首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Actinobacillus suis secretes metalloproteases into its medium. These secreted proteins, when concentrated by precipitation with 70% (NH4)2SO4 or methanol, displayed proteolytic activity at >200 kDa molecular mass bands in 10% polyacrylamide gels copolymerized with bovine casein (1%). They showed activity in a broad pH range (from pH 5 to pH 10) and were inhibited by 20 mM EDTA or EGTA, but could be reactivated by calcium. They were found heat stable at 40°C, 50°C, 60°C, and 70°C, but their activity diminished at 80°C or higher. They degraded pig and bovine IgG and cross-reacted with a polyclonal serum against a high molecular mass secreted protease from A. pleuropneumoniae. Extracellular proteases could play a role in diseases caused by A. suis.  相似文献   

2.
The exoprotease from Oenococcus oeni produced in stress conditions was purified to homogeneity in two steps, a 14-fold increase of specific activity and a 44% recovery of proteinase activity. The molecular mass was estimated to be 33.1 kDa by gel filtration and 17 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). These results suggest that the enzyme is a dimer consisting of two identical subunits. Optimal conditions for activity on grape juice were 25 degrees C and a pH of 4.5. Incubation at 70 degrees C, 15 min, destroyed proteolytic activity. The SDS-PAGE profile shows that the enzyme was able to degrade the grape juice proteins at a significantly high rate. The activity at low pH and pepstatin A inhibition indicate that this enzyme is an aspartic protease. The protease activity increases at acidic pH suggesting that it could be involved in the wine elaboration.  相似文献   

3.
The physiochemical characteristics of the intracellular proteolytic enzymes of Oidiodendron kalari, a neuropathogenic fungus, were studied. The organism in the yeast phase was grown in a semisynthetic medium containing 1% tryptone, at 37 degrees C for 48 hr, on a gyrotory shaker. The crude extract was prepared by breaking the cells in a French pressure cell and the proteolytci activity was tested against biological substrates. The cell-free extract hydrolyzed casein, hemoglobin, lactalbumin, gelatin, elastin, collagen and purified rabbit renal basement membrane to various degrees. Optimal proteolytic activity was observed at pH 6 and at 32 degrees C. Calcium and EDTA did not affect the enzymatic activity; however, activity was partially inhibited by sulfhydryl-blocking agents and by heat-inactivated horse, calf, and human serum. The extract was totally inactivated by exposure to a temperature of 70 degrees C for 60 min. Storage at -76 degrees C or -15 degrees C for 6 months or at 4 degrees C for 4 weeks did not affect protease activity.  相似文献   

4.
An isolate of Streptomyces tendae produced a extracellular protease which was purified to apparent homogeneity giving a single band on SDS-PAGE with a molecular mass of 21 kDa. Optimum activity was at 70 degrees C and pH 6. It was stable at 55 degrees C for 30 min and between pH 4 and 9. It was resistant to neutral detergents and organic solvents such as Triton X-100, Tween 80, methanol, ethanol, acetone, and 2-propanol at 5% (v/v). The enzyme was completely inhibited by 5 mM PMSF, indicating it to be a serine protease. N-terminal amino acid sequence did not show any homology with other known proteolytic enzymes. The protease may therefore be a novel neutral serine protease, which is stable at high temperature and over a broad range of pH.  相似文献   

