首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Current biology : CB》2021,31(16):3515-3524.e6
  1. Download : Download high-res image (184KB)
  2. Download : Download full-size image
  相似文献   

2.
Viruses that replicate in the nucleus, including the primary causative agent of cervical cancer, human papillomavirus type 16 (HPV16), must first cross the cytoplasm. We compared the uptake of HPV16 virus-like particles (VLPs) either with or without the minor capsid protein L2. Whereas VLPs containing only the major capsid protein L1 were diffusely distributed within the cytoplasm even 6 h post-infection, VLPs comprising both L1 and L2 exhibited a radial distribution in the cytoplasm and accumulated in the perinuclear region of BPHE-1 cells within 2 h. L2 of HPV16 or bovine papillomavirus was shown to bind to a 43-kDa cellular protein that was subsequently identified as beta-actin by matrix-assisted laser desorption ionization time-of-flight analysis. A conserved domain comprising residues 25-45 of HPV16 L2 was sufficient for interaction with beta-actin. HPV16 L2 residues 25-45 fused to green fluorescent protein, but not green fluorescent protein alone, colocalized with actin and caused cell retraction and disruption of the microfilament network. Finally, wild-type L2, but not L2 with residues 25-45 deleted, facilitated HPV16 pseudovirion infection. Thus, binding of beta-actin by L2 residues 25-45 facilitates transport of HPV16 across the cytoplasm during infection, and blockade of this novel interaction may be useful for prophylaxis.  相似文献   

3.
Coexpression of bovine papillomavirus L1 with L2 mutants lacking either eight N-terminal or nine C-terminal amino acids that encode positively charged domains resulted in wild-type levels of viral genome encapsidation. Despite wild-type binding to the cell surface, the resulting virions were noninfectious. An L2 mutant encoding a scrambled version of the nine C-terminal residues restored infectivity, in contrast to an L2 mutant encoding a scrambled version of the N-terminal residues.  相似文献   

4.
Production of human papillomavirus type 16 (HPV-16) virus particles is totally dependent on the differentiation-dependent induction of viral L1 and L2 late gene expression. The early polyadenylation signal in HPV-16 plays a major role in the switch from the early to the late, productive stage of the viral life cycle. Here, we show that the L2 coding region of HPV-16 contains RNA elements that are necessary for polyadenylation at the early polyadenylation signal. Consecutive mutations in six GGG motifs located 174 nucleotides downstream of the polyadenylation signal resulted in a gradual decrease in polyadenylation at the early polyadenylation signal. This caused read-through into the late region, followed by production of the late mRNAs encoding L1 and L2. Binding of hnRNP H to the various triple-G mutants correlated with functional activity of the HPV-16 early polyadenylation signal. In addition, the polyadenylation factor CStF-64 was also found to interact specifically with the region in L2 located 174 nucleotides downstream of the early polyadenylation signal. Staining of cervix epithelium with anti-hnRNP H-specific antiserum revealed high expression levels of hnRNP H in the lower layers of cervical epithelium and a loss of hnRNP H production in the superficial layers, supporting a model in which a differentiation-dependent down regulation of hnRNP H causes a decrease in HPV-16 early polyadenylation and an induction of late gene expression.  相似文献   

5.
In parasites, environmental cues may influence hatching of eggs and enhance the success of infections. The two major endoparasitic groups of parasitic platyhelminths, cestodes (tapeworms) and digeneans (flukes), typically have high fecundity, infect more than one host species, and transmit trophically. Monogeneans are parasitic flatworms that are among the most host specific of all parasites. Most are ectoparasites with relatively low fecundity and direct life cycles tied to water. They infect a single host species, usually a fish, although some are endoparasites of amphibians and aquatic chelonian reptiles. Monogenean eggs have strong shells and mostly release ciliated larvae, which, against all odds, must find, identify, and infect a suitable specific host. Some monogeneans increase their chances of finding a host by greatly extending the hatching period (possible bet-hedging). Others respond to cues for hatching such as shadows, chemicals, mechanical disturbance, and osmotic changes, most of which may be generated by the host. Hatching may be rhythmical, larvae emerging at times when the host is more vulnerable to invasion, and this may be combined with responses to other environmental cues. Different monogenean species that infect the same host species may adopt different strategies of hatching, indicating that tactics may be more complex than first thought. Control of egg assembly and egg-laying, possibly by host hormones, has permitted colonization of frogs and toads by polystomatid monogeneans. Some monogeneans further improve the chances of infection by attaching eggs to the host or by retaining eggs on, or in, the body of the parasite. The latter adaptation has led ultimately to viviparity in gyrodactylid monogeneans.  相似文献   

