首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
In MDCK epithelial cells, cell contact at confluency initiates a protracted process of morphogenesis during which several proteins known to bind the cytoskeleton become progressively associated with the detergent-resistant cell fraction and distributed to their characteristic polarized domains. Using extraction protocols that identify this tight cytoskeletal linkage, here we show a similar but slower, time-dependent enrichment in the detergent resistant fraction of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a highly abundant glycolytic enzyme that is traditionally considered soluble. Similar enrichment did not occur for two other glycolytic enzymes, phosphoglycerate mutase or lactate dehydrogenase. Insoluble GAPDH was not homogeneously distributed in the cytoplasm but rather displayed several discrete patterns that varied within and among MDCK cells. It also localized prominently to a few nuclei in the phenotypically heterogeneous cells of late confluency cultures. Disruptors of cytoskeletal filaments were relatively ineffective in the postconfluent epithelial monolayers, although use of disrupting agents implicated actin as the cytoplasmic filament that tethers insoluble GAPDH. Catalytic activity could be demonstrated in the insoluble fraction of GAPDH from postconfluent cultures, but only after release by mechanical disruption of insoluble extracts. Treatment of postconfluent cells with agents that deplete ATP diminished the fraction of cytoskeletally associated GAPDH, and levels of insoluble GAPDH were restored with ATP repletion, suggesting that ATP levels may regulate cytoskeletal linkage and thereby local enzyme activity. We conclude that the highly abundant and ubiquitous enzyme GAPDH becomes progressively enriched in detergent stable subcellular compartments during the process of epithelial morphogenesis. The process that produces GAPDH compartments is slow, suggesting that epithelial cells just at confluency, when they are typically analyzed, have not yet maximized the organizational state that can be attained in monolayer culture.  相似文献   

2.
Microtubule-associated protein 1B, MAP1B, is a major cytoskeletal protein during brain development and one of the largest brain MAPs associated with microtubules and microfilaments. Here, we identified several proteins that bind to MAP1B via immunoprecipitation with a MAP1B-specific antibody, by one and two-dimensional gel electrophoresis and subsequent mass spectrometry identification of precipitated proteins. In addition to tubulin and actin, a variety of proteins were identified. Among these proteins were glyceraldehyde-3-phosphate dehydrogenase (GAPDH), heat shock protein 8, dihydropyrimidinase related proteins 2 and 3, protein-L-isoaspartate O-methyltransferase, beta-spectrin, and clathrin protein MKIAA0034, linking either directly or indirectly to MAP1B. In particular, GAPDH, a key glycolytic enzyme, was bound in large quantity to the heavy chain of MAP1B in adult brain tissue. In vitro binding studies confirmed a direct binding of GAPDH to MAP1B. In PC12 cells, GAPDH was found in cytoplasm and nuclei and partially co-localized with MAP1B. It disappeared from the cytoplasm under oxidative stress or after a disruption of cytoskeletal elements after colcemid or cytochalasin exposure. GAPDH may be essential in the local energy provision of cytoskeletal structures and MAP1B may help to keep this key enzyme close to the cytoskeleton.  相似文献   

3.
New functions have been identified for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) including its role in neurodegenerative disease and in apoptosis. GAPDH binds specifically to proteins implicated in the pathogenesis of a variety of neurodegenerative disorders including the beta-amyloid precursor protein and the huntingtin protein. However, the pathophysiological significance of such interactions is unknown. In accordance with published data, our initial results indicated there was no measurable difference in GAPDH glycolytic activity in crude whole-cell sonicates of Alzheimer's and Huntington's disease fibroblasts. However, subcellular-specific GAPDH-protein interactions resulting in diminution of GAPDH glycolytic activity may be disrupted or masked in whole-cell preparations. For that reason, we examined GAPDH glycolytic activity as well as GAPDH-protein distribution as a function of its subcellular localization in 12 separate cell strains. We now report evidence of an impairment of GAPDH glycolytic function in Alzheimer's and Huntington's disease subcellular fractions despite unchanged gene expression. In the postnuclear fraction, GAPDH was 27% less glycolytically active in Alzheimer's cells as compared with age-matched controls. In the nuclear fraction, deficits of 27% and 33% in GAPDH function were observed in Alzheimer's and Huntington's disease, respectively. This evidence supports a functional role for GAPDH in neurodegenerative diseases. The possibility is considered that GAPDH:neuronal protein interaction may affect its functional diversity including energy production and as well as its role in apoptosis.  相似文献   