5.
The variant surface glycoprotein of African trypanosomes is released after overnight incubation of parasites at 4 degrees C in pH 5.5 phosphate glucose buffer and may be purified by Concanavalin A Sepharose affinity chromatography. The addition of proteinase inhibitors during the parasite incubation is necessary to prevent the proteolysis of the variant surface glycoprotein by the trypanosomal released proteinases. Using this procedure without the addition of proteinase inhibitors, the proteolytic activities, released from the bloodstream forms Trypanosoma brucei brucei variant AnTat 1.1, were separated by Concanavalin-A Sepharose affinity chromatography. The unretained material (F1) shows hydrolytic activity against the two synthetic substrates Z-Phe-Arg-AMC and Z-Arg-Arg-AMC, which is stimulated by dithiothreitol, but not inhibited by E-64, and characterized by an alkaline pH optimum and an estimated molecular mass of 80-100 kDa. The Michaelis constant for the substrates Z-Arg-Arg-AMC and Z-Phe-Arg-AMC was, respectively, 2.8 and 6.7 microM. The retained material eluted by addition of 1% methyl-alpha-D-mannopyranoside (F2) shows hydrolytic activity against the synthetic substrate Z-Phe-Arg-AMC, which is stimulated by dithiothreitol, inhibited by E-64, active between pH 6.0 and 8.0, and could be separated into two peaks of activity by HPLC, one peak of high molecular mass (greater than 70 kDa) and the other peak of lower molecular mass (30-70 kDa). By electrophoresis in gels containing gelatin as substrate, this fraction contains several proteins with gelatinolytic activity, whereas the unretained fraction F1 did not have any gelatinolytic activity.  相似文献   

6.
Protease secreted into the culture medium by alkalophilic Thermoactinomyces sp. HS682 was purified to an electrophoretically homogeneous state through only two chromatographies using Butyl-Toyopearl 650M and SP-Toyopearl 650S columns. The purified enzyme has an apparent relative molecular mass of 25,000 according to gel filtration on a Sephadex G-75 column and SDS-PAGE and an isoelectric point above 11.0. Its proteolytic activity was inhibited by active-site inhibitors of serine protease, DFP and PMSF, and metal ions, Cu2+ and Hg2+. The enzyme was stable toward some detergents, sodium perborate, sodium triphosphate, sodium-n-dodecylbenzenesulfonate, and sodium dodecyl sulfate, at a concentration of 0.1% and pH 11.5 and 37 degrees C for 60 min. The optimum pH was pH 11.5-13.0 at 37 degrees C and the optimum temperature was 70 degrees C at pH 11.5. Calcium divalent cation raised the pH and heat stabilities of the enzyme. In the presence of 5 mM CaCl2, it showed maximum proteolytic activity at 80 degrees C and stability from pH 4-12.5 at 60 degrees C and below 75 degrees C at pH 11.5. The stabilization by Ca2+ was observed in secondary conformation deduced from the circular dichroic spectrum of the enzyme. The protease hydrolyzed the ester bond of benzoyl leucine ester well. The amino acid terminal sequence of the enzyme showed high homology with those of microbial serine protease, although alanine of the NH2-terminal amino acid was deleted.  相似文献   

7.
An extracellular lipase was isolated from the cell-free broth of Bacillus sp. GK 8. The enzyme was purified to 53-fold with a specific activity of 75.7 U mg(-1) of protein and a yield of 31% activity. The apparent molecular mass of the monomeric protein was 108 kDa as estimated by molecular sieving and 112 kDa by SDS-PAGE. The proteolysis of the native molecule yields a low molecular weight component of 11.5 kDa that still retains the active site. It was stable at the pH range of 7.0-10.0 with optimum pH 8.0. The enzyme was stable at 50 degrees C for 1 h with a half life of 2 h, 40 min, and 18 min at 60, 65, and 70 degrees C, respectively. With p-nitrophenyl laurate as substrate the enzyme exhibited a K(m) and V(max) of 3.63 mM and 0.26 microM/min/ml, respectively. Activity was stimulated by Mg(2+) (10 mM), Ba(2+) (10 mM), and SDS (0.1 mM), but inhibited by EDTA (10 mM), phenylmethane sulfonyl fluoride (100 mM), diethylphenylcarbonate (10 mM), and eserine (10 mM). It hydrolyzes triolein at all positions. The fatty acid specificity of lipase is broad with little preference for C(4) and C(18:1). Thermostability of the proteolytic fragment at 60 degrees C was observed to be 37% of the native protein. The native enzyme was completely stable in ethylene glycol and glycerol (30% v/v each) for 60 min at 65 degrees C.  相似文献   

