首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1,4-Dioxane, a widely used industrial chemical and rodent hepatocarcinogen, has produced mixed, largely negative results in the mouse erythrocyte micronucleus assay. In contrast, a recent report has indicated that 1,4-dioxane induces micronuclei in mouse hepatocytes following in vivo treatment. The objective of this study was to confirm these earlier results and identify the origin of the induced micronuclei. Following an initial range-finding study, mice were administered 1,4-dioxane by gavage at doses ranging from 1500 to 3500 mg/kg. The test animals were also implanted with BrdU-releasing osmotic pumps to allow cell proliferation to be measured in the liver and to increase the sensitivity of the hepatocyte assay. Upon sacrifice, the frequency of micronuclei in the bone marrow erythrocytes and in the proliferating BrdU-labeled hepatocytes was determined. Significant dose-related increases in micronuclei were seen in both the liver and the bone-marrow with significant increases being detected at all the tested doses in the bone marrow and at the 2500 and 3500 mg/kg doses in the liver. Using CREST staining or pancentromeric FISH to determine the origin of the induced micronuclei, it was determined that 80-90% of the micronuclei in both tissues originated from chromosomal breakage. Small increases in centromere-containing micronuclei were also seen in the hepatocytes. Decreases in hepatocyte proliferation as well as in the ratio of bone marrow PCE:NCE were also observed. Based on these results, we conclude that at high doses: (i) dioxane exerts genotoxic effects in both the mouse bone marrow and liver; (ii) the induced micronuclei are formed primarily from chromosomal breakage; and (iii) dioxane can interfere with cell proliferation in both the liver and bone marrow.  相似文献   

2.
Primary hepatocyte culture is a crucial tool for investigations of liver function and for evaluating the toxic effects of drugs. In addition, chromosomal analysis of hepatocytes could also prove useful for understanding the mechanisms of hepatocarcinogenesis. However, cultivation of primary hepatocytes for chromosome analysis has been hampered by the specific equipment and skill required to perform the in situ perfusion step necessary for isolation of primary hepatocytes. In the present study, we aimed to establish a simple and efficient method of isolating hepatocytes suitable for chromosome analysis. We performed hepatocyte isolation without using collagenase perfusion, instead digesting liver tissues using collagenase in tubes. In addition, we examined hepatocyte and bone marrow cell (BMC) co-culture and cultivation of hepatocytes with medium containing BMC culture medium supernatants. We found that hepatocyte viability and attachment rate were significantly improved, both by co-culture with BMCs and medium containing BMC culture media supernatants, with the latter also significantly increasing the mitotic index. Using this simple method of isolation and cultivation, we could successfully perform chromosomal analysis of mouse primary hepatocytes. This method has the potential to help understand the mechanisms underlying chromosomal instability-mediated hepatocarcinogenesis.  相似文献   

3.
A simplifying assumption made when calculating the probability of a chromosomal aberration resulting in a micronucleus is that virtually all radiation-induced micronuclei result from acentric fragments. In the present study we used antibodies to chromosomal centromeres (kinetochores) to determine the frequency of centric versus acentric micronuclei in normal human fibroblasts exposed to 6 Gy of 60Co gamma rays while they were in density-inhibited growth. Up to 14% of the micronuclei induced by this exposure contained one or more kinetochores; i.e., they were not composed of acentric chromatin. By deleting kinetochore-positive micronuclei from the analysis, and by reconstructing micronucleus frequencies based on the fraction of cells that had divided following radiation exposure, a direct comparison between micronuclei and acentric chromosome fragments was made. On that basis, the probability of an acentric fragment becoming a visible micronucleus in either daughter cell of a dividing pair was estimated to be about 0.6. The distribution of acentric fragments among mitotic cells conformed to Poisson expectation, while the distribution of micronuclei among daughter cells was significantly overdispersed. The phenomenon of overdispersion is discussed in connection with proposed cellular processes that effect a nonrandom segregation of acentric fragments.  相似文献   