6.
Papillomaviruses are a family of nonenveloped DNA tumor viruses. Some sexually transmitted human papillomavirus (HPV) types, including HPV type 16 (HPV16), cause cancer of the uterine cervix. Papillomaviruses encode two capsid proteins, L1 and L2. The major capsid protein, L1, can assemble spontaneously into a 72-pentamer icosahedral structure that closely resembles native virions. Although the minor capsid protein, L2, is not required for capsid formation, it is thought to participate in encapsidation of the viral genome and plays a number of essential roles in the viral infectious entry pathway. The abundance of L2 and its arrangement within the virion remain unclear. To address these questions, we developed methods for serial propagation of infectious HPV16 capsids (pseudoviruses) in cultured human cell lines. Biochemical analysis of capsid preparations produced using various methods showed that up to 72 molecules of L2 can be incorporated per capsid. Cryoelectron microscopy and image reconstruction analysis of purified capsids revealed an icosahedrally ordered L2-specific density beneath the axial lumen of each L1 capsomer. The relatively close proximity of these L2 density buttons to one another raised the possibility of homotypic L2 interactions within assembled virions. The concept that the N and C termini of neighboring L2 molecules can be closely apposed within the capsid was supported using bimolecular fluorescence complementation or "split GFP" technology. This structural information should facilitate investigation of L2 function during the assembly and entry phases of the papillomavirus life cycle.  相似文献   

7.
Interactions between papillomavirus L1 and L2 capsid proteins   总被引:4,自引:0,他引:4       下载免费PDF全文
The human papillomavirus (HPV) capsid consists of 360 copies of the major capsid protein, L1, arranged as 72 pentamers on a T=7 icosahedral lattice, with substoichiometric amounts of the minor capsid protein, L2. In order to understand the arrangement of L2 within the HPV virion, we have defined and biochemically characterized a domain of L2 that interacts with L1 pentamers. We utilized an in vivo binding assay involving the coexpression of recombinant HPV type 11 (HPV11) L1 and HPV11 glutathione S-transferase (GST) L2 fusion proteins in Escherichia coli. In this system, L1 forms pentamers, GST=L2 associates with these pentamers, and L1+L2 complexes are subsequently isolated by using the GST tag on L2. The stoichiometry of L1:L2 in purified L1+L2 complexes was 5:1, indicating that a single molecule of L2 interacts with an L1 pentamer. Coexpression of HPV11 L1 with deletion mutants of HPV11 L2 defined an L1-binding domain contained within amino acids 396 to 439 near the carboxy terminus of L2. L2 proteins from eight different human and animal papillomavirus serotypes were tested for their ability to interact with HPV11 L1. This analysis targeted a hydrophobic region within the L1-binding domain of L2 as critical for L1 binding. Introduction of negative charges into this hydrophobic region by site-directed mutagenesis disrupted L1 binding. L1-L2 interactions were not significantly disrupted by treatment with high salt concentrations (2 M NaCl), weak detergents, and urea concentrations of up to 2 M, further indicating that L1 binding by this domain is mediated by strong hydrophobic interactions. L1+L2 protein complexes were able to form virus-like particles in vitro at pH 5.2 and also at pH 6.8, a pH that is nonpermissive for assembly of L1 protein alone. Thus, L1/L2 interactions are primarily hydrophobic, encompass a relatively short stretch of amino acids, and have significant effects upon in vitro assembly.  相似文献   

8.
9.
The prophylactic papillomavirus vaccines currently in clinical trials are composed of viral L1 capsid protein that is synthesized in eukaryotic expression systems and purified in the form of virus-like particles (VLPs). To evaluate whether VLPs are necessary for effective vaccination, we expressed the L1 protein as a glutathione S-transferase (GST) fusion protein in Escherichia coli and assayed its immunogenic activity in an established canine oral papillomavirus (COPV) model that previously validated the efficacy of VLP vaccines. The GST-COPV L1 fusion protein formed pentamers, but these capsomere-like structures did not assemble into VLPs. Despite the lack of VLP formation, the GST-COPV L1 protein retained its native conformation as determined by reactivity with conformation-specific anti-COPV antibodies. Most importantly, the GST-COPV L1 pentamers completely protected dogs from high-dose viral infection of their oral mucosa. L1 fusion proteins expressed in bacteria represent an economical alternative to VLPs as a human papillomavirus vaccine.  相似文献   

10.
在人乳头瘤病毒(human papillomavirus,HPV)次要衣壳蛋白L2的N端和C端,有大量带正电荷的氨基酸残基组成核定位信号(nuclear localization signal,NLS)。细胞的核结构域10(nuclear domain 10,ND10)是细胞周期和病毒生活周期的重要调节者。L2定位到ND10的过程不仅会受到早幼粒细胞白血病蛋白(promyleocytic leukaemia protein,PML)、死亡结构域相关蛋白(deathdomain-associated protein,Daxx)、Sp100核抗原(Sp100 nuclear antigen)等细胞蛋白的影响,也会与L1在ND10发生相互作用。在HPV感染和组装过程中,L2的核定位信号有着重要作用。  相似文献   

11.

