首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maize seedlings were grown for 10 to 20 days in either nutrient solution or in soils with or without fertilizer supply. Air temperature was kept uniform for all treatments, while root zone temperature (RZT) was varied between 12 and 24°C. In some treatments the basal part of the shoot (with apical shoot meristem and zone of leaf elongation) was lifted up to separate the indirect effects of root zone temperature on shoot growth from the direct effects of temperature on the shoot meristem.Shoot and root growth were decreased by low RZT to a similar extent irrespective of the growth medium (i.e. nutrient solution, fertilized or unfertilized soil). In all culture media Ca concentration was similar or even higher in plants grown at 12 as compared to 24°. At lower RZT concentrations of N, P and K in the shoot dry matter decreased in unfertilized soil, whereas in nutrient solution and fertilized soil only the K concentration decreased.When direct temperature effects on the shoot meristem were reduced by lifting the basal part of the shoot above the temperature-controlled root zone, shoot growth at low RZT was significantly increased in nutrient solution and fertilized soil, but not in unfertilized soil. In fertilized soil and nutrient solution at low RZT the uptake of K increased to a similar extent as plant growth, and thus shoot K concentration was not reduced by increasing shoot growth rates. In contrast, uptake of N and P was not increased, resulting in significantly decreased shoot concentrations.It is concluded that shoot growth at suboptimal RZT was limited both by a direct temperature effect on shoot activity and by a reduced nutrient supply through the roots. Nutrient concentrations in the shoot tissue at low RZT were not only influenced by availability in the substrate and dilution by growth, but also by the internal demand for growth.  相似文献   

2.
C. Engels 《Plant and Soil》1993,150(1):129-138
The effects of low root zone temperatures (RZT) on nutrient demand for growth and the capacity for nutrient acquisition were compared in maize and wheat growing in nutrient solution. To differentiate between direct temperature effects on nutrient uptake and indirect effects via an altered ratio of shoot to root growth, the plants were grown with their shoot base including apical shoot meristem either within the root zone (low SB), i.e. at RZT (12°, 16°, or 20°C) or, above the root zone (high SB), i.e. at uniformly high air temperature (20°/16° day/night).At low SB, suboptimal RZT reduced shoot growth more than root growth in wheat, whereas the opposite was true in maize. However, in both species the shoot growth rate per unit weight of roots, which was taken as parameter for the shoot demand for mineral nutrients per unit of roots, decreased at low RZT. Accordingly, the concentrations of potassium (K) and phosphorus (P) remained constant or even increased at low RZT despite reduced uptake rates.At high SB, shoot growth at low RZT in both species was higher than at low SB, whereas root growth was not increased. At high SB, the shoot demand per unit of roots was similar for all RZT in wheat, but increased with decreasing RZT in maize. Uptake rates of K at high SB and low RZT adapted to shoot demand within four days, and were even higher in maize than in wheat. Uptake rates of P adapted more slowly to shoot demand in both species, resulting in reduced concentrations of P in the shoot, particularly in maize.In conclusion, the two species did not markedly differ in their physiological capacity for uptake of K and P at low RZT. However, maize had a lower ability than wheat to adapt morphologically to suboptimal RZT by increasing biomass allocation towards the roots. This may cause a greater susceptibility of maize to nutrient deficiency, particularly if the temperatures around the shoot base are high and uptake is limited by nutrient transport processes in the soil towards the roots.  相似文献   

3.
Abstract Changes in the uptake and allocation of carbon and nitrogen, after a step-decrease in nutrient availability, were investigated in small birch (Betula pendula Roth). By demonstrating stable nutrition, before and after the decrease in nutrient supply, it was possible to eliminate the effects of plant size and age. Immediately following the step-decrease in nutrient availability, net nitrogen uptake to leaves and the relative rate of increase in shoot area tended to zero. Although photosynthetic rate per shoot area decreased, carbon uptake remained in excess of that used in structural growth and respiration. More of the excess carbon was accumulated as starch in leaves than in roots. After a lag phase, the relative rates of increase in plant dry matter, starch amount, net nitrogen uptake to leaves and shoot area development equalled that of the reduced rate of nutrient supply. It is concluded that the reduction in plant relative growth rate was much more attributable to the reduced allocation of photosynthate to leaf area growth than to the reduction in photosynthesis per shoot area.  相似文献   

4.
Pre-inoculation of transplants with arbuscular mycorrhizal fungi may increase the in-field P uptake through an increased exploitation of the soil volume and, thereby, reduce the need for P fertilizer application. The objective of this study was to investigate how pre-inoculation influences the post-transplanting rate of mycorrhizae development, nutrient uptake and growth of field-grown leek plants (Allium porrum L.) at various P levels. Field experiments were carried out in normal field soils supporting high crop production levels. This work demonstrated that pre-inoculation increased the post-transplanting rate of mycorrhizae development, the shoot and root concentration of P, Zn, Cu, and N, and the plant production. Therefore, module-raised pre-inoculated transplants should be adopted as a management strategy in leek production in order to ensure sufficient mycorrhization of young plants for uptake of P and, thereby, reduce the need for application of fertilizer P.  相似文献   

5.
Somma  F.  Hopmans  J.W.  Clausnitzer  V. 《Plant and Soil》1998,202(2):281-293
A three-dimensional solute transport model was developed and linked to a three-dimensional transient model for soil water flow and root growth. The simulation domain is discretized into a grid of finite elements by which the soil physical properties are spatially distributed. Solute transport modeling includes passive and active nutrient uptake by roots as well as zero- and first-order source/sink terms. Root water uptake modeling accounts for matric and osmotic potential effects on water and passive nutrient uptake. Root age effects on root water and nutrient uptake activity have been included, as well as the influence of nutrient deficiency and ion toxicity on root growth. Examples illustrate simulations with different levels of model complexity, depending on the amount of information available to the user. At the simplest level, root growth is simulated as a function of mechanical soil strength only. Application of the intermediate level with root water and nutrient uptake simulates the influence of timing and amount of NO3 application on leaching. The most comprehensive level includes simulation of root and shoot growth as influenced by soil water and nutrient status, temperature, and dynamic allocation of assimilate to root and shoot.  相似文献   

6.
Ten Triticum aestivum and two Triticum turgidum conv. durum genotypes were grown in chelate-buffered nutrient solution at Zn supplies ranging from deficient to sufficient (free Zn activities from 2 to 200 pM, pZn from 11.7 to 9.7). The critical level of Zn ion activity in solution for healthy growth of wheat plants was around 40 pM. Genotypes differed in the growth response: those classified as Zn-efficient suffered less reduction of shoot growth and did not change the rate of root growth at a Zn supply quite deficient for Zn-inefficient genotypes. Root growth of Zn-inefficient genotypes increased at deficient Zn supply. The shoot/root ratio was the most sensitive parameter of Zn efficiency; Zn-efficient genotypes showed less reduction in the ratio when grown at deficient compared to sufficient Zn supply. Classification of wheat genotypes into Zn-efficient and Zn-inefficient groups after screening in chelate-buffered nutrient solution corresponded well with classification obtained in field experiments on Zn-deficient soil.  相似文献   

7.
We studied the seasonal resource dynamics between organs of wild rice (Zizania latifolia (Griseb.) Turcz. ex Stapf.) to obtain a better understanding of its growth dynamics, carbon and nutrient translocation. The results of observation from January 2002 to February 2004 showed the shoot density markedly increased after emergence of shoots at the end of March until May (up to 800 ind/m2). However the shoot mortality due to self-thinning reduced the total new shoots by more than 70% by the end of July. Thereafter, the shoot density was nearly constant with the aboveground biomass peaking at the end of August. In the late winter, the rhizome biomass declined by respiration loss to about 25% of its peak value. Meanwhile the decline in rhizome reserves from January to the end of April was about 20%. This small reduction compared with other perennial emergent species implies that there is a lower contribution of rhizome reserves to support new shoot formation. The initial heterotrophic growth of new shoots based on the rhizome resources lasted for a short period, then switched to autotrophic growth at the end of April or the beginning of May. Thus, in most periods of foliage development, nutrients were obtained mostly from soil through uptake by roots, not through resource allocation of the rhizome. In autumn, the standing dead shoots retained most of the nutrients and carbohydrates without translocating downwards. This suggests that in practice, the plant can remove nutrients from sediment more efficiently than other emergent plants.  相似文献   

8.
The effect of ambient and elevated atmospheric CO(2) on biomass partitioning and nutrient uptake of mycorrhizal and non-mycorrhizal pea plants grown in pots in a controlled environment was studied. The hypothesis tested was that mycorrhizae would increase C assimilation by increasing photosynthetic rates and reduce below-ground biomass allocation by improving nutrient uptake. This effect was expected to be more pronounced at elevated CO(2) where plant C supply and nutrient demand would be increased. The results showed that mycorrhizae did not interact with atmospheric CO(2) concentration in the variables measured. Mycorrhizae did not affect photosynthetic rates, had no effect on root weight or root length density and almost no effect on nutrient uptake, but still significantly increased shoot weight and reduced root/shoot ratio at harvest. Elevated CO(2) increased photosynthetic rates with no evidence for down-regulation, increased shoot weight and nutrient uptake, had no effect on root weight, and actually reduced root/shoot ratio at harvest. Non-mycorrhizal plants growing at both CO(2) concentrations had lower shoot weight than mycorrhizal plants with similar nutritional status and photosynthetic rates. It is suggested that the positive effect of mycorrhizal inoculation was caused by an enhanced C supply and C use in mycorrhizal plants than in non-mycorrhizal plants. The results indicate that plant growth was not limited by mineral nutrients, but partially source and sink limited for carbon. Mycorrhizal inoculation and elevated CO(2) might have removed such limitations and their effects on above-ground biomass were independent, positive and additive.  相似文献   

9.
Qifu Ma  Zed Rengel  Bill Bowden 《Plant and Soil》2007,291(1-2):301-309
Heterogeneous distribution of mineral nutrients in soil profiles is a norm in agricultural lands, but its influence on nutrient uptake and crop growth is poorly documented. In this study, we examined the effects of varying phosphorus (P) and potassium (K) distribution on plant growth and nutrient uptake by wheat (Triticum aestivum L.) grown in a layered or split soil culture in glasshouse conditions. In the layered pot system the upper soil was supplied with P and either kept watered or allowed to dry or left P-deficient but watered, whereas the lower soil was watered and fertilised with K. Greater reductions in shoot growth, root length and dry weight in the upper soil layer occurred in −P/wet than in +P/dry upper soil treatment. Shoot P concentration and total P content were reduced by P deficiency but not by upper soil drying. Genotypic responses showed that K-efficient cv. Nyabing grew better and took up more P and K than K-inefficient cv. Gutha in well-watered condition, but the differences decreased when the upper soil layer was dry. In the split-root system, shoot dry weight and shoot P and K contents were similar when P and K were applied together in one compartment or separated into two compartments. In comparison, root growth was stimulated and plants took up more P and K in the treatment with the two nutrients supplied together compared with the treatment in which the two nutrients were separated. Roots proliferated in the compartment applied with either P or K at the expense of root growth in the adjoining compartment with neither P nor K. Heterogeneous nutrient distribution has a direct decreasing effect on root growth in deficient patches, and nutrient redistribution within the plant is unlikely to meet the demand of roots grown in such patches.  相似文献   

10.
Nutrient uptake is critical for crop growth and is determined by root foraging in soil. Growth and branching of roots lead to effective root placement to acquire nutrients, but relatively little is known about absorption of nutrients at the root surface from the soil solution. This knowledge gap could be alleviated by understanding sources of genetic variation for short-term nutrient uptake on a root length basis. A modular platform called RhizoFlux was developed for high-throughput phenotyping of multiple ion-uptake rates in maize (Zea mays L.). Using this system, uptake rates were characterized for the crop macronutrients nitrate, ammonium, potassium, phosphate, and sulfate among the Nested Association Mapping (NAM) population founder lines. The data revealed substantial genetic variation for multiple ion-uptake rates in maize. Interestingly, specific nutrient uptake rates (nutrient uptake rate per length of root) were found to be both heritable and distinct from total uptake and plant size. The specific uptake rates of each nutrient were positively correlated with one another and with specific root respiration (root respiration rate per length of root), indicating that uptake is governed by shared mechanisms. We selected maize lines with high and low specific uptake rates and performed an RNA-seq analysis, which identified key regulatory components involved in nutrient uptake. The high-throughput multiple ion-uptake kinetics pipeline will help further our understanding of nutrient uptake, parameterize holistic plant models, and identify breeding targets for crops with more efficient nutrient acquisition.

A platform for quantifying root uptake rates of multiple, simultaneous nutrients reveals these rates are correlated among nutrients, are heritable, and may have a common genetic basis.  相似文献   

11.
In order to manipulate the shoot demand for mineral nutrients per unit root weight, maize ( Zea mays L.) seedlings were grown in nutrient solution with different temperatures in the root zone and at the shoot base. The aerial temperature was kept uniform at 24/20°C day/night. At a root zone temperature (RZT) of 24°C, shoot growth was reduced by decreasing the shoot base temperature (SBT) to 12°C; at a RZT of 12°C, shoot growth was increased by raising the SBT to 24°C. At both RZT root growth was not affected by the SBT. Thus, the shoot demand for nutrients per unit root was either increased by raising, or decreased by lowering the SBT. The net uptake rate of potassium (K), as determined from accumulation rates between sequential harvests, was not affected within the first 3 days after lowering the SBT, whereas net translocation rates of K into the shoot and translocation rates in the xylem exudate of decapitated plants were markedly reduced. Obviously, translocation of K into the shoot seems to be regulated independently from K uptake into the root cells. Translocation rates of K in the xylem exudate of decapitated plants were markedly reduced when the nutrient solution was replaced by CaCl2 solution during exudation. But, depending on the SBT before decapitation, significant differences remained in the translocation rates of K even when K uptake from the nutrient solution was prevented.
From the results it is suggested that xylem loading of K is regulated separately from K uptake from the external solution and that the adaptation of K translocation to shoot demand is coupled with an altered capacity of the root for xylem loading.  相似文献   

12.
Young sunflower plants (Helianthus annuus L.) under stress oflow nitrate or phosphate availability exhibited increases inroot: shoot ratio and in kinetic parameters for uptake. Theyshowed no significant changes in photosynthetic utilizationof either nutrient. Increases in root: shoot ratio were achievedby early and persistent suppression of shoot growth, but notroot growth. Affinity for phosphate uptake, 1/Km(P), increasedwith phosphate stress, as did affinity for nitrate uptake, 1/Km(N),with nitrate stress. Maximal uptake rate, Vmax, for phosphateuptake increased with phosphorus stress; Vmax for nitrate didnot increase with nitrogen stress. Phosphate Vmax was relatedstrongly to root nutrient status. Decreases in Vmax with plantage were not well explained by changes in age structure of roots.Estimated benefits of acclimatory changes in root: shoot ratioand uptake kinetics ranged up to 2-fold increases in relativegrowth rate, RGR. The relation of RGR to uptake physiology followedpredictions of functional balance moderately well, with somesystematic deviations. Analyses of RGR using growth models implyno significant growth benefit from regulating Vmax, specifically,not from down-regulating it at high nutrient availability. Quantitativebenefits of increases in root: shoot ratio and uptake parametersare predicted to be quite small under common conditions whereinnutrient concentrations are significantly depleted by uptake.The root: shoot response is estimated to confer the smallestbenefit under non-depleting conditions and the largest benefitunder depleting conditions. Even then, the absolute benefitis predicted to be small, possibly excepting the case of heterogeneoussoils. Depleting and non-depleting conditions are addressedwith very different experimental techniques. We note that atheoretical framework is lacking that spans both these cases,other than purely numerical formulations that are not readilyinterpreted. Key words: Nutrient stress, nutrient uptake, nutrient use efficiency, relative growth rate, Helianthus annuus  相似文献   

13.
Rengel  Z. 《Plant and Soil》1999,215(2):193-202
The chelator-buffered nutrient solutions containing excess chelator have been used frequently in the micronutrient research, but potential toxicity of the excess chelator has not been ascertained. The present study was conducted to test effects of four concentrations of excess HEDTA [ N-(2-hydroxyethyl)ethylenedinitrilotriacetic acid] and two levels of total Zn on growth, root exudation, and nutrient uptake and transport by Triticum aestivum L. (cv. Aroona) and Triticum turgidum L. conv. durum (Desf.) MacKey (cv. Durati) genotypes differing in tolerance to Zn deficiency. Excess HEDTA at 50 μM reduced root and shoot growth and caused visual toxicity symptoms (necrotic lesions) on leaves; these effects were generally absent at lower concentrations of excess HEDTA. Root exudation of phytosiderophores increased with increasing concentrations of excess HEDTA at deficient and sufficient Zn levels, and was higher in Zn-deficiency-tolerant Aroona than in Zn-deficiency-sensitive Durati wheat. Shoot and root Zn concentrations showed a saturable response to increasing Zn2+ activities in solution. Excess HEDTA at 50 μM caused an increase in shoot concentrations of Fe and a decrease in concentrations of Mn and Cu. An average rate of Zn uptake increased with an increase in Zn2+ ionic activity in solution, with Zn-deficiency-tolerant Aroona having a higher rate of Zn uptake than Zn-deficiency-sensitive Durati in the deficiency range of Zn2+ activities. Average uptake rates of Mn and Cu decreased with an increase in concentration of excess HEDTA. Similar observations were noted for transport of Mn and Cu to shoots, while Zn transport to shoots was proportional to Zn2+ activities in solution. It was concluded that excess HEDTA at 50 μM adversely affects wheat growth and physiology, while excess of 25 μM or less does not cause measurable toxicity. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Abstract In a 30-week field experiment, observations on growth and nutrient uptake in potted plants were made concurrently with soil and air temperatures on north- and south-facing slopes. Parallel observations were also made in a controlled environment. Growth in the field was slow but steady, declines in shoot weight fraction with time being matched by increases in rate of dry weight increment per unit of shoot. Increases in root weight fraction, however, failed to match low and declining rates of nitrogen uptake per unit of root; hence, nutrient concentrations generally declined with time. Thermal time in the form of degree-day integrals above the base 3°C was found to correlate well with growth, each degree day contributing a 0.16% increase in total dry weight, on average. Soil, locational and moisture effects caused this average to vary ca. two-fold in either direction.  相似文献   

15.
Measurement of short-term nutrient uptake rates in cranberry by aeroponics   总被引:1,自引:1,他引:1  
Aeroponics, a soil-less plant culture system in which fresh nutrient solutions are intermittently or continuously misted on to plant roots, is capable of sustaining plant growth for extended periods of time while maintaining a constantly refreshed nutrient solution. Although used relatively extensively in commercial installations and in root physiology research, use of aeroponics in nutrient studies is rare. The object of this study was to examine whether nutrient uptake rates could be calculated for aeroponic systems by difference using measurements of concentrations and volumes of input and efflux solutions. Data were collected from an experiment with cranberry plants (Vaccinium macrocarpon Ait. cv. Stevens) cultured aeroponically with nutrient solutions containing various concentrations of ammonium-N and isotopically labelled nitrate-N. Validation of the calculated uptake rates was sought by: (1) evaluating charge balance of the solutions and total ion uptake (including proton efflux) and (2) comparison with N-isotope measurements. Charge balance and proton efflux calculations required use of chemical modelling of the solutions to determine speciation of dissolved phosphate and acid-neutralizing capacity (ANC). The results show that charge balance requirements were acceptably satisfied for individual solution analyses and for total ion uptake when proton efflux was included. Relative rates of nitrate/ammonium uptake determined by difference were in agreement with those determined by isotopic techniques. Additional information was easily obtained from this experimental technique, including evidence of diurnal variation in nutrient uptake, correlation between ammonium uptake and proton efflux, and the relationship between ion concentration and uptake. Use of aeroponic systems for non-destructive measurement of water and ion uptake rates for numerous other species and nutrients appears promising.  相似文献   

16.
Birch (Betula verrucosa Ehrh.) and grey alder (Alnus incana Moench) seedlings were grown with varied relative addition rates of all nutrients, up to optimum for vegetative growth. The root medium was basically distilled water to which the nutrients, contained in stock solutions in fixed proportions, were added every second hour and in exponentially increased amounts for consumption during the subsequent period. The nutrient weight proportions previously found to be required in birch (100 N:65 K:13 P) were used in all treatments. However, the nutrient proportions required in grey alder were found to be somewhat different (100 N:50 K:18 P). The use of the required proportions in the additions was important for maintenance of maximum growth, efficient nutrient utilization, and low concentrations in the root medium. Luxury consumption and inefficiency occurred at high concentrations. The results show that the nutrient requirements are sufficiently defined, for different relative growth rates, by the nutrient proportions and the relative addition rate. No clear relationships were found between conductivity or concentration in the root medium and the addition rate, net uptake rate, nutrient status, or relative growth rate. The results are in good agreement with data from low concentration and depletion experiments reported in the literature, showing that non-limited uptake rates occur down to very low concentrations. Thus, there is strong evidence that concentration has been incorrectly used when applied as the treatment variable for plant nutrition in plant science and cultivation practice. The dominant factors in sub-optimum and optimum nutrition are the amounts of nutrients available per unit of time, the growth rate, and the nutrient proportions. At low concentration levels, physical factors such as stirring and flow rate of nutrient solution and boundary layer effects are decisive for the rates with which the nutrients become available to the roots. Therefore, at low levels, concentration alone cannot be used as the factor determining nutrient uptake rate. At high levels, concentration is effective as a supra-optimum factor and increased internal percentage contents cause decreased uptake efficiency, thus counter-acting the concentration effect. Nitrogen effects dominated the stress indications when the internal nitrogen percentage content decreased from optimum to the level of the treatments in the beginning of the experiments. Leaf deficiency symptoms disappeared and the root/shoot ratio change ceased when nitrogen status stabilized. Strong linear regressions were found between any two of the variables: relative addition rate of nutrients, relative growth rate, and nutrient status.  相似文献   

17.
The effects of an arbuscular mycorrhizal (AM) fungus, Glomus mosseae, and a phosphate-solubilizing microorganism (PSM), Mortierella sp., and their interactions, on nutrient (N, P and K) uptake and the ionic composition of different root tissues of the halophyte Kosteletzkya virginica (L.), cultured with or without NaCl, were evaluated. Plant biomass, AM colonization and PSM populations were also assessed. Salt stress adversely affected plant nutrient acquisition, especially root P and K, resulting in an important reduction in shoot dry biomass. Inoculation of the AM fungus or/and PSM strongly promoted AM colonization, PSM populations, plant dry biomass, root/shoot dry weight ratio and nutrient uptake by K. virginica, regardless of salinity level. Ion accumulation in root tissues was inhibited by salt stress. However, dual inoculation of the AM fungus and PSM significantly enhanced ion (e.g., Na+, Cl?, K+, Ca2+, Mg2+) accumulation in different root tissues, and maintained lower Na+/K+ and Ca2+/Mg2+ ratios and a higher Na+/Ca2+ ratio, compared to non-inoculated plants under 100 mM NaCl conditions. Correlation coefficient analysis demonstrated that plant (shoot or root) dry biomass correlated positively with plant nutrient uptake and ion (e.g., Na+, K+, Mg2+ and Cl?) concentrations of different root tissues, and correlated negatively with Na+/K+ ratios in the epidermis and cortex. Simultaneously, root/shoot dry weight ratio correlated positively with Na+/Ca2+ ratios in most root tissues. These findings suggest that combined AM fungus and PSM inoculation alleviates the deleterious effects of salt on plant growth by enabling greater nutrient (e.g., P, N and K) absorption, higher accumulation of Na+, K+, Mg2+ and Cl? in different root tissues, and maintenance of lower root Na+/K+ and higher Na+/Ca2+ ratios when salinity is within acceptable limits.  相似文献   

18.
The role of ectomycorrhizal fungi on mineral nutrient mobilization and uptake is crucial for tree nutrition and growth in temperate forest ecosystems. By using a “mineral weathering budget” approach, this study aims to quantify the effect of the symbiosis with the ectomycorrhizal model strain Laccaria bicolor S238N on mineral weathering and tree nutrition, carrying out a column experiment with a quartz/biotite substrate. Each column was planted with one Scots pine (Pinus sylvestris L.) non-mycorrhizal or mycorrhizal with L. bicolor, with exception of the abiotic control treatment. The columns were continuously supplied with a nutrient-poor solution. A mineral weathering budget was calculated for K and Mg. The pine shoot growth was significantly increased (73%) when plants were mycorrhizal with L. bicolor. Whatever their mycorrhizal status, pines increased mineral weathering by factors 1.5 to 2.1. No difference between non-mycorrhizal and mycorrhizal pine treatments was revealed, however, mycorrhizal pines assimilated significantly more K and Mg. This suggests that in our experimental conditions, L. bicolor S238N improved shoot growth and K and Mg assimilation in Scots pine mainly by increasing the uptake of dissolved nutrients, linked to a better exploration and exploitation of the soil by the mycorrhizal roots.  相似文献   

19.
I. G. Burns 《Plant and Soil》1992,142(2):221-233
A method is described for determining the way in which growth rate varies with plant nutrient concentration using a simple nutrient interruption technique incorporating only 2 treatments. The method involves measuring the changes in growth and nutrient composition of otherwise well-nourished plants after the supply of one particular nutrient has been withheld. Critical concentrations are estimated from the relationship between the growth rate (expressed as a fraction of that for control plants of the same size which remained well-nourished throughout) and the concentration of the growth-limiting nutrient in the plants as deficiency developed. Trials of the method using young lettuce plants showed that shoot growth rate was directly proportional to total N (nitrate plus organic N) concentration, and linearly or near-linearly related to K and P concentration over a wide range; the corresponding relationship for nitrate was strongly curvi-linear. Critical concentrations (corresponding to a 10% reduction in growth rate) determined from these results were similar to critical values calculated from models derived from field data, but were generally higher than published estimates of critical concentration (based on reductions in shoot weight) for plants of a similar size. Reasons for these discrepancies are discussed. Nitrate, phosphate or potassium concentrations in sap from individual leaf petioles were highly sensitive to changes in shoot growth rate as deficiency developed, with the slope of the relationships varying with leaf position, due to differences both in their initial concentration and in the rates at which they were utilized in individual leaves. Each nutrient was always depleted more quickly in younger leaves than in older ones, providing earlier evidence of deficiency for diagnostic purposes. Although the plants were capable of accumulating nitrate, phosphate and potassium well in excess of that needed for optimum dry matter production during periods of adequate supply, the rate of mobilization of these reserves was insufficient to prevent reductions in growth rate as the plants became deficient. This brings into question the validity of the conventional concept that luxury consumption provides a store of nutrients which are freely available for use in times of shortage. The implications of these results for the use of plant analysis for assessing plant nutrient status are discussed.  相似文献   

20.
Nutrient uptake in eastern deciduous tree seedlings   总被引:3,自引:0,他引:3  
K. Lajtha 《Plant and Soil》1994,160(2):193-199
Tree seedlings that colonize large treefall gaps are generally shade-intolerant species with high potential relative growth rates. Nutrient availability may be significantly elevated in disturbance-induced gaps, however, little is known about the role of differences in nutrient uptake capacities of different species in structuring the community response to gap openings in eastern North American deciduous forests. Seven tree species were grown from seed under both a high and a low nutrient regime, and uptake kinetics of phosphate, ammonium, and nitrate were studied. Yellow birch, a species with intermediate shade tolerance and relative growth rate, had the highest maximum rates of uptake of all ions, while tulip tree, a gap-colonizing species with high relative growth rate, had the lowest rate of phosphate uptake and intermediate rates of ammonium and nitrate uptake. Beech and hickory, which have low relative growth rates and are not gap-colonizing species, had intermediate levels of nutrient uptake. There was no evidence that species with the highest maximum uptake rates measured at high supply concentrations had relatively low uptake at low nutrient supply concentrations. Although birch increased phosphate absorption capacity when grown under a low nutrient regime, this pattern did not hold for nitrate or ammonium uptake, and other species showed no change in nutrient uptake capacity according to nutrient growth regime. Clearly, factors other than nutrient absorption capacity, such as nutrient use efficiency or allocation to root vs. shoot biomass, underlie differences in species' capacities to colonize and maintain a high relative growth rate in canopy gaps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号