8.
Non-albicans Candida species cause 35-65% of all candidemias in the general population, especially in immunosuppressed individuals. Here, we describe a case of a 19-year-old HIV-infected man with pneumonia due to a yeast-like organism. This clinical yeast isolate was identified as Candida guilliermondii through mycological tests. C. guilliermondii was cultivated in brain heart infusion medium for 48 h at 37 degrees C. After sequential centrifugation and concentration steps, the free-cell culture supernatant was obtained and extracellular proteolytic activity was assayed firstly using gelatin-SDS-PAGE. A 50 kDa proteolytic enzyme was detected with activity at physiological pH. This activity was completely blocked by 10 mM phenylmethylsulphonyl fluoride (PMSF), a serine proteinase inhibitor, suggesting that this extracellular proteinase belongs to the serine proteinase class. E-64, a strong cysteine proteinase inhibitor, and pepstatin A, a specific aspartic proteolytic inhibitor, did not interfere with the 50 kDa proteinase. Conversely, a zinc-metalloproteinase inhibitor (1,10-phenanthroline) restrained the proteinase activity released by C. guilliermondii by approximately 50%. Proteinases are a well-known class of enzymes that participate in a vast context of yeast-host interactions. In an effort to establish a functional implication for this extracellular serine-type enzyme, we investigated its capacity to hydrolyze some serum proteins and extracellular matrix components. We demonstrated that the 50 kDa exocellular serine proteinase cleaved human serum albumin, non-immune human immunoglobulin G, human fibronectin and human placental laminin, generating low molecular mass polypeptides. Collectively, these results showed for the first time the ability of an extracellular proteolytic enzyme other than aspartic-type proteinases in destroying a broad spectrum of relevant host proteins by a clinical species of non-albicans Candida.  相似文献   

9.
Thermus sp. strain Rt41A produces an extracellular thermostable alkaline proteinase. The enzyme has a high isoelectric point (10.25-10.5) which can be exploited in purification by using cation-exchange chromatography. The proteinase was purified to homogeneity and has a molecular mass of 32.5 kDa by SDS/PAGE. It is a glycoprotein, containing 0.7% carbohydrate as glucose equivalents, and has four half-cystine residues present as two disulphide bonds. Maximum proteolytic activity was observed at pH 8.0 against azocasein and greater than 75% of this activity was retained in the pH range 7.0-10.0. Substrate inhibition was observed with casein and azocasein. The enzyme was stable in the pH range 5.0-10.0 and maximum activity, in a 10-min assay, was observed at 90 degrees C with 5 mM CaCl2 present. No loss of activity was observed after 24 h at 70 degrees C and the half-lives at 80 degrees C and 90 degrees C were 13.5 h and 20 min, respectively. Removal of Ca2+ reduced the temperature for maximum proteolytic activity against azocasein to 60 degrees C and the half-life at 70 degrees C was 2.85 min. The enzyme was stable at low and high ionic strength and in the presence of denaturing reagents and organic solvents. Rt41A proteinase cleaved a number of synthetic amino acid p-nitrophenol esters, the kinetic data indicating that small aliphatic or aromatic amino acids were the preferred residue at the P1 position. The kinetic data for the hydrolysis of a number of peptide p-nitroanilide substrates are also reported. Primary cleavage of the oxidized insulin B chain occurred at sites where the P1' amino acid was aromatic. Minor cleavage sites (24 h incubation) were for amino acids with aliphatic side chains at the P1' position. The esterase and insulin cleavage data indicate the specificity is similar for both the P1 and P1' sites.  相似文献   

10.
The main proteinase of the filamentous fungus Colletotrichum gloeosporioides causing anthracnoses and serious problems for production and storage of agricultural products has molecular mass of 57 kD and was purified more than 200-fold to homogeneity with the yield of 5%. Maximal activity of the proteinase is at pH 9.0-10.0, and the enzyme is stable at pH 6.0-11.5 (residual activity not less than 70%). The studied enzyme completely kept its activity to 55 degrees C, with a temperature optimum of 45 degrees C. The purified C. gloeosporioides proteinase is stable at alkaline pH values, but rapidly loses its activity at pH values lower than 5.0. Addition of bovine serum albumin stabilizes the enzyme under acidic conditions. Data on inhibitor analysis and substrate specificity of the enzyme allow its classification as a serine proteinase of subtilisin family. It is demonstrated that the extracellular proteinase of C. gloeosporioides specifically effects plant cell wall proteins. It is proposed that the studied proteinase--via hydrolysis of cell wall--provides for penetration of the fungus into the tissues of the host plant.  相似文献   

