of TRF2 is mediated by the proteasome, and degradation of TRF2 following Ku depletion appears to involve a decrease in chromatin binding of TRF2, suggesting that the Ku heterodimer enhances TRF2 chromatin association and that non-chromatin bound TRF2 is targeted to the proteasome.  相似文献   

16.
Granzyme A (GzmA) induces caspase-independent cell death with morphological features of apoptosis. Here, we show that GzmA at nanomolar concentrations cleaves Ku70, a key double-strand break repair (DSBR) protein, in target cells. Ku70 is cut after Arg(301), disrupting Ku complex binding to DNA. Cleaving Ku70 facilitates GzmA-mediated cell death, as silencing Ku70 by RNA interference increases DNA damage and cell death by GzmB cluster-deficient cytotoxic T lymphocytes or by GzmA and perforin, whereas Ku70 overexpression has the opposite effect. Ku70 has two known antiapoptotic effects-facilitating DSBR and sequestering bax to prevent its translocation to mitochondria. However, GzmA triggers single-stranded, not double-stranded, DNA damage, and GzmA-induced cell death does not involve bax. Therefore, Ku70 has other antiapoptotic functions in GzmA-induced cell death, which are blocked when GzmA proteolyses Ku70.  相似文献   

17.
Cofilin is an actin-associated protein that belongs to the actin depolymerization factor/cofilin family and is important for regulation of actin dynamics. Cofilin can import actin monomers into the nucleus under certain stress conditions, however the biological effects of nuclear transport are unclear. In this study, we found that over-expression of cofilin led to increased radiation sensitivity in human non-small lung cancer H1299 cells. Cell survival as determined by colony forming assay showed that cells over-expressing cofilin were more sensitive to ionizing radiation (IR) than normal cells. To determine whether the DNA repair capacity was altered in cofilin over-expressing cells, comet assays were performed on irradiated cells. Repair of DNA damage caused by ionizing radiation was detected in cofilin over-expressing cells after 24 h of recovery. Consistent with this observation, the key components for repair of DNA double-strand breaks, including Rad51, Rad52, and Ku70/Ku80, were down-regulated in cofilin over-expressing cells after IR exposure. These findings suggest that cofilin can influence radiosensitivity by altering DNA repair capacity.  相似文献   

18.
Recognition of DNA double-strand breaks during non-homologous end joining is carried out by the Ku70-Ku80 protein, a 150 kDa heterodimer that recruits the DNA repair kinase DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to the lesion. The atomic structure of a truncated Ku70-Ku80 was determined; however, the subunit-specific carboxy-terminal domain of Ku80--essential for binding to DNA-PKcs--was determined only in isolation, and the C-terminal domain of Ku70 was not resolved in its DNA-bound conformation. Both regions are conserved and mediate protein-protein interactions specific to mammals. Here, we reconstruct the three-dimensional structure of the human full-length Ku70-Ku80 dimer at 25 A resolution, alone and in complex with DNA, by using single-particle electron microscopy. We map the C-terminal regions of both subunits, and their conformational changes after DNA and DNA-PKcs binding to define a molecular model of the functions of these domains during DNA repair in the context of full-length Ku70-Ku80 protein.  相似文献   

19.
Non-homologous end-joining is a major pathway of DNA double-strand break repair in mammalian cells, deficiency in which confers radiosensitivity and immune deficiency at the whole organism level. A core protein complex comprising the Ku70/80 heterodimer together with a complex between DNA ligase IV and XRCC4 is conserved throughout eukaryotes and assembles at double-strand breaks to mediate ligation of broken DNA ends. In Saccharomyces cerevisiae an additional NHEJ protein, Nej1p, physically interacts with the ligase IV complex and is required in vivo for ligation of DNA double-strand breaks. Recent studies with cells derived from radiosensitive and immune-deficient patients have identified the human protein, XLF (also named Cernunnos), as a crucial NHEJ protein. Here we show that XLF and Nej1p are members of the same protein superfamily and that this family has members in diverse eukaryotes. Indeed, we show that a member of this family encoded by a previously uncharacterized open-reading frame in the Schizosaccharomyces pombe genome is required for NHEJ in this organism. Furthermore, our data reveal that XLF family proteins can bind to DNA and directly interact with the ligase IV-XRCC4 complex to promote DSB ligation. We therefore conclude that XLF family proteins interact with the ligase IV-XRCC4 complex to constitute the evolutionarily conserved enzymatic core of the NHEJ machinery.  相似文献   

20.
While the Ku complex, comprised of Ku70 and Ku80, is primarily involved in the repair of DNA double-strand breaks, it is also believed to participate in additional cellular processes. Here, treatment of embryo fibroblasts (MEFs) derived from either wild-type or Ku80-null (Ku80(-/-)) mice with various stress agents revealed that hydrogen peroxide (H(2)O(2)) was markedly more cytotoxic for Ku80(-/-) MEFs and led to their long-term accumulation in the G2 phase. This differential response was not due to differences in DNA repair, since H(2)O(2)-triggered DNA damage was repaired with comparable efficiency in both Wt and Ku80(-/-) MEFs, but was associated with differences in the expression of important cell cycle regulatory genes. Our results support the notion that Ku80-mediated cytoprotection and G2-progression are not only dependent on the cell's DNA repair but also may reflect Ku80's influence on additional cellular processes such as gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号