4.
The phenomenon of total replacement of preexisting and damaged hepatocytes in mice were demonstrated by the method of autoradiography. Adult mice were injected an alkylating drug Dipin 2 h prior to partial hepatectomy and then proliferating cells were labelled by means of multiple injections of 14C-thymidine. Dipin in combination with mitotic stimulation induced multiple mitotic aberrations in proliferating hepatocytes resulting in degeneration, death and then elimination of prelabelled liver cells. New parenchymal tissue originated from non-labelled preneoplastic nodules. These hepatocyte nodules grew in size, propagated and 8-10 months later completely replaced the preexisting hepatocytes.  相似文献   

5.
Male Wistar rats received a single injection of diethylnitrosamine (DEN), dimethylnitrosamine (DMN) or ethyl methanesulfonate (EMS). After a number of time intervals (up to 56 days) liver cells were assayed for the presence of possible preclastogenic damage by performing partial hepatectomy and subsequent analysis of chromosomal damage (micronucleus formation) in isolated hepatocytes. Peripheral blood lymphocytes from the same animals were collected, stimulated to proliferate and assayed for the frequency of sister-chromatid exchanges (SCEs). Whereas all agents significantly increased frequencies of SCEs in lymphocytes up to at least 28 days (EMS) or 56 days (DMN, DEN) after injection, only the latter 2 compounds gave rise to significantly increased incidences of micronucleated hepatocytes. DMN-induced preclastogenic damage in hepatocytes was lost between 28 and 56 days after injection. After DEN, this type of damage was persistent over the entire experimental period (56 days).When rats treated with DEN did not undergo partial hepatectomy, the frequencies of micronuclei at different time intervals after treatment were at control level. This result, together with those from hepatectomized DEN-treated rats, suggests that it is the persistent character of the preclastogenic damage that is responsible for the occurrence of micronucleated hepatocytes at later time intervals after treatment with DEN, rather than the stability of micronuclei which might eventually have been formed soon after injection.  相似文献   

6.
I N Uryvaeva  G V Delone 《Ontogenez》1992,23(4):370-378
Latent genetic disturbances in aging liver cells can be registered during interphase by the appearance of micronuclei resulting from certain chromosomal aberrations. Micronuclei were also detected in postmitotic hepatocytes of mouse liver regenerating after partial resection of CCl4 poisoning. In 1.5- and 2-month-old mice, the proportion of micronuclei-containing cells was on average 0.59 and 0.89%, respectively. At the age of 4 and 7 months, the proportion of aberrant cells in hepatocyte population, including cells containing multiple micronuclei, increased to 5.93 and 11.7%, respectively. In order to evaluate parameters used to characterize "spontaneous" aging, experiments were performed in which genetic disturbances were induced by x-irradiation or treatment with dipin, an alkylating agent (individually or in combination); the effect was determined one and two months after the treatment. The yield of micronuclei under the conditions of a mild treatment (irradiation at a dose of 0.7 and 1.4 Gr or dipin at a dose of 30 mg/kg body weight) was similar to that observed during aging. The possible reasons for the increased (as compared to the published data) rate of genetic disturbances in arbitrary intact animals are discussed.  相似文献   

7.
The present study is a rare example of a detailed characterization of chromosomal aberrations by identification of individual chromosomes (or chromosome arms) involved in their formation in plant cells by using fluorescent in situ hybridization (FISH). In addition, the first application of more than 2 DNA probes in FISH experiments in order to analyse chromosomal aberrations in plant cells is presented. Simultaneous FISH with 5S and 25S rDNA and, after reprobing of preparations, telomeric and centromeric DNA sequences as probes, were used to compare the cytogenetic effects of 2 chemical mutagens: N-nitroso-N-methylurea (MNU) and maleic hydrazide (MH) on root tip meristem cells of Hordeum vulgare (2n=14). The micronucleus (MN) test combined with FISH allowed the quantitative analysis of the involvement of specific chromosome fragments in micronuclei formation and thus enabled the possible origin of mutagen-induced micronuclei to be explained. Terminal deletions were most frequently caused by MH and MNU. The analysis of the frequency of micronuclei with signals of the investigated DNA probes showed differences between the frequency of MH- and MNU-induced micronuclei with specific signals. The micronuclei with 2 signals, telomeric DNA and rDNA (5S and/or 25S rDNA), were the most frequently observed in the case of both mutagens, but with a higher frequency after treatment with MH (46%) than MNU (37%). Also, 10% of MH-induced micronuclei were characterized by the presence of only telomere DNA sequences, whereas there were almost 3-fold more in the case of MNU-induced micronuclei (28%). Additionally, by using FISH with the same probes, an attempt was made to identify the origin of chromosome fragments in mitotic anaphase.  相似文献   