11.
A Bacillus licheniformis strain, 189, isolated from a hot spring environment in the Azores, Portugal, strongly inhibited growth of Gram-positive bacteria. It produced a peptide antibiotic at 50 degrees C. The antibiotic was purified and biochemically characterized. It was highly resistant to several proteolytic enzymes. Additionally, it retained its antimicrobial activity after incubation at pH values between 3.5 and 8; it was thermostable, retaining about 85% and 20% of its activity after 6 h at 50 degrees C and 100 degrees C, respectively. Its molecular mass determined by mass spectrometry was 3249.7 Da.  相似文献   

12.
Cellular extracts of Tetrahymena thermophila were found to contain substantial levels of proteolytic activity. Protein digestion occurred over broad ranges of pH, ionic strength, and temperature and was stimulated by treatment with thiol reductants, EDTA and sodium dodecyl sulfate. Incubation at temperatures > or = 60 degrees C or with high concentrations of chaotropic reagents such as 10 M urea or 6 M guanidine-HCl caused an apparent irreversible loss of activity. Activity was also strongly diminished by increasing concentrations of divalent cations. Several peptide aldehydes, p-hydroxymercuribenzoate, and alkylating reagents such as iodoacetate, N-tosyl-L-lysine chloromethyl ketone, N-tosyl-L-phenylalanine chloromethyl ketone, N-methylmaleimide, and trans-epoxysuccinyl-L-leucylamido-(4-guanidino)-butane were potent inhibitors of proteolytic activity. Aprotinin diminished activity by approximately 40% while benzamidine, 3,4-dichlorosocoumarin, and trypsin inhibitors from soy bean, lima bean, and chicken egg caused relatively modest inhibition of proteolytic activity. Phenylmethanesulfonyl fluoride had no apparent effect. Electrophoretic separation of proteins on SDS-polyacrylamide gels copolymerized with gelatin substrate revealed that at least eight active proteolytic enzymes were present in cell extracts ranging in apparent molecular weight from 45,000 to 110,000. Five of these apparent proteases were detected in 70% ammonium sulfate precipitates. Gelatinase activity was not detectable when extracts were pretreated with iodoacetate or E-64, indicating that all of the enzymes observed in activity gels were sensitive to thiol alkylation. Cellular extracts of T. thermophila appeared to contain multiple forms of proteolytic enzymes which were stimulated by thiol reductants and inhibited by thiol modifying reagents. Accordingly, the proteolytic enzymes present in cell extracts appear to be predominantly cysteine proteinases.  相似文献   

13.
空肠弯曲菌肠毒素理化特性的研究   总被引:3,自引:0,他引:3  
经SDSPAGE 分析发现,空肠弯曲菌细胞紧张性肠毒素(Cytotonic enterotoxin ,CE) 的硫酸胺盐析粗提物除有一条68kD 的带外,还有一些未分开的小分子物质,而经神经节苷脂GM1 亲和层析后仅有68KD 的一条带,即表明68kD 的蛋白质为CE 的主要成分。CE 不耐热、pH 依赖和对胰酶有抗性。56 ℃和60 ℃加热30min 、100 ℃加热15min 即可完全失活。其活性在pH6-0 时最高,在pH3-0 和9-0 时均可使其完全丧失活性。在4 ℃保存超过3d 后,其活性迅速降低。抗LT 血清能完全抑制CE 的活性。  相似文献   

14.
Actively motile cells from a cured strain of Crithidia deanei released proteins in phosphate buffer (pH 7.4). The molecular mass of the released polypeptides, which included some proteinases, ranged from 19 to 116 kDa. One of the major protein bands was purified to homogeneity by a combination of anion-exchange and gel filtration chromatographs. The apparent molecular mass of this protein was estimated to be 62 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The incorporation of gelatin into SDS-PAGE showed that the purified protein presented proteolytic activity in a position corresponding to a molecular mass of 60 kDa. The enzyme was optimally active at 37 degrees C and pH 6.0 and showed 25% of residual activity at 28 degrees C for 30 min. The proteinase was inhibited by 1,10-phenanthroline and EDTA, showing that it belonged to the metalloproteinase class. A polyclonal antibody to the leishmanial gp63 reacted strongly with the released C. deanei protease. After Triton X-114 extraction, an enzyme similar to the purified metalloproteinase was detected in aqueous and detergent-rich phases. The detection of an extracellular metalloproteinase produced by C. deanei and some other Crithidia species suggests a potential role of this released enzyme in substrate degradation that may be relevant to the survival of trypanosomatids in the host.  相似文献   

