首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of bone resorbing osteoclasts in vivo is orchestrated by cells of the osteoblast lineage such as periodontal ligament fibroblasts that provide the proper signals to osteoclast precursors. Although the requirement of cell–cell interactions is widely acknowledged, it is unknown whether these interactions influence the expression of genes required for osteoclastogenesis and the ultimate formation of osteoclasts. In the present study we investigated the effect of cell–cell interaction on the mRNA expression of adhesion molecules and molecules involved in osteoclast formation in cultures of peripheral blood mononuclear cells (PBMCs) and human primary periodontal ligament fibroblasts, both as solitary cultures and in co‐culture. We further analyzed the formation of multinucleated, tartrate resistant acid phosphatase (TRACP) positive cells and assessed their bone resorbing abilities. Interestingly, gene expression of intercellular adhesion molecule‐1 (ICAM‐1) and of osteoclastogenesis‐related genes (RANKL, RANK, TNF‐α, and IL‐1β) was highly up‐regulated in the co‐cultures compared to mono‐cultures and the 5–10‐fold up‐regulation reflected a synergistic increase due to direct cell–cell interaction. This induction strongly overpowered the effects of known osteoclastogenesis inducers 1,25(OH)2VitD3 and dexamethasone. In case of indirect cell–cell contact mRNA expression was not altered, indicating that heterotypic adhesion is required for the increase in gene expression. In addition, the number of osteoclast‐like cells that were formed in co‐culture with periodontal ligament fibroblasts was significantly augmented compared to mono‐cultures. Our data indicate that cell–cell adhesion between osteoclast precursors and periodontal ligament fibroblasts significantly modulates the cellular response which favors the expression of osteoclast differentiation genes and the ultimate formation of osteoclasts. J. Cell. Physiol. 222: 565–573, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.

Introduction

Increased activity of osteoclasts is responsible for bone loss and joint destruction in rheumatoid arthritis. For osteoclast development and bone resorption activity, cytoskeletal organization must be properly regulated. MicroRNAs (miRNAs) are endogenous small noncoding RNAs that suppress expression of their target genes. This study was conducted to identify crucial miRNAs to control osteoclasts.

Methods

miRNA expression in the bone marrow-derived macrophages (BMM) with or without receptor activator of nuclear factor κB ligand (RANKL) stimulation was analyzed by miRNA array. To examine the role of specific miRNAs in osteoclast formation, bone resorption activity and actin ring formation, the BMM were retrovirally transduced with miRNA antagomirs. To confirm whether the suppressive effects on osteoclastogenesis by miR-31 inhibition were mediated by targeting RhoA, osteoclast formation was analyzed in the presence of the RhoA inhibitor, exoenzyme C3.

Results

miR-31 was identified as one of the highly upregulated miRNAs during osteoclast development under RANKL stimulation. Inhibition of miR-31 by specific antagomirs suppressed the RANKL-induced formation of osteoclasts and bone resorption. Phalloidin staining of osteoclasts revealed that actin ring formation at the cell periphery was severely impaired by miR-31 inhibition, and clusters of small ringed podosomes were observed instead. In these osteoclasts, expression of RhoA, one of the miR-31 target genes, was upregulated by miR-31 inhibition in spite of the impaired osteoclastogenesis. Treatment with the RhoA inhibitor, exoenzyme C3, rescued the osteoclastogenesis impaired by miR-31 inhibition.

Conclusions

miR-31 controls cytoskeleton organization in osteoclasts for optimal bone resorption activity by regulating the expression of RhoA.  相似文献   

3.
4.
Osteoclasts are tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells derived from monocyte/macrophage-lineage precursors and are critically responsible for bone resorption. In giant cell tumor of bone (GCT), numerous TRAP-positive multinucleated giant cells emerge and severe osteolytic bone destruction occurs, implying that the emerged giant cells are biologically similar to osteoclasts. To identify novel genes involved in osteoclastogenesis, we searched genes whose expression pattern was significantly different in GCT from normal and other bone tumor tissues. By screening a human gene expression database, we identified sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) as one of the genes markedly overexpressed in GCT. The mRNA expression level of Siglec-15 increased in association with osteoclast differentiation in cultures of mouse primary unfractionated bone marrow cells (UBMC), RAW264.7 cells of the mouse macrophage cell line and human osteoclast precursors (OCP). Treatment with polyclonal antibody to mouse Siglec-15 markedly inhibited osteoclast differentiation in primary mouse bone marrow monocyte/macrophage (BMM) cells stimulated with receptor activator of nuclear factor κB ligand (RANKL) or tumor necrosis factor (TNF)-α. The antibody also inhibited osteoclast differentiation in cultures of mouse UBMC and RAW264.7 cells stimulated with active vitamin D3 and RANKL, respectively. Finally, treatment with polyclonal antibody to human Siglec-15 inhibited RANKL-induced TRAP-positive multinuclear cell formation in a human OCP culture. These results suggest that Siglec-15 plays an important role in osteoclast differentiation.  相似文献   

5.
Osteoclasts are large polykaryons that have the unique capacity to degrade bone and are generated by the differentiation of myeloid lineage progenitors. To identify the genes involved in osteoclast development, we performed microarray analysis, and we found that carboxypeptidase E (CPE), a prohormone processing enzyme, was highly upregulated in osteoclasts compared with their precursors, bone marrow-derived macrophages (BMMs). Here, we demonstrate a novel role for CPE in receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation. The overexpression of CPE in BMMs increases the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear osteoclasts and the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are key regulators in osteoclastogenesis. Furthermore, employing CPE knockout mice, we show that CPE deficiency attenuates osteoclast formation. Together, our data suggest that CPE might be an important modulator of RANKL-induced osteoclast differentiation.  相似文献   

6.
7.
Excessive synovial osteoclastogenesis is a hallmark of rheumatoid arthritis (RA). Concomitantly, local synovial changes comprise neuronal components of the peripheral sympathetic nervous system. Here, we wanted to analyze if collagen-induced arthritis (CIA) alters bone marrow-derived macrophage (BMM) osteoclastogenesis and osteoclast activity, and how sympathetic neurotransmitters participate in this process. Therefore, BMMs from Dark Agouti rats at different CIA stages were differentiated into osteoclasts in vitro and osteoclast number, cathepsin K activity, matrix resorption and apoptosis were analyzed in the presence of acetylcholine (ACh), noradrenaline (NA) vasoactive intestinal peptide (VIP) and assay-dependent, adenylyl cyclase activator NKH477. We observed modulation of neurotransmitter receptor mRNA expression in CIA osteoclasts without affecting protein level. CIA stage-dependently altered marker gene expression associated with osteoclast differentiation and activity without affecting osteoclast number or activity. Neurotransmitter stimulation modulated osteoclast differentiation, apoptosis and activity. VIP, NA and adenylyl cyclase activator NKH477 inhibited cathepsin K activity and osteoclastogenesis (NKH477, 10-6M NA) whereas ACh mostly acted pro-osteoclastogenic. We conclude that CIA alone does not affect metabolism of in vitro generated osteoclasts whereas stimulation with NA, VIP plus specific activation of adenylyl cyclase induced anti-resorptive effects probably mediated via cAMP signaling. Contrary, we suggest pro-osteoclastogenic and pro-resorptive properties of ACh mediated via muscarinic receptors.  相似文献   

8.
Nitric oxide (NO) is a multifunctional signaling molecule and a key vasculoprotective and potential osteoprotective factor. NO regulates normal bone remodeling and pathological bone loss in part through affecting the recruitment, formation, and activity of bone-resorbing osteoclasts. Using murine RAW 264.7 and primary bone marrow cells or osteoclasts formed from them by receptor activator of NF-kappaB ligand (RANKL) differentiation, we found that inducible nitric-oxide synthase (iNOS) expression and NO generation were stimulated by interferon (IFN)-gamma or lipopolysaccharide, but not by interleukin-1 or tumor necrosis factor-alpha. Surprisingly, iNOS expression and NO release were also triggered by RANKL. This response was time- and dose-dependent, required NF-kappaB activation and new protein synthesis, and was specifically blocked by the RANKL decoy receptor osteoprotegerin. Preventing RANKL-induced NO (via iNOS-selective inhibition or use of marrow cells from iNOS-/- mice) increased osteoclast formation and bone pit resorption, indicating that such NO normally restrains RANKL-mediated osteoclastogenesis. Additional studies suggested that RANKL-induced NO inhibition of osteoclast formation does not occur via NO activation of a cGMP pathway. Because IFN-beta is also a RANKL-induced autocrine negative feedback inhibitor that limits osteoclastogenesis, we investigated whether IFN-beta is involved in this novel RANKL/iNOS/NO autoregulatory pathway. IFN-beta was induced by RANKL and stimulated iNOS expression and NO release, and a neutralizing antibody to IFN-beta inhibited iNOS/NO elevation in response to RANKL, thereby enhancing osteoclast formation. Thus, RANKL-induced IFN-beta triggers iNOS/NO as an important negative feedback signal during osteoclastogenesis. Specifically targeting this novel autoregulatory pathway may provide new therapeutic approaches to combat various osteolytic bone diseases.  相似文献   

9.
Connection between B lymphocyte and osteoclast differentiation pathways   总被引:8,自引:0,他引:8  
Osteoclasts differentiate from the hemopoietic monocyte/macrophage cell lineage in bone marrow through cell-cell interactions between osteoclast progenitors and stromal/osteoblastic cells. Here we show another osteoclast differentiation pathway closely connected with B lymphocyte differentiation. Recently the TNF family molecule osteoclast differentiation factor/receptor activator of NF-kappaB ligand (ODF/RANKL) was identified as a key membrane-associated factor regulating osteoclast differentiation. We demonstrate that B-lymphoid lineage cells are a major source of endogenous ODF/RANKL in bone marrow and support osteoclast differentiation in vitro. In addition, B-lymphoid lineage cells in earlier developmental stages may hold a potential to differentiate into osteoclasts when stimulated with M-CSF and soluble ODF/RANKL in vitro. B-lymphoid lineage cells may participate in osteoclastogenesis in two ways: they 1) express ODF/RANKL to support osteoclast differentiation, and 2) serve themselves as osteoclast progenitors. Consistent with these observations in vitro, a decrease in osteoclasts is associated with a decrease in B-lymphoid cells in klotho mutant mice (KL(-/-)), a mouse model for human aging that exhibits reduced turnover during bone metabolism, rather than a decrease in the differentiation potential of osteoclast progenitors. Taken together, B-lymphoid lineage cells may affect the pathophysiology of bone disorders through regulating osteoclastogenesis.  相似文献   

10.
Estrogen insufficiency at menopause cause accelerated bone loss due to unwarranted differentiation and function of osteoclasts. Unraveling the underlying mechanism/s may identify mediators of estrogen action which can be targeted for improved management of osteoporosis. Towards this, we analyzed the effect of 17β-estradiol on the proteomes of differentiating human osteoclasts. The major proteomic changes observed included upregulation of LYN by estrogen. We, therefore, investigated the effect of estrogen on osteoclast differentiation, survival, and function in control and LYN knockdown conditions. In control condition, estrogen treatment increased the apoptosis rate and suppressed the calcium signaling by reducing the intracellular Ca2+ levels as well as expression and activation of NFATc1 and c-Src during differentiation, resulting in reduced osteoclastogenesis. These osteoclasts were smaller in size with reduced extent of multinuclearity and produced significantly low levels of bone resorbing enzymes. They also exhibited disrupted sealing zone formation with low podosome density, impaired cell polarization and reduced resorption of dentine slices. Interestingly, in LYN knockdown condition, estrogen failed to induce apoptosis and inhibit activation of NFATc1 and c-Src. Compared to effect of estrogen on osteoclast in control condition, LYN knockdown osteoclasts did not show reduction in production of bone resorbing enzymes and had defined sealing zone formation with high podosome density with no impairment in cell polarization. They resorbed significant area on dentine slices. Thus, the inhibitory action of estrogen on osteoclast was severely restrained in LYN knockdown condition, demonstrating the importance of LYN as a key mediator of the effect of estrogen on osteoclastogenesis.  相似文献   

11.
While attachment to bone is required for optimal osteoclast function, the molecular events that underlie this fact are unclear, other than that the cell requires adhesion to mineralized matrix to assume a fully differentiated phenotype. To address this issue, we cultured murine bone marrow-derived osteoclasts on either cell culture plastic or devitalized mouse calvariae to identify the distinct genetic profile induced by interaction with bone. Among a number of genes previously unknown to be expressed in osteoclasts we found that Annexin A8 (AnxA8) mRNA was markedly up-regulated by bone. AnxA8 protein was present at high levels in osteoclasts present in human tissues recovered from sites of pathological bone loss. The presence of bone mineral was required for up-regulation of AnxA8 mRNA since osteoclasts plated on decalcified bone express AnxA8 at low levels as did osteoclasts plated on native or denatured type I collagen. Finally, AnxA8-regulated cytoskeletal reorganization in osteoclasts generated on a mineralized matrix. Thus, we used a novel approach to define a distinct bone-dependent genetic program associated with terminal osteoclast differentiation and identified Anxa8 as a gene strongly induced late in osteoclast differentiation and a protein that regulates formation of the cell's characteristic actin ring.  相似文献   

12.
We previously identified functional N-methyl-D-aspartate (NMDA) glutamate receptors in mature osteoclasts and demonstrated that they are involved in bone resorption in vitro. In the present work, we studied the expression of NMDA receptors (NMDAR) by osteoclast precursors and their role in osteoclastogenesis using two in vitro models, the murine myelomonocytic RAW 264.7 cell line and mouse bone marrow cells, both of which differentiate into osteoclasts in the presence of macrophage colony-stimulating factor (M-CSF) and Rank ligand (RankL). Using RT-PCR analysis with specific probes, we showed that RAW 264.7 cells and mouse bone marrow cells express mRNA of NMDAR subunits NMDA receptor 1 (NR1) and NMDA receptor 2 (NR2) A, B, and D. These subunits are expressed all along the differentiation sequence from undifferentiated precursors to mature resorbing osteoclasts. Semi-quantitative PCR analysis showed no regulation of the expression of these subunits during the differentiation process. Two specific non competitive antagonists of NMDAR, MK801 and DEP, dose-dependently inhibited osteoclast formation in both models, indicating that osteoclastogenesis requires the activation of NMDAR expressed by osteoclast precursors. MK801 had no effect when added only during the first 2 days of culture, suggesting that NMDAR are rather involved in the late stages of osteoclast formation. Finally, we demonstrated using Western-blotting and immunofluorescence that activation of NMDAR in RAW 264.7 cells by specific agonists induces nuclear translocation of NF-kappa B, a factor required for osteoclast formation. Altogether, our results indicate that osteoclast precursors express NMDAR that are involved in the osteoclast differentiation process through activation of the NF-kappa B pathway.  相似文献   

13.
Previous studies found that bone morphogenic proteins (BMPs) support osteoclast formation, but it is not clear whether this is a direct effect on osteoclasts or mediated indirectly through osteoblasts. We have shown that a mouse deficient for the BMP antagonist Twisted gastrulation suggested a direct positive role for BMPs on osteoclastogenesis. In this report, we further determine the significance of BMP signaling on osteoclast formation in vitro. We find that BMP2 synergizes with suboptimal levels of receptor activator of NF‐κB ligand (RANKL) to enhance in vitro differentiation of osteoclast‐like cells. The enhancement by BMP2 is not a result of changes in the rate of proliferation or survival of the bone marrow‐derived cultures, but is accompanied by an increase in expression of genes involved in osteoclast differentiation and fusion. Treatment with BMP2 did not significantly alter expression of RANKL or OPG in our osteoclast cultures, suggesting that the enhancement of osteoclastogenesis is not mediated indirectly through osteoblasts or stromal cells. Consistent with this, we detected phosphorylated SMAD1,5,8 (p‐SMAD) in the nuclei of mononuclear and multinucleated cells in osteoclast cultures. Levels of p‐SMAD, BMP2, and BMP receptors increased during differentiation. RNAi suppression of Type II BMP receptor inhibited RANKL‐stimulated formation of multinuclear TRAP‐positive cells. The BMP antagonist noggin inhibited RANKL‐mediated osteoclast differentiation when added prior to day 3, while addition of noggin on day 3 or later failed to inhibit their differentiation. Taken together, these data indicate that osteoclasts express BMP2 and BMP receptors, and that autocrine BMP signaling directly promotes the differentiation of osteoclasts‐like cells. J. Cell. Biochem. 109: 672–682, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
15.
16.
17.
RANKL induces the formation of osteoclasts, which are responsible for bone resorption. Herein, we investigated the role of SWAP-70-like adapter of T cells (SLAT) in RANKL-induced osteoclastogenesis. Expression levels of SLAT were reduced during RANKL-induced osteoclastogenesis. Overexpression of SLAT in BMMs inhibited TRAP-positive multinuclear osteoclast formation and attenuated the expression of NFATc1, which is an important modulator in osteoclastogenesis. Furthermore, silencing of SLAT by RNA interference enhanced osteoclast formation as well as NFATc1 expression. In addition, SLAT was involved in RANKL-induced JNK activation in osteoclasts. Taken together, our data suggest that SLAT acts as a negative modulator of RANKL-induced osteoclastogenesis.  相似文献   

18.
Denger S  Reid G  Gannon F 《Steroids》2008,73(7):765-774
Estrogens play a key role in bone structural integrity, which is maintained by the opposing activity of bone forming osteoblasts and bone resorbing osteoclasts. The cellular effects of estrogens are mediated by estrogen receptors, however, the detailed molecular mechanism of ER regulation in osteoclasts has not yet been elucidated. We provide here a detailed analysis of the expression profile and functionality of ER during osteoclast differentiation. We employed a human primary osteoclast cell culture model to evaluate the regulation of estrogen receptor (ER) variant expression. We characterized the expression profile of estrogen receptors and studied the regulation of the predominant estrogen receptor-alpha (ER-alpha) during differentiation into osteoclasts. In addition to the full-length ER-alpha, a shorter ER-alpha mRNA variant is expressed and both ER-alpha variants are regulated during osteoclastogenesis. Furthermore, we show that the pS2 gene is an estrogen-regulated gene in osteoclasts. Analysis of the activity of the pS2 gene throughout differentiation, using chromatin immunoprecipitation (ChIP), revealed the functionality of ER-alpha during differentiation and shows that the occupancy of ER-alpha and activated polymerase II on the pS2 promoter decrease with time and can be blocked by the ER antagonist ICI 182780. These results help to dissect the molecular events relevant to estrogen signaling and provide a better understanding of the role of ER-alpha regulation during bone resorption mediated by osteoclasts.  相似文献   

19.
Tumor necrosis factor-α (TNF) enhances osteoclast formation and activity leading to bone loss in various pathological conditions, but its precise role in osteoclastogenesis remains controversial. Although several groups showed that TNF can promote osteoclastogenesis independently of the receptor activator of NF-κB (RANK) ligand (RANKL), others demonstrated that TNF-mediated osteoclastogenesis needs permissive levels of RANKL. Here, we independently reveal that although TNF cannot stimulate osteoclastogenesis on bone slices, it can induce the formation of functional osteoclasts on bone slices in the presence of permissive levels of RANKL or from bone marrow macrophages (BMMs) pretreated by RANKL. TNF can still promote the formation of functional osteoclasts 2 days after transient RANKL pretreatment. These data have confirmed that TNF-mediated osteoclastogenesis requires priming of BMMs by RANKL. Moreover, we investigated the molecular mechanism underlying the dependence of TNF-mediated osteoclastogenesis on RANKL. RANK, the receptor for RANKL, contains an IVVY535–538 motif that has been shown to play a vital role in osteoclastogenesis by committing BMMs to the osteoclast lineage. We show that TNF-induced osteoclastogenesis depends on RANKL to commit BMMs to the osteoclast lineage and RANKL regulates the lineage commitment through the IVVY motif. Mechanistically, the IVVY motif controls the lineage commitment by reprogramming osteoclast genes into an inducible state in which they can be activated by TNF. Our findings not only provide important mechanistic insights into the action of RANKL in TNF-mediated osteoclastogenesis but also establish that the IVVY motif may serve as an attractive therapeutic target for bone loss in various bone disorders.  相似文献   

20.
Chronic inflammation associated with bone tissues often destructs bones, which is essentially performed by osteoclasts in the presence of immunoregulatory molecules. Hence, regulating osteoclastogenesis is crucial to develop therapeutics for bone-destructive inflammatory diseases. It is believed that reactive oxygen species (ROS) are involved in receptor activator of NF-κB (RANK) ligand (RANKL)-induced osteoclast differentiation, and, therefore, glutathione (GSH), the most abundant endogenous antioxidant, suppresses osteoclast differentiation and bone resorption by RANKL. Interestingly, GSH also contributes to inflammatory responses, and the effects of GSH on osteoclast differentiation and bone destruction under inflammatory conditions have not yet been determined. Here, we investigated how GSH affects inflammatory cytokine-stimulated osteoclast differentiation in vitro and in a mouse model of inflammatory bone destruction. We found that GSH significantly promoted TNFα-stimulated osteoclast formation, while an inhibitor of GSH synthesis, buthionine sulfoximine, suppressed it. GSH facilitated the nuclear localisation of the nuclear factor of activated T cells c1 (NFATc1) protein, a master regulator of osteoclastogenesis, as well as the expression of osteoclast marker genes in a dose-dependent manner. N-acetylcysteine, a substrate of GSH synthesis, also stimulated osteoclast formation and NFATc1 nuclear localisation. GSH did not suppress cell death after osteoclast differentiation. In mouse calvaria injected with lipopolysaccharide, GSH treatment resulted in a fivefold increase in the osteolytic lesion area. These results indicate that GSH accelerates osteoclast differentiation and inflammatory bone destruction, suggesting GSH appears to be an important molecule in the mechanisms responsible for inflammatory bone destruction by osteoclasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号