8.
The clastogenic effect of furocoumarins psoralen and angelicin in the presence of near-UV (320-380 nm) differs greatly, as do their modes of interaction with DNA. Psoralen, which requires only one-fifth as much light energy to produce the same lethal effect as angelicin at equimolar concentrations, is able to cross-link DNA whereas angelicin cannot. The frequency of micronuclei which arise from chromosomal fragments shows the same differential effect as lethality. Indeed aberrations account for much or all of the lethality observed. Metaphase analysis at comparable aberration frequencies revealed that angelicin and psoralen both induce chromatid deletions and a wide spectrum of chromatid exchanges. These data show that both cross-links and monoadducts to the DNA can result in chromosomal aberrations. The relative contributions of cross-links and monoadducts to chromosomal aberrations still remain to be determined. It is noteworthy that extensive chromosomal damage is induced in mammalian cells by the combination of psoralen and near-UV, a treatment which is currently widely used in the therapy of psoriasis.  相似文献   

9.
Two antigens - A6 and G7 - shared by mouse biliary epithelial and oval cells were revealed by monoclonal antibodies raised in rat immunized with oval-cell-enriched liver fraction. Oval cells were induced in CBA or F1 (CBA x C57BL6) mice by a combination of a single injection of the alkylating drug Dipin with partial hepatectomy. In normal liver A6 antigen was localized, using light and electron microscopy, in biliary epithelial cells of all ducts including Hering canals. Some bile ductal and Hering cells were A6-negative. Occasionally, A6 antigen was present in single hepatocytes forming the periportal ends of hepatic cords. In preneoplastic and tumorous liver A6 antigen was present in bile ductal and oval cells and in a fraction of newly formed hepatocytes and tumor cells. G7 antigen was revealed in normal, precancerous and tumorous liver in biliary epithelial and oval cells but not in hepatocytes. A6 and G7 antigens were not liver-specific: they were expressed in various normal organs and tissues, especially in epithelia. In studies of mouse liver lineages A6 antigen can be used as a common marker of biliary epithelial and oval cells and hepatocytes at certain stages of differentiation. G7 antigen is a marker of oval and biliary epithelial cells. There was a striking similarity in A6 antigen localization to that of human blood group antigens in normal liver and liver tumors. A6 antigen may thus provide a useful tool for the study of neoexpression of human blood group antigens in liver tumors.  相似文献   

10.
In recent years, research on the biological influence of micronutrients in cancer has grown enormously. Among these, vanadium, a dietary micronutrient present in mammalian tissues has received considerable attention as a limiting agent. In the present study, attempts have been made to investigate the in vivo antitumour potentials of this micronutrient at the 0.5 ppm dosage in drinking water in a defined model of a two-stage experimental rat hepatocarcinogenesis. The chemopreventive effect of vanadium was assessed by studying certain biomarkers, such as development of gamma-glutamyltranspeptidase (GGT)-positive foci, levels of some essential trace elements, in situ expression of proliferating cell nuclear antigen (PCNA) and chromosomal aberrations. Hepatocarcinogenesis was induced in male Sprague-Dawley rats by chronic feeding of 2-acetylaminofluorene (0.05% in basal diet) on and from week 4. Vanadium administration throughout the experiment reduced the relative liver weight, nodular incidence (66.70%), total number and multiplicity (79.93%) and restored hepatic levels of selenium (Se) and iron (Fe) (P < 0.001) when compared to the carcinogen control. Moreover, long-term vanadium treatment significantly abated the expressions of GGT (P < 0.001) and PCNA with concomitant reduction in PCNA immunolabeling index (P < 0.001; 36.62%). Finally, the anticlastogenic potential of vanadium was reflected through its ability to inhibit early chromosomal aberrations (P < 0.001; 45.17%) in 2-AAF-challenged rat hepatocytes. Our results suggest that supplementary vanadium at a dose of 0.5 ppm, when administered continuously throughout the study, than administered either in the initiation or promotion phase alone, is very much effective in suppressing neoplastic transformation in vivo. We conclude the significant role of vanadium in limiting cell proliferation and chromosomal aberrations during the preneoplastic stages of hepatocarcinogenesis in rats.  相似文献   