15.
A membrane-bound lytic transglycosylase (Mlt) has been solubilized in the presence of 2% Triton X-100 containing 0.5 M NaCl from membranes of an Escherichia coli mutant that carries a deletion in the slt gene coding for a 70-kDa soluble lytic transglycosylase (Slt70). The enzyme was purified by a four-step procedure including anion-exchange (HiLoad SP-Sepharose and MonoS), heparin-Sepharose, and poly(U)-Sepharose 4B column chromatography. The purified protein that migrated during denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a single band corresponding to an apparent molecular mass of about 38 kDa is referred to as Mlt38. Optimal activity was found in buffers with a pH between 4.0 and 4.5. The enzyme is stimulated by a factor of 2.5 in the presence of Mg2+ at a concentration of 10 mM and loses its activity rapidly at temperatures above 30 degrees C. Besides insoluble murein sacculi, the enzyme was able to degrade glycan strands isolated from murein by amidase treatment. The enzymatic reaction occurred with a maximal velocity of about 2.2 mg/liter/min with murein sacculi as a substrate. The amino acid sequences of four proteolytic peptides showed no identity with known sequences in the data bank. With Mlt38, the number of proteins in E. coli showing lytic transglycosylase activity rises to three.  相似文献   

16.
An alkaline protease was isolated from culture filtrate of B. subtilis NCIM 2713 by ammonium sulphate precipitation and was purified by gel filtration. With casein as a substrate, the proteolytic activity of the purified protease was found to be optimal at pH 8.0 and temperature 70 degrees C. The purified protease had molecular weight 20 kDa, Isoelectric point 5.2 and km 2.5 mg ml(-1). The enzyme was stable over the pH range 6.5-9.0 at 37 degrees C for 3 hr. During chromatographic separation this protease was found to be susceptible to autolytic degradation in the absence of Ca2+. Ca2+ was not only required for the enzyme activity but also for the stability of the enzyme above 50 degrees C. About 62% activity was retained after 60 min at pH 8.0 and 55 degrees C. DFP and PMSF completely inhibited the activity of this enzyme, while in the presence of EDTA only 33% activity remained. However, it was not affected either by sulfhydryl reagent, or by divalent metal cations, except SDS and Hg2+. The results indicated that this is a serine protease.  相似文献   

17.
Two highly purified proteins with quite different properties capable of oxaloacetate keto-enol-tautomerase activity (oxaloacetate keto-enol-isomerase, EC 5.3.2.2) were isolated from the bovine heart mitochondrial matrix. The first protein has an apparent molecular mass of 37 kDa as determined by SDS-gel electrophoresis and Sephacryl SF-200 gel filtration. It is quite stable upon storage at 40 degrees C and reaches the maximal catalytic activity at pH 8.5 with a half-maximal activity at pH 7.0. The enzyme is specifically inhibited by oxalate and diethyloxaloacetate. When assayed in the enol----ketone direction at 25 degrees C (pH 9.0), the enzyme obeys a simple substrate saturation kinetics with Km and Vmax values of 45 microM and 74 units per mg of protein, respectively; the latter value corresponds to the turnover number of 2700 min-1. The second protein has an apparent molecular mass of 80 kDa as determined by SDS-gel electrophoresis and Sephacryl SF-300 gel filtration. The enzyme is rapidly inactivated at 40 degrees C and shows a sharp pH optimum of activity at pH 9.0. The enzyme can be completely protected from thermal inactivation by oxaloacetate and dithiothreitol. The kinetic parameters of the enzyme as assayed in the enol----ketone direction at 25 degrees C (pH 9.0) are: Km = 220 microM and Vmax = 20 units per mg of protein; the latter corresponds to the turnover number of 1600 min-1. The enzyme activity is specifically inhibited by maleate and pyrophosphate. About 30% of the total oxaloacetate tautomerase activity in crude mitochondrial matrix is represented by the 37 kDa enzyme and about 70% by the 80 kDa protein.  相似文献   