4.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein as well as a classic glycolytic enzyme, and its pleiotropic functions are achieved by various post-translational modifications and the resulting translocations to intracellular compartments. In the present study, GAPDH in the plasma membrane of BeWo choriocarcinoma cells displayed a striking acidic shift in two-dimensional electrophoresis after cell-cell fusion induction by forskolin. This post-translational modification was deamidation of multiple glutaminyl residues, as determined by molecular mass measurement and tandem mass spectrometry of acidic GAPDH isoforms. Transglutaminase (TG) inhibitors prevented this acidic shift and reduced cell fusion. Knockdown of the TG2 gene by short hairpin RNA reproduced these effects of TG inhibitors. Various GAPDH mutants with replacement of different numbers (one to seven) of Gln by Glu were expressed in BeWo cells. These deamidated mutants reversed the suppressive effect of wild-type GAPDH overexpression on cell fusion. Interestingly, the mutants accumulated in the plasma membrane, and this accumulation was increased according to the number of Gln/Glu substitutions. Considering that GAPDH binds F-actin via an electrostatic interaction and that the cytoskeleton is rearranged in trophoblastic cell fusion, TG2-dependent GAPDH deamidation was suggested to participate in actin cytoskeletal remodeling.  相似文献   

5.
Rab2 requires atypical protein kinase C iota/lambda (aPKC iota/lambda) to promote vesicle formation from vesicular tubular clusters (VTCs). The Rab2-generated vesicles are enriched in recycling proteins suggesting that the carriers are retrograde-directed and retrieve transport machinery back to the endoplasmic reticulum. These vesicles also contained the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We have previously established that GAPDH is required for membrane transport between the endoplasmic reticulum and the Golgi complex. Moreover, GAPDH is phosphorylated by aPKC iota/lambda and binds to the aPKC iota/lambda regulatory domain. In this study, we employed a combination of in vivo and in vitro assays and determined that GAPDH also interacts with Rab2. The site of GAPDH interaction was mapped to Rab2 residues 20-50. In addition to its glycolytic function, GAPDH has multiple intracellular roles. However, the function of GAPDH in the early secretory pathway is unknown. One possibility is that GAPDH ultimately provides energy in the form of ATP. To determine whether GAPDH catalytic activity was critical for transport in the early secretory pathway, a conservative substitution was made at Cys-149 located at the active site, and the mutant was biochemically characterized in a battery of assays. Although GAPDH (C149G) has no catalytic activity, Rab2 recruited the mutant protein to membranes in a quantitative binding assay. GAPDH (C149G) is phosphorylated by aPKC iota/lambda and binds directly to Rab2 when evaluated in an overlay binding assay. Importantly, VSV-G transport between the ER and Golgi complex is restored when an in vitro trafficking assay is performed with GAPDH-depleted cytosol and GAPDH (C149G). These data suggest that GAPDH imparts a unique function necessary for membrane trafficking from VTCs that does not require GAPDH glycolytic activity.  相似文献   

6.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has previously been suggested to have almost absolute control over the glycolytic flux in Lactococcus lactis (B. Poolman, B. Bosman, J. Kiers, and W. N. Konings, J. Bacteriol. 169:5887-5890, 1987). Those studies were based on inhibitor titrations with iodoacetate, which specifically inhibits GAPDH, and the data suggested that it should be possible to increase the glycolytic flux by overproducing GAPDH activity. To test this hypothesis, we constructed a series of mutants with GAPDH activities from 14 to 210% of that of the reference strain MG1363. We found that the glycolytic flux was unchanged in the mutants overproducing GAPDH. Also, a decrease in the GAPDH activity had very little effect on the growth rate and the glycolytic flux until 25% activity was reached. Below this activity level, the glycolytic flux decreased proportionally with decreasing GAPDH activity. These data show that GAPDH activity has no control over the glycolytic flux (flux control coefficient = 0.0) at the wild-type enzyme level and that the enzyme is present in excess capacity by a factor of 3 to 4. The early experiments by Poolman and coworkers were performed with cells resuspended in buffer, i.e., nongrowing cells, and we therefore analyzed the control by GAPDH under similar conditions. We found that the glycolytic flux in resting cells was even more insensitive to changes in the GAPDH activity; in this case GAPDH was also present in a large excess and had no control over the glycolytic flux.  相似文献   

7.
The microcompartmentation of aldolase and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) was investigated in four different cell types (3T3 cells, SV 40 transformed 3T3 cells, mouse fibroblasts, chick embryo cardiomyocytes) combining cell permeabilization and indirect immunofluorescence technique. Permeabilization of the cells prior to fixation released the soluble fractions, whilst the total amount of enzymes was preserved in nonpermeabilized cells. Both enzymes exist in a soluble as well as in a structure-bound form. The soluble fraction of aldolase and GAPDH is distributed homogeneously throughout the cytoplasm, excluding the nucleus and vesicles. The permeabilization-resistant form is associated with the actin cytoskeleton. A considerable amount of both enzymes is located in the perinuclear region and cannot be attributed to a definite structure. Comparing the staining patterns of aldolase and GAPDH in four different cell types we found that the distribution of the enzymes corresponds with diverse forms of actin cytoskeletal organization of these cells. The codistribution is maintained in cells treated with cytochalasin D.  相似文献   

8.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), long considered a traditional glycolytic protein, displays multiple activities independent of its role in energy generation. This functional diversity is dependent on its membrane, cytoplasmic or nuclear localization. GAPDH is encoded by one active gene and is synthesized as a single 37 kDa protein without alternate splicing. Accordingly, the identical protein would be present in each subcellular fraction. The accumulation of post-translational errors in protein structure as a function of oxidative stress is thought to provide a basic molecular mechanism for the aging process. Thus, during aging, the GAPDH protein should contain the identical degree of oxidative sequence alteration irrespective of its distribution. This would result in equivalent effects on GAPDH activity. However, conformational differences in GAPDH structure due to its subcellular protein, nucleic acid or membrane interactions could affect its degree of modification thereby selectively affecting its function. For that reason, we examined the subcellular expression and intracellular activity of GAPDH as a function of human aging. Subcellular GAPDH expression was quantitated by immunoblot analysis in fetal and senior human cells (postnuclear, nuclear, perinuclear). GAPDH activity was determined by in vitro assay. We now report that the aging of human GAPDH was subcellular dependent. Reductions of nuclear and postnuclear GAPDH activity in senior cells were twofold lower than that observed for the perinuclear protein. In contrast, the subcellular expression of the GAPDH protein was age-independent. These results suggest the possibility that subcellular interactions may mitigate oxidative stress-induced GAPDH modification in human aging. Such selective effects on GAPDH could affect its functional diversity.  相似文献   

9.
The mammalian kidney isoform of the essential chloride-bicarbonate exchanger AE1 differs from its erythrocyte counterpart, being shorter at its N terminus. It has previously been reported that the glycolytic enzyme GAPDH interacts only with erythrocyte AE1, by binding to the portion not found in the kidney isoform. (Chu H, Low PS. Biochem J 400:143-151, 2006). We have identified GAPDH as a candidate binding partner for the C terminus of both AE1 and AE2. We show that full-length AE1 and GAPDH coimmunoprecipitated from both human and rat kidney as well as from Madin-Darby canine kidney (MDCK) cells stably expressing kidney AE1, while in human liver, AE2 coprecipitated with GAPDH. ELISA and glutathione S-transferase (GST) pull-down assays using GST-tagged C-terminal AE1 fusion protein confirmed that the interaction is direct; fluorescence titration revealed saturable binding kinetics with Kd 2.3±0.2 μM. Further GST precipitation assays demonstrated that the D902EY residues in the D902EYDE motif located within the C terminus of AE1 are important for GAPDH binding. In vitro GAPDH activity was unaffected by C-terminal AE1 binding, unlike in erythrocytes. Also, differently from red cell N-terminal binding, GAPDH-AE1 C-terminal binding was not disrupted by phosphorylation of AE1 in kidney AE1-expressing MDCK cells. Importantly, small interfering RNA knockdown of GAPDH in these cells resulted in significant intracellular retention of AE1, with a concomitant reduction in AE1 at the cell membrane. These results indicate differences between kidney and erythrocyte AE1/GAPDH behavior and show that in the kidney, GAPDH is required for kidney AE1 to achieve stable basolateral residency.  相似文献   

10.
The small GTPase Rab2 immunolocalizes to vesicular tubular clusters (VTCs) that function as transport complexes carrying cargo between the endoplasmic reticulum and the Golgi complex. Our previous studies showed that Rab2 promotes vesicle formation from VTCs and that the released vesicles are enriched in beta-coat protein, protein kinase C iota/lambda (PKCiota/lambda), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and the recycling protein p53/gp58. Because PKCiota/lambda kinase activity was necessary for vesicle formation, a search was initiated to identify the substrate(s) that potentiate Rab2 function within VTCs. In this study, we found that PKCiota/lambda phosphorylates GAPDH. Moreover, GAPDH interacts directly with the PKCiota/lambda regulatory domain. Based on numerous observations that show (beta-COP) GAPDH associates with cytoskeletal elements, we examined the role of phospho-GAPDH in promoting microtubule (MT) binding to membrane. Using a quantitative microsomal binding assay, we found that membrane association of beta-tubulin was dependent on phospho-GAPDH and was blocked by reagents that interfere with Rab2-dependent GAPDH membrane recruitment or with PKCiota/lambda kinase activity. Furthermore, normal rat kidney cells transfected with a constitutively activated form of Rab2 (Q65L) or with our anti-GAPDH polyclonal antibody displayed a dramatic change in MT organization. These combined results suggest that Rab2 stimulated PKCiota/lambda and GAPDH recruitment to VTCs, and the subsequent PKCiota/lambda phosphorylation of GAPDH ultimately influences MT dynamics in the early secretory pathway.  相似文献   

11.
Recent evidences indicate new roles for the glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in essential mammalian cell processes, such as apoptosis and proliferation. To clarify the involvement of this protein in growth and programmed cell death in the liver, cell models of hepatocytes in culture were used to study GAPDH expression, localization and enzymatic activity in hepatocyte proliferation and apoptosis. GAPDH expression in cell compartments was studied by Western blot. Nuclear expression of GAPDH increased in apoptosis, and cytoplasmic expression was elevated in apoptosis and proliferation. Subcellular localization was determined by GAPDH immunostaining and confocal microscopic analysis. Quiescent and proliferating hepatocytes showed cytoplasmic GAPDH, while apoptotic cells showed cytoplasmic but also some nuclear staining. The glycolytic activity of GAPDH was studied in nuclear and cytoplasmic cell compartments. GAPDH enzymatic activity increased in the nucleus of apoptotic cells and in cytoplasms of apoptotic and proliferating hepatocytes. Our observations indicate that during hepatocyte apoptosis GAPDH translocates to the nucleus, maintaining in part its dehydrogenase activity, and suggest that this translocation may play a role in programmed hepatocyte death. GAPDH over-expression and the increased enzymatic activity in proliferating cells, with preservation of its cytoplasmic localization, would occur in response to the elevated energy requirements of dividing hepatocytes. In conclusion, GAPDH plays different roles or biological activities in proliferating and apoptotic hepatocytes, according to its subcellular localization.  相似文献   

12.
13.
14.
Manganism is a disorder characterized by hyperintensities in basal ganglia structures on magnetic resonance imaging which may be the consequence of manganese deposition in these areas. Since manganese is taken up avidly into astrocytes and is known to interfere with cerebral energy metabolism, we studied the effect of this metal on the expression and activity of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in primary cultures of astrocytes. Treatment with 100 microM manganese for 7 days increased both the Vmax and Km values for GAPDH which was not reproducible with other divalent metals. Using RT-PCR, increased GAPDH expression was detected in cells exposed to manganese compared with controls. No changes in cytochrome oxidase activity or ATP levels were observed, and lactate production was unaffected, in manganese-treated cells. These findings provide evidence of a possible role for GAPDH in the mediation of the effects of manganese on central nervous system function.  相似文献   

15.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH; E.C. 1.2.1.12) functions as a glycolytic enzyme within the cytoplasm, but beside its metabolic function it is involved in early steps of apoptosis, which trigger the translocation of GAPDH into the nucleus. As apoptosis can be induced by serum withdrawal, which otherwise causes cell cycle arrest, the linkage between serum deprivation, cell cycle and nuclear transport of GAPDH has been investigated. The intracellular distribution of GAPDH was monitored by confocal laser scanning microscopy of either immuno-stained NIH 3T3 fibroblasts or of cells overexpressing GFP-tagged GAPDH. Serum withdrawal led to an accumulation of GAPDH in the nucleus. In contrast to investigations published so far, this nuclear translocation was a reversible process: cytoplasmic location of endogenous GAPDH or of GFP-GAPDH could be recovered upon serum addition to arrested cells and was not inhibited by cycloheximide treatment. In addition, the nuclear import upon serum depletion had no influence neither on the catalytic activity nor on the expression level of GAPDH. The nuclear export of GFP-GAPDH in serum-deprived cells could be stimulated by serum or directly by the growth factors EGF or PDGE The transport process is not regulated via an initiation of cell cycle arrest, as olomoucine, which causes G1-arrest neither stimulated nuclear accumulation nor prevented nuclear export after serum addition to serum-depleted cultures. Moreover, SV40-transformed 3T3 cells transported GAPDH into the nucleus upon serum deprivation, though the expression of the viral large T-antigen enabled growth factor-independent cell proliferation in this cell line. The recruitment of GAPDH to the cytoplasm upon serum stimulation of arrested cells was not impaired by the inhibition of the MAPK signalling pathway with PD 098059. However, further analysis of the growth factor signalling pathway with specific inhibitors revealed that nuclear export was prevented by LY 294002, an inhibitor of the PI-3 kinase. PI3K links the growth factor signalling pathway with cell death via the repression of an apoptotic inducer. Thus, the nuclear accumulation of GAPDH upon growth factor depletion is a reversible process not related directly to cell cycle and likely triggered by survival signals.  相似文献   

16.
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that displays several non-glycolytic activities, including the maintenance and/or protection of telomeres. In this study, we determined the molecular mechanism and biological role of the interaction between GAPDH and human telomeric DNA. Using gel-shift assays, we show that recombinant GAPDH binds directly with high affinity (Kd = 45 nM) to a single-stranded oligonucleotide comprising three telomeric DNA repeats, and that nucleotides T1, G5, and G6 of the TTAGGG repeat are essential for binding. The stoichiometry of the interaction is 2:1 (DNA:GAPDH), and GAPDH appears to form a high-molecular-weight complex when bound to the oligonucleotide. Mutation of Asp32 and Cys149, which are localized to the NAD-binding site and the active-site center of GAPDH, respectively, produced mutants that almost completely lost their telomere-binding functions both in vitro and in situ (in A549 human lung cancer cells). Treatment of A549 cells with the chemotherapeutic agents gemcitabine and doxorubicin resulted in increased nuclear localization of expressed wild-type GAPDH, where it protected telomeres against rapid degradation, concomitant with increased resistance to the growth-inhibitory effects of these drugs. The non-DNA-binding mutants of GAPDH also localized to the nucleus when expressed in A549 cells, but did not confer any significant protection of telomeres against chemotherapy-induced degradation or growth inhibition; this occurred without the involvement of caspase activation or apoptosis regulation. Overall, these data demonstrate that GAPDH binds telomeric DNA directly in vitro and may have a biological role in the protection of telomeres against rapid degradation in response to chemotherapeutic agents in A549 human lung cancer cells.  相似文献   

17.
Endothelial cell injury and death precede atherosclerosis development. Thus, it is important to understand the mechanisms that lead to these early changes in endothelial cells. Although members of the MAP kinase/ERK kinase (MEK) kinase 3 (MEKK3)-MEK5-ERK5 module play an essential role in underpinning endothelial cell survival, how they execute these actions remain poorly understood. Furthermore, there is poor understanding of death-inducing pathways in endothelial cells and it is also unclear whether there are direct interactions between the kinase module and death-inducing pathways. Using immunoprecipitation and liquid chromatography-electrospray ionisation tandem mass spectrometry approaches, we show in human umbilical vein endothelial cells that the MEKK3-MEK5-ERK5 ternary complex contains glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme that can trigger the death of certain cell-types. GAPDH binds directly to MEKK3. Interestingly, serum depletion, a trigger of endothelial cell death, results in a rapid loss of cytosolic MEKK3 and MEKK3-GAPDH interaction. MEKK3 rapidly reappears in the cytosol upon serum replenishment, accompanied by the restoration of MEKK3-GAPDH interaction. During serum starvation or exposure to cytotoxic concentrations of H2O2, GAPDH accumulates in the nucleus. Inhibition of the nuclear accumulation of GAPDH with R-(−)-deprenyl hydrochloride attenuates the degree of cell death. Serum replenishment of serum-starved cells reduces the level of nuclear GAPDH and prevents cell death. Cell-free assays show phosphorylation of GAPDH on four residues by MEKK3. These data not only strongly implicate nuclear GAPDH in causing endothelial cell death but also reveal a potential mechanism for MEKK3 to regulate GAPDH function and hence promote endothelial cell survival.  相似文献   

18.
Several proteins with limited cell type distribution have been shown to bind lactoferrin. However, except in the case of hepatic and intestinal cells, these have not been definitively identified and characterized. Here we report that the multifunctional glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) functions as a novel receptor for lactoferrin (Lf) in macrophages. GAPDH is a well-known moonlighting protein, and previous work from our laboratory has indicated its localization on macrophage cell surfaces, wherein it functions as a transferrin (Tf) receptor. The K(D) value for GAPDH-lactoferrin interaction was determined to be 43.8 nmol/L. Utilizing co-immunoprecipitation, immunoflorescence, and immunogold labelling electron microscopy we could demonstrate the trafficking of lactoferrin to the endosomal compartment along with GAPDH. We also found that upon iron depletion the binding of lactoferrin to macrophage cell surface is enhanced. This correlated with an increased expression of surface GAPDH, while other known lactoferrin receptors CD14 and lipoprotein receptor-related protein (LRP) were found to remain unaltered in expression levels. This suggests that upon iron depletion, cells prefer to use GAPDH to acquire lactoferrin. As GAPDH is an ubiquitously expressed molecule, its function as a receptor for lactoferrin may not be limited to macrophages.  相似文献   

19.
We identified the proteins involved during apoptosis induced by H2O2 in Saccharomyces cerevisiae, and analyzed the global protein pattern by 2-DE. We analyzed classical parameters of apoptosis such as chromatin condensation, DNA fragmentation, and morphology changes of cells. Exposure of yeast cells to nonphysiological doses of peroxides decreases the expression (or increases degradation) of enzymes involved in protection against oxidative stress. This leads the yeast cells to a reduction of their antioxidant defense and makes the cells more prone to apoptosis. In our data the down expression of peroxiredoxin II and GST I, could induce a perturbation of mitochondrial function with an alteration of permeability of the membrane leading to the mitochondria-mediated apoptosis. Moreover, we identified a new spot of a classical glycolytic enzyme: the glyceraldehyde 3-phosphate dehydrogenase during apoptosis. It is known that GAPDH is an extremely abundant glycolytic enzyme with multiple functions and that its overexpression is evident during apoptosis induced by a variety of stimuli. Our results confirm that it is a major intracellular messenger mediating apoptotic death and that this new spot of GAPDH could be an intracellular sensor of oxidative stress during apoptosis induced by H2O2 in S. cerevisiae.  相似文献   

20.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was considered a classical glycolytic protein examined for its pivotal role in energy production. It was also used as a model protein for analysis of protein structure and enzyme mechanisms. The GAPDH gene was utilized as a prototype for studies of genetic organization, expression and regulation. However, recent evidence demonstrates that mammalian GAPDH displays a number of diverse activities unrelated to its glycolytic function. These include its role in membrane fusion, microtubule bundling, phosphotransferase activity, nuclear RNA export, DNA replication and DNA repair. These new activities may be related to the subcellular localization and oligomeric structure of GAPDH in vivo. Furthermore, other investigations suggest that GAPDH is involved in apoptosis, age-related neurodegenerative disease, prostate cancer and viral pathogenesis. Intriguingly, GAPDH is also a unique target of nitric oxide. This review discusses the functional diversity of GAPDH in relation to its protein structure. The mechanisms through which mammalian cells may utilize GAPDH amino acid sequences to provide these new functions and to determine its intracellular localization are considered. The interrelationship between new GAPDH activities and its role in cell pathologies is addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号