11.
Effects of alkylating antitumor drugs on resting (G0 phase of cell cycle) and proliferating (G1, S, G2 and M phases) hepatocytes were studied in regenerating mouse liver. Cell cycle kinetics (fraction of labeled mitoses, labeling and mitotic indices) were determined by 3H-thymidine autoradiography. Dipin and fotrin as a DNA-damaging agents attack mainly resting (G0) and proliferating (G1) cells. Effect of the damage results in the inhibition of DNA synthesis and G2 phase arrest in the following mitotic cycle. An alkylating drug phopurin as well as ara-C both suppress the mitotic progression in proliferating hepatocytes and do not influence the resting cells.  相似文献   

12.
Liver cancer is an aggressive disease with a high mortality rate. Management of liver cancer is strongly dependent on the tumor stage and underlying liver disease. Unfortunately, most cases are discovered when the cancer is already advanced, missing the opportunity for surgical resection. Thus, an improved understanding of the mechanisms responsible for liver cancer initiation and progression will facilitate the detection of more reliable tumor markers and the development of new small molecules for targeted therapy of liver cancer. Recently, there is increasing evidence for the “cancer stem cell hypothesis”, which postulates that liver cancer originates from the malignant transformation of liver stem/progenitor cells (liver cancer stem cells). This cancer stem cell model has important significance for understanding the basic biology of liver cancer and has profound importance for the development of new strategies for cancer prevention and treatment. In this review, we highlight recent advances in the role of liver stem cells in hepatocarcinogenesis. Our review of the literature shows that identification of the cellular origin and the signaling pathways involved is challenging issues in liver cancer with pivotal implications in therapeutic perspectives. Although the dedifferentiation of mature hepatocytes/cholangiocytes in hepatocarcinogenesis cannot be excluded, neoplastic transformation of a stem cell subpopulation more easily explains hepatocarcinogenesis. Elimination of liver cancer stem cells in liver cancer could result in the degeneration of downstream cells, which makes them potential targets for liver cancer therapies. Therefore, liver stem cells could represent a new target for therapeutic approaches to liver cancer in the near future.  相似文献   

13.
A micronucleus test in combination with fluorescent in situ hybridization (FISH) using telomere-, centromere-specific probes and 5S and 25S rDNA was used for a detailed analysis of the effects of gamma ray irradiation on the root tip meristem cells of barley, Hordeum vulgare (2n = 14). FISH with four DNA probes was used to examine the involvement of specific chromosomes or chromosome fragments in gamma ray-induced micronuclei formation and then to explain their origin. Additionally, a comparison of the possible origin of the micronuclei induced by physical and chemical treatment: maleic hydrazide (MH) and N-nitroso-N-methylurea (MNU) was done. The micronuclei induced by gamma ray could originate from acentric fragments after chromosome breakage or from whole lagging chromosomes as a result of a dysfunction of the mitotic apparatus. No micronuclei containing only centromeric signals were found. An application of rDNA as probes allowed it to be stated that 5S rDNA–bearing chromosomes are involved in micronuclei formation more often than NOR chromosomes. This work allowed the origin of physically- and chemically-induced micronuclei in barley cells to be compared: the origin of micronuclei was most often from terminal fragments. FISH confirmed its usefulness in the characterization of micronuclei content, as well as in understanding and comparing the mechanisms of the actions of mutagens applied in plant genotoxicity.  相似文献   

14.
A simulation analysis of the kinetics of micronucleus formation in polychromatic erythrocytes in mouse bone marrow was performed after a single administration of 3 chemicals--mitomycin C (MMC), 6-mercaptopurine (6-MP) and 1-beta-D-arabinofuranosylcytosine (Ara-C)--with different modes of action. The time-response patterns in the incidence of chromosomal aberrations and micronuclei after treatment with each chemical were compared and subjected to the simulation study with 3 parameters. Two of them, the time between the final mitotic metaphase of the erythroid series and nucleus expulsion (T1), and the duration of the polychromatic erythrocyte (PCE) stage in the bone marrow (T2), were almost identical for the 3 chemicals. However, the coefficients of formation rate of micronucleated cells resulting from cells with chromosomal aberration(s) (k) differed: Ara-C differed from the other two. These results indicate that chromosomal aberrations, especially chromatid breaks and probably gaps, induced by this chemical, effectively contribute to micronucleus formation. The DNA content of micronuclei was also compared to the length of acentric fragments induced by Ara-C and it was found that their distributions were comparable. These findings strongly suggest that chromosomal aberrations induced by chemicals are essential events for the induction of micronuclei in the PCE of bone marrow.  相似文献   

15.
Although it is well known that transgenic mice that overexpress growth hormone (GH) frequently develop liver tumours, the precise nature of the relationship between the overexpression of GH and hepatocarcinogenesis is not clear. The current study was designed to investigate the relationship between the expression of the GH transgene and changes in hepatocyte morphology and kinetics, prior to and during hepatocarcinogenesis in GH-transgenic mice. In young mice (1-month-old) prior to tumour development, GH protein, as detected by immunohistochemistry, was observed in the cytoplasm of essentially all hepatocytes. In liver tissues of older animals, apoptotic cells and hypertrophic hepatocytes did not express immunoreactive GH, even though GH was expressed strongly in the smaller hepatocytes. A relatively high proportion of large dysplastic hepatocytes (>50 microm) were apoptotic (TUNEL positive), whereas smaller hepatocytes featured more prominently in the proliferative phase, as measured by BrdU incorporation. GH expression in tumour tissue, as detected by immunohistochemistry, was often variable and generally decreased with tumour development. Northern blot analysis showed that equivalent levels of GH mRNA were present in tumour tissue and adjacent liver. However, there was no clear trend when the levels of GH mRNA extracted from adenoma, and hepatocellular carcinoma, were compared. These observations help clarify some of the mechanisms by which GH promotes hepatocarcinogenesis in GH-transgenic mice.  相似文献   

16.
Micronuclei are formed from chromosomes and chromosomal fragments that lag behind in anaphase and are left outside daughter nuclei in telophase. They may also be derived from broken anaphase bridges. Nuclear buds, micronucleus-like bodies attached to the nucleus by a thin nucleoplasmic connection, have been proposed to be generated similarly to micronuclei during nuclear division or in S-phase as a stage in the extrusion of extra DNA, possibly giving rise to micronuclei. To better understand these phenomena, we have characterized the contents of 894 nuclear buds and 1392 micronuclei in normal and folate-deprived 9-day cultures of human lymphocytes using fluorescence in situ hybridization with pancentromeric and pantelomeric DNA probes. Such information has not earlier been available for human primary cells. Surprisingly, there appears to be no previous data on the occurrence of telomeres in micronuclei (or buds) of normal human cells in general. Our results suggest that nuclear buds and micronuclei have partly different mechanistic origin. Interstitial DNA without centromere or telomere label was clearly more prevalent in nuclear buds (43%) than in micronuclei (13%). DNA with only telomere label or with both centromere and telomere label was more frequent in micronuclei (62% and 22%, respectively) than in nuclear buds (44% and 10%, respectively). Folate deprivation especially increased the frequency of nuclear buds and micronuclei harboring telomeric DNA and nuclear buds harboring interstitial DNA but also buds and micronuclei with both centromeric and telomeric DNA. According to the model we propose, that micronuclei in binucleate lymphocytes primarily derive from lagging chromosomes and terminal acentric fragments during mitosis. Most nuclear buds, however, are suggested to originate from interstitial or terminal acentric fragments, possibly representing nuclear membrane entrapment of DNA that has been left in cytoplasm after nuclear division or excess DNA that is being extruded from the nucleus.  相似文献   