18.
Various dextransucrase molecular mass forms found in enzyme preparations may sometimes be products of proteolytic activity. Extracellular protease in Leuconostoc mesenteroides strains NRRL B-512F and B-512FMC dextransucrase preparations was identified. Protease had a molecular mass of 30 kDa and was the predominant form derived from a high molecular mass precursor. The production and activity of protease in culture medium was strongly dependent on pH. When L. mesenteroides dextransucrase (173 kDa) was hydrolyzed by protease, at pH 7 and 37 degrees C, various dextransucrase forms with molecular masses as low as 120 kDa conserving dextransucrase activity were obtained.  相似文献   

19.
Proteinase Ak.1 was produced during the stationary phase of Bacillus sp. Ak.1 cultures. It is a serine proteinase with a pI of 4.0, and the molecular mass was estimated to be 36.9 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was stable at 60 and 70 degrees C, with half-lives of 13 h and 19 min at 80 and 90 degrees C, respectively. Maximum proteolytic activity was observed at pH 7.5 with azocasein as a substrate, and the enzyme also cleaved the endoproteinase substrate Suc-Ala-Ala-Pro-Phe-NH-Np (succinyl-alanyl-alanyl-prolyl-phenylalanine p-nitroanalide). Major cleavage sites of the insulin B chain were identified as Leu-15-Tyr-16, Gln-4-His-5, and Glu-13-Ala-14. The proteinase gene was cloned in Escherichia coli, and expression of the active enzyme was detected in the extracellular medium at 75 degrees C. The enzyme is expressed in E. coli as an inactive proproteinase at 37 degrees C and is converted to the mature enzyme by heating the cell-free media to 60 degrees C or above. The proproteinase was purified to homogeneity and had a pI of 4.3 and a molecular mass of 45 kDa. The NH2-terminal sequence was Ala-Ser-Asn-Asp-Gly-Val-Glu-, showing the exact signal peptide cleavage point. Heating the proenzyme resulted in the production of active proteinase with an NH2-terminal sequence identical to that of the native enzyme. The characteristics of the cloned proteinase were identical to those of the native enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Triticum aestivum xylanase inhibitor I (TAXI-I) is a wheat protein that inhibits microbial xylanases belonging to glycoside hydrolase family 11. In the present study, recombinant TAXI-I (rTAXI-I) was successfully produced by the methylotrophic yeast Pichia pastoris at high expression levels (approximately 75 mg/L). The rTAXI-I protein was purified from the P. pastoris culture medium using cation exchange and gel filtration chromatographic steps. rTAXI-I has an iso-electric point of at least 9.3 and a mass spectrometry molecular mass of 42,013 Da indicative of one N-linked glycosylation. The recombinant protein fold was confirmed by circular dichroism spectroscopy. Xylanase inhibition by rTAXI-I was optimal at 20-30 degrees C and at pH 5.0. rTAXI-I still showed xylanase inhibition activity at 30 degrees C after a 40 min pre-incubation step at temperatures between 4 and 70 degrees C and after 2 h pre-incubation at room temperature at a pH ranging from 3.0 to 12.0, respectively. All tested glycoside hydrolase family 11 xylanases were inhibited by rTAXI-I whereas those belonging to family 10 were not. Specific inhibition activities against family 11 Aspergillus niger and Bacillus subtilis xylanases were 3570 and 2940IU/mg protein, respectively. The obtained biochemical characteristics of rTAXI-I produced by P. pastoris (no proteolytical cleft) were similar to those of natural TAXI-I (mixture of proteolytically processed and non-processed forms) and non-glycosylated rTAXI-I expressed in Escherichia coli. The present results show that xylanase inhibition activity of TAXI-I is only affected to a limited degree by its glycosylation or proteolytic processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号