首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antithrombin requires heparin for efficient inhibition of the final two proteinases of the blood coagulation cascade, factor Xa and thrombin. Antithrombin binds heparin via a specific pentasaccharide domain in a two-step mechanism whereby initial weak binding is followed by a conformational change and subsequent tight binding. The goal of this study is to investigate the role of a reducing-end extension in the binding of the longer oligosaccharides that contain the cognate pentasaccharide sequence. We determined the antithrombin binding properties of a synthetic heptasaccharide containing the natural pentasaccharide sequence (DEFGH) and an additional reducing-end disaccharide (DEFGHG'H'). Binding at low ionic strength is unaffected by the disaccharide addition, but at ionic strengths >/=0.2 the mode of heptasaccharide binding changes resulting in a 2-fold increase in affinity due to a decrease in the off-rate caused by a greater nonionic contribution to binding. Molecular modeling of possible binding modes for the heptasaccharide at high ionic strength indicates a possible shift in position of the pentasaccharide domain to occupy the extended heparin-binding site. This conclusion supports the likely presence of a range of sequences that can bind to and activate antithrombin in the natural heparan sulfates that line the vascular endothelium.  相似文献   

2.
The effect of heparin fractions of various Mr, with high affinity for antithrombin III, on the kinetics of the reaction between factor Xa and antithrombin III have been studied using purified human proteins. Each of the heparin fractions, which varied between pentasaccharide and Mr 32,000, accelerated the inhibition of factor Xa although an increasing rate of inhibition was observed with increasing Mr. The chemically synthesized pentasaccharide preparation (Mr 1714) gave a maximum inhibition rate constant of 1.2 X 10(7) M-1 X min-1, compared with 6.3 X 10(4) M-1 X min-1 in the absence of heparin, and this rose progressively to 4.2 X 10(8) M-1 X min-1 with the two fractions of highest Mr (22,500 and 32,000). The 35-fold difference in inhibition rates observed with the high-affinity fractions was virtually abolished by the presence of 0.3 M-NaCl. The disparity in these rates of inhibition was shown to be due to a change in the Km for factor Xa when a two-substrate model of heparin catalysis was used. The Km for factor Xa rose from 28 nM for the fraction of Mr 32,000 to 770 nM for the pentasaccharide, whilst 0.3 M-NaCl also caused an increase in Km with the high-Mr fraction. These data suggest that the increased rates of inhibition observed with heparins of higher Mr may be due to an involvement of heparin binding to factor Xa as well as to antithrombin III.  相似文献   

3.
Antithrombin is unique among the serpins in that it circulates in a native conformation that is kinetically inactive toward its target proteinase, factor Xa. Activation occurs upon binding of a specific pentasaccharide sequence found in heparin that results in a rearrangement of the reactive center loop removing constraints on the active center P1 residue. We determined the crystal structure of an activated antithrombin variant, N135Q S380C-fluorescein (P14-fluorescein), in order to see how full activation is achieved in the absence of heparin and how the structural effects of the substitution in the hinge region are translated to the heparin binding region. The crystal structure resembles native antithrombin except in the hinge and heparin binding regions. The absence of global conformational change allows for identification of specific interactions, centered on Glu(381) (P13), that are responsible for maintenance of the solution equilibrium between the native and activated forms and establishes the existence of an electrostatic link between the hinge region and the heparin binding region. A revised model for the mechanism of the allosteric activation of antithrombin is proposed.  相似文献   

4.
The antigenic recognition of Shigella flexneri O-polysaccharide, which consists of a repeating unit ABCD [-->2)-alpha-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->3)-beta-D-GlcpNAc-(1-->], by the monoclonal antibody SYA/J6 (IgG3, kappa) has been investigated by crystallographic analysis of the Fab domain and its two complexes with two antigen segments (a pentasaccharide Rha A-Rha B-Rha C-GlcNAc D-Rha A' and a modified trisaccharide Rha B-Rha C-GlcNAc D in which Rha C* is missing a C2-OH group). These complex structures, the first for a Fab specific for a periodic linear heteropolysaccharide, reveal a binding site groove (between the V(H) and V(L) domains) that makes polar and nonpolar contacts with all the sugar residues of the pentasaccharide. Both main-chain and side-chain atoms of the Fab are used in ligand binding. The charged side chain of Glu H50 of CDR H2 forms crucial hydrogen bonds to GlcNAc of the oligosaccharides. The modified trisaccharide is more buried and fits more snugly than the pentasaccharide. It also makes as many contacts (approximately 75) with the Fab as the pentasaccharide, including the same number of hydrogen bonds (eight, with four being identical). It is further engaged in more hydrophobic interactions than the pentasaccharide. These three features favorable to trisaccharide binding are consistent with the observation of a tighter complex with the trisaccharide than the pentasaccharide. Thermodynamic data demonstrate that the native tri- to pentasaccharides have free energies of binding in the range of 6.8-7.4 kcal mol(-1), and all but one of the hydrogen bonds to individual hydroxyl groups provide no more than approximately 0.7 kcal mol(-1). They further indicate that hydrophobic interactions make significant contributions to binding and, as the native epitope becomes larger across the tri-, tetra-, pentasaccharide series, entropy contributions to the free energy become dominant.  相似文献   