Background

Human papillomavirus (HPV) capsids are composed of 72 pentamers of the major capsid protein L1, and an unknown number of L2 minor capsid proteins. An N-terminal “external loop” of L2 contains cross-neutralizing epitopes, and native HPV16 virions extracted from 20-day-old organotypic tissues are neutralized by anti-HPV16 L2 antibodies but virus from 10-day-old cultures are not, suggesting that L2 epitopes are more exposed in mature, 20-day virions. This current study was undertaken to determine whether cross-neutralization of other HPV types is similarly dependent on time of harvest and to screen for the most effective cross-neutralizing epitope in native virions.

Methodology and Principal Findings

Neutralization assays support that although HPV16 L2 epitopes were only exposed in 20-day virions, HPV31 or HPV18 epitopes behaved differently. Instead, HPV31 and HPV18 L2 epitopes were exposed in 10-day virions and remained so in 20-day virions. In contrast, presumably due to sequence divergence, HPV45 was not cross-neutralized by any of the anti-HPV16 L2 antibodies. We found that the most effective cross-neutralizing antibody was a polyclonal antibody named anti-P56/75 #1, which was raised against a peptide consisting of highly conserved HPV16 L2 amino acids 56 to 75.

Conclusions and Significance

This is the first study to determine the susceptibility of multiple, native high-risk HPV types to neutralization by L2 antibodies. Multiple anti-L2 antibodies were able to cross-neutralize HPV16, HPV31, and HPV18. Only neutralization of HPV16 depended on the time of tissue harvest. These data should inform attempts to produce a second-generation, L2-based vaccine.  相似文献   

12.
Retroviral Gag proteins encode sequences, termed late domains, which facilitate the final stages of particle budding from the plasma membrane. We report here that interactions between Tsg101, a factor involved in endosomal protein sorting, and short peptide motifs in the HIV-1 Gag late domain and Ebola virus matrix (EbVp40) proteins are essential for efficient egress of HIV-1 virions and Ebola virus-like particles. EbVp40 recruits Tsg101 to sites of particle assembly and a short, EbVp40-derived Tsg101-binding peptide sequence can functionally substitute for the HIV-1 Gag late domain. Notably, recruitment of Tsg101 to assembling virions restores budding competence to a late-domain-defective HIV-1 in the complete absence of viral late domain. These studies define an essential virus-host interaction that is conserved in two unrelated viruses. Because the Tsg101 is recruited by small, conserved viral sequence motifs, agents that mimic these structures are potential inhibitors of the replication of these lethal human pathogens.  相似文献   

13.
Lactobacilli have been shown to be important in the maintenance of the healthy urogenital flora. One strain, Lactobacillus fermentum RC-14, releases surface-active components which can inhibit adhesion of uropathogenic bacteria. Using a quantitative method for determining inhibition of adhesion, a protein with high anti-adhesive properties against Enterococcus faecalis 1131 was purified. The N-terminal sequence of the 29-kDa protein was identical to that of a collagen-binding protein from Lactobacillus reuteri NCIB 11951, and exhibited close homology with a basic surface protein from L. fermentum BR11. The results suggest that this anti-adhesive cell surface protein of Lactobacillus could protect against uropathogens by preventing their adhesion. the Federation of European Microbiological Societies.  相似文献   

14.
We generated a monoclonal antibody, RG-1, that binds to highly conserved L2 residues 17 to 36 and neutralizes human papillomavirus 16 (HPV16) and HPV18. Passive immunotherapy with RG-1 was protective in mice. Antiserum to the HPV16 L2 peptide comprising residues 17 to 36 (peptide 17-36) neutralized pseudoviruses HPV5, HPV6, HPV16, HPV 18, HPV31, HPV 45, HPV 52, HPV 58, bovine papillomavirus 1, and HPV11 native virions. Depletion of HPV16 L2 peptide 17-36-reactive antibodies from cross-neutralizing rabbit and human L2-specific sera abolished cross-neutralization and drastically reduced neutralization of the cognate type. This cross-neutralization of diverse HPVs associated with cervical cancer, genital warts, and epidermodysplasia verruciformis suggests the possibility of a broadly protective, peptide-based vaccine.  相似文献   

15.
We have generated four mouse monoclonal antibodies (MAbs) to bovine papillomavirus virions that bound type-specific, adjacent, and conformationally dependent epitopes on the L1 major capsid protein. All four MAbs were neutralizing at ratios of 1 MAb molecule per 5 to 25 L1 molecules, but only three effectively blocked binding of the virus to the cell surface. Therefore, antibodies can prevent papillomavirus infection by at least two mechanisms: inhibition of cell surface receptor binding and a subsequent step in the infectious pathway. The neutralizing epitopes of the bovine papillomavirus L2 minor capsid protein were mapped to the N-terminal half of L2 by blocking the neutralizing activity of full-length L2 antiserum with bacterially expressed peptides of L2. In addition, rabbit antiserum raised against amino acids 45 to 173 of L2 had a neutralizing titer of 1,000, confirming that at least part of the N terminus of L2 is exposed on the virion surface.  相似文献   

16.
17.
All eukaryotic organisms have mechanisms to adapt to changing metabolic conditions. The mammalian cell survival gene Bcl-x(L) enables cells to adapt to changes in cellular metabolism. To identify genes whose function can be substituted by Bcl-x(L) in a unicellular eukaryote, a genetic screen was performed using the yeast Saccharomyces cerevisiae. S. cerevisiae grows by anaerobic glycolysis when glucose is available, switching to oxidative phosphorylation when carbohydrate in the media becomes limiting (diauxic shift). Given that Bcl-x(L) appears to facilitate the switch from glycolytic to oxidative metabolism in mammalian cells, a library of yeast mutants was tested for the ability to efficiently undergo diauxic shift in the presence and absence of Bcl-x(L). Several mutants were identified that have a defect in growth when switched from a fermentable to a nonfermentable carbon source that is corrected by the expression of Bcl-x(L). These genes include the mitochondrial chaperonin TCM62, as well as previously uncharacterized genes. One of these uncharacterized genes, SVF1, promotes cell survival in mammalian cells in response to multiple apoptotic stimuli. The finding that TCM62 and the analogous human prohibitin gene also inhibit mammalian cell death following growth factor withdrawal implicates mitochondrial chaperones as regulators of apoptosis. Further characterization of the genes identified in this screen may enhance our understanding of Bcl-x(L) function in mammalian cells, and of cell survival pathways in general.  相似文献   

18.
19.
Minor capsid protein L2 of papillomaviruses plays an essential role in virus assembly by recruiting viral components to PML bodies, the proposed sites of virus morphogenesis. We demonstrate here that the function of L2 in virus assembly requires the chaperone Hsc70. Hsc70 was found dispersed in naturally infected keratinocytes and cultured cells. A dramatic relocation of Hsc70 from the cytoplasm to PML bodies was induced in these cells by L2 expression. Hsc70-L2 complex formation was confirmed by coimmunoprecipitation. The complex was modulated by the cochaperones Hip and Bag-1, which stabilize and destabilize Hsc70-substrate complexes, respectively. Cytoplasmic depletion of Hsc70 caused retention of wild-type and N-terminally truncated L2, but not of C-terminally truncated L2, in the cytoplasm. This retention was partially reversed by overexpression of Hsc70 fused to green fluorescent protein but not by ATPase-negative Hsc70. Hsc70 associated with L1-L2 virus-like particles (VLPs) but not with VLPs composed either of L1 alone or of L1 and C-terminally truncated L2. Moreover, displacement of Hsc70 from L1-L2 VLPs by encapsidation of DNA, generating pseudovirions, was found. These data indicate that Hsc70 transiently associates with viral capsids during the integration of L2, possibly via the L2 C terminus. Completion of virus assembly results in displacement of Hsc70 from virions.  相似文献   

20.
CCN2 plays a central role in the development and growth of mesenchymal tissue and promotes the regeneration of bone and cartilage in vivo. Of note, abundant CCN2 is contained in platelets, which is thought to play an important role in the tissue regeneration process. In this study, we initially pursued the possible origin of the CCN2 in platelets. First, we examined if the CCN2 in platelets was produced by megakaryocyte progenitors during differentiation. Unexpectedly, neither megakaryocytic CMK cells nor megakaryocytes that had differentiated from human haemopoietic stem cells in culture showed any detectable CCN2 gene expression or protein production. Together with the fact that no appreciable CCN2 was detected in megakaryocytes in vivo, these results suggest that megakaryocytes themselves do not produce CCN2. Next, we suspected that mesenchymal cells situated around megakaryocytes in the bone marrow were stimulated by the latter to produce CCN2, which was then taken up by platelets. To evaluate this hypothesis, we cultured human chondrocytic HCS-2/8 cells with medium conditioned by differentiating megakaryocyte cultures, and then monitored the production of CCN2 by the cells. As suspected, CCN2 production by HCS-2/8 was significantly enhanced by the conditioned medium. We further confirmed that human platelets were able to absorb/uptake exogenous CCN2 in vitro. These findings indicate that megakaryocytes secrete some unknown soluble factor(s) during differentiation, which factor stimulates the mesenchymal cells to produce CCN2 for uptake by the platelets. We also consider that, during bone growth, such thrombopoietic-mesenchymal interaction may contribute to the hypertrophic chondrocyte-specific accumulation of CCN2 that conducts endochondral ossification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号