17.
Maeda S  Kamata H  Luo JL  Leffert H  Karin M 《Cell》2005,121(7):977-990
IkappaB kinase beta (IKKbeta), required for NF-kappaB activation, links chronic inflammation with carcinogenesis. We investigated whether IKKbeta is involved in chemically induced liver cancer, a model not involving overt inflammation. Surprisingly, mice lacking IKKbeta only in hepatocytes (Ikkbeta(Deltahep) mice) exhibited a marked increase in hepatocarcinogenesis caused by diethylnitrosamine (DEN). This correlated with enhanced reactive oxygen species (ROS) production, increased JNK activation, and hepatocyte death, giving rise to augmented compensatory proliferation of surviving hepatocytes. Brief oral administration of an antioxidant around the time of DEN exposure blocked prolonged JNK activation and compensatory proliferation and prevented excessive DEN-induced carcinogenesis in Ikkbeta(Deltahep) mice. Decreased hepatocarcinogenesis was also found in mice lacking IKKbeta in both hepatocytes and hematopoietic-derived Kupffer cells. These mice exhibited reduced hepatocyte regeneration and diminished induction of hepatomitogens, which were unaltered in Ikkbeta(Deltahep) mice. IKKbeta, therefore, orchestrates inflammatory crosstalk between hepatocytes and hematopoietic-derived cells that promotes chemical hepatocarcinogenesis.  相似文献   

18.
Farnesoid X receptor (FXR) (nuclear receptor subfamily 1, group H, member 4) is a member of nuclear hormone receptor superfamily, which plays essential roles in metabolism of bile acids, lipid, and glucose. We previously showed spontaneously hepatocarcinogenesis in aged FXR(-/-) mice, but its relevance to human hepatocellular carcinoma (HCC) is unclear. Here, we report a systematical analysis of hepatocarcinogenesis in FXR(-/-) mice and FXR expression in human liver cancer. In this study, liver tissues obtained from FXR(-/-) and wild-type mice at different ages were compared by microarray gene profiling, histological staining, chemical analysis, and quantitative real-time PCR. Primary hepatic stellate cells and primary hepatocytes isolated from FXR(-/-) and wild-type mice were also analyzed and compared. The results showed that the altered genes in FXR(-/-) livers were mainly related to metabolism, inflammation, and fibrosis, which suggest that hepatocarcinogenesis in FXR(-/-) mice recapitulated the progression of human liver cancer. Indeed, FXR expression in human HCC was down-regulated compared with normal liver tissues. Furthermore, the proinflammatory cytokines, which were up-regulated in human HCC microenvironment, decreased FXR expression by inhibiting the transactivity of hepatic nuclear factor 1α on FXR gene promoter. Our study thereby demonstrates that the down-regulation of FXR has an important role in human hepatocarcinogenesis and FXR(-/-) mice provide a unique animal model for HCC study.  相似文献   

19.
20.
Steady-state membrane potentials (Vm) and intracellular Na+ (aiNa), K+ (aiK), H+ (aiH) and Cl- (aiCl) activities were measured with double-barrelled ion-selective microelectrodes in liver slices from normal rats and during the 4-dimethylaminoazobenzene-induced (DAB) hepatocarcinogenesis. Rats fed with the experimental regimen without the carcinogen were used as control animals. In Krebs-Henseleit bicarbonate saline containing 5.5 mM glucose as bathing solution at 37 degrees C, Vm was found to be significantly lower in neoplastic hepatocytes, compared to normal liver cells. Vm decreased also in control rat liver cells. Increased Na+/K+ ratios and Na+ + K+ activities were found in cancerous hepatocytes whereas H+ and Cl- activities decreased. Therefore, the intracellular pH increased significantly in neoplastic cells, compared to normal and control cells. This could reflect activation of the Na+/H+ exchange system during the DAB-induced hepatocarcinogenesis, leading to a stimulation of cell metabolism with increased rate of protein and DNA synthesis and loss of growth control, under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号