5.
We have derived oligosaccharides from the capsular polysaccharide of type III group B Streptococcus by enzymatic hydrolysis of a specific backbone glycosidic bond utilizing an endo-beta-galactosidase from Flavobacterium keratolyticus. Enzymatic digestion of the polysaccharide produced oligosaccharide fragments of one or more pentasaccharide repeating units. On the basis of 13C NMR, 1H NMR, and methylation analyses, it was established that the smallest digestion fragment was alpha-D-NeupNAc-(2----3)-beta-D-Galp-(1----4)-[beta-D-Glcp-(1----6 )]- beta-D-GlcpNAc-(1----3)-beta-D-Gal. The isolation of this oligosaccharide is consistent with the susceptibility of the beta-D-Galp-(1----4)-beta-D-Glcp linkage in the backbone of the type III group B streptococcal polysaccharide and confirms that the polysaccharide is composed of a pentasaccharide repeating unit. High resolution 13C NMR spectroscopic studies indicated that, as in the case of the pentasaccharide, the terminal sialic acid residues of the type III group B streptococcal polysaccharide were linked to O-3 and not to O-6 of its branch beta-D-galactopyranosyl residues as had been previously reported (Jennings, H. J., Rosell, K.-G., and Kasper, D. L. (1980) Can. J. Chem. 58, 112-120). This linkage was confirmed in an independent methylation analysis of the type III group B streptococcal polysaccharide. Thin layer chromatogram binding assay and radioactive antigen binding assays with radiolabeled oligosaccharides demonstrated the single repeating unit pentasaccharide oligosaccharide to be poorly antigenic. Increasing oligosaccharide size to a decasaccharide consisting of two repeating units resulted in an 8-fold increase in antigen binding in the direct radioactive antigen binding assay. The results suggest that a region of the immunodeterminant site critical for antibody binding is located in the backbone of the polysaccharide and involves the beta-D-galactopyranose-(1----4) beta-D-glucopyranose bond.  相似文献   

6.
Johnson DJ  Huntington JA 《Biochemistry》2003,42(29):8712-8719
Antithrombin is activated as an inhibitor of the coagulation proteases through its specific interaction with a heparin pentasaccharide. The binding of heparin induces a global conformational change in antithrombin which results in the freeing of its reactive center loop for interaction with target proteases and a 1000-fold increase in heparin affinity. The allosteric mechanism by which the properties of antithrombin are altered by its interactions with the specific pentasaccharide sequence of heparin is of great interest to the medical and protein biochemistry communities. Heparin binding has previously been characterized as a two-step, three-state mechanism where, after an initial weak interaction, antithrombin undergoes a conformational change to its high-affinity state. Although the native and heparin-activated states have been determined through protein crystallography, the number and magnitude of conformational changes render problematic the task of determining which account for the improved heparin affinity and how the heparin binding region is linked to the expulsion of the reactive center loop. Here we present the structure of an intermediate pentasaccharide-bound conformation of antithrombin which has undergone all of the conformational changes associated with activation except loop expulsion and helix D elongation. We conclude that the basis of the high-affinity state is not improved interaction with the pentasaccharide but a lowering of the global free energy due to conformational changes elsewhere in antithrombin. We suggest a mechanism in which the role of helix D elongation is to lock antithrombin in the five-stranded fully activated conformation.  相似文献   

7.
Binding of a synthetic, high-affinity heparin pentasaccharide and of intact heparin to both native and elastase-modified human antithrombin III have been examined by 1H-n.m.r. spectroscopy. The pentasaccharide perturbs many protein resonances in the same way as does intact heparin. There are, however, differences that seem to arise both from fewer contacts in the heparin binding-site when the pentasaccharide binds and from dissimilar conformational changes in the protein. The resonance of the H-2 atom of the histidine, considered to be the N-terminal residue and to be located in the heparin binding-site, is strongly perturbed by heparin binding both to native and modified antithrombin. The pentasaccharide has little effect on this histidine in either protein. Resonances from two of the remaining four histidine units are sensitive to longer-range conformational changes, and show differences between binding of the two heparin species both in native and modified ATIII. It is concluded that the pentasaccharide only partly fills the heparin binding-site and does not produce a conformational change identical to that caused by intact heparin. This is particularly significant as regards the mechanism of action of heparin, because the synthetic pentasaccharide activates ATIII towards Factor Xa, but not towards thrombin.  相似文献   

8.
The dissociation equilibrium constant for heparin binding to antithrombin III (ATIII) is a measure of the cofactor's binding to and activation of the proteinase inhibitor, and its salt dependence indicates that ionic and non-ionic interactions contribute approximately 40 and approximately 60% of the binding free energy, respectively. We now report that phenylalanines 121 and 122 (Phe-121 and Phe-122) together contribute 43% of the total binding free energy and 77% of the energy of non-ionic binding interactions. The large contribution of these hydrophobic residues to the binding energy is mediated not by direct interactions with heparin, but indirectly, through contacts between their phenyl rings and the non-polar stems of positively charged heparin binding residues, whose terminal amino and guanidinium groups are thereby organized to form extensive and specific ionic and non-ionic contacts with the pentasaccharide. Investigation of the kinetics of heparin binding demonstrated that Phe-122 is critical for promoting a normal rate of conformational change and stabilizing AT*H, the high affinity-activated binary complex. Kinetic and structural considerations suggest that Phe-122 and Lys-114 act cooperatively through non-ionic interactions to promote P-helix formation and ATIII binding to the pentasaccharide. In summary, although hydrophobic residues Phe-122 and Phe-121 make minimal contact with the pentasaccharide, they play a critical role in heparin binding and activation of antithrombin by coordinating the P-helix-mediated conformational change and organizing an extensive network of ionic and non-ionic interactions between positively charged heparin binding site residues and the cofactor.  相似文献   

9.
Antithrombin, uniquely among plasma serpins acting as proteinase inhibitors in the control of the blood coagulation cascade, circulates in a relatively inactive form. Its activation by heparin, and specifically by a pentasaccharide core of heparin, has been shown to involve release of the peptide loop containing the reactive centre from partial insertion in the A sheet of the molecule. Here we compare the structures of the circulating inactive form of antithrombin with the activated structure in complex with heparin pentasaccharide. We show that the rearrangement of the reactive centre loop that occurs upon activation is part of a widespread conformational change involving a realignment of the two major domains of the molecule. We also examine natural mutants that possess high affinity for heparin pentasaccharide, and relate the kinetics of their interaction with heparin pentasaccharide to the structural transitions occuring in the activation process.  相似文献   

10.
Carbohydrate ligands are important mediators of biomolecular recognition. Microcalorimetry has found the complex-type N-linked glycan core pentasaccharide beta-GlcNAc-(1-->2)-alpha-Man-(1-->3)-[beta-GlcNAc-(1-->2)-alpha-Man-(1-->6)]-Man to bind to the lectin, Concanavalin A, with almost the same affinity as the trimannoside, Man-alpha-(1-->6)-[Man-alpha-(1-->3)]-Man. Recent determination of the structure of the pentasaccharide complex found a glycosidic linkage psi torsion angle to be distorted by 50 degrees from the NMR solution value and perturbation of some key mannose-protein interactions observed in the structures of the mono- and trimannoside complexes. To unravel the free energy contributions to binding and to determine the structural basis for this degeneracy, we present the results of a series of nanosecond molecular dynamics simulations, coupled to analysis via the recently developed MM-GB/SA approach (Srinivasan et al., J. Am. Chem. Soc. 1998, 120:9401-9409). These calculations indicate that the strength of key mannose-protein interactions at the monosaccharide site is preserved in both the oligosaccharides. Although distortion of the pentasaccharide is significant, the principal factor in reduced binding is incomplete offset of ligand and protein desolvation due to poorly matched polar interactions. This analysis implies that, although Concanavalin A tolerates the additional 6 arm GlcNAc present in the pentasaccharide, it does not serve as a key recognition determinant.  相似文献   

11.
Antithrombin III: structural and functional aspects   总被引:1,自引:0,他引:1  
Antithrombin III is a plasma glycoprotein responsible for thrombin inhibition in the blood coagulation cascade. The X-ray structure of its cleaved form has been determined and refined to 3.2 A resolution. The overall topology is similar to that of alpha 1-antitrypsin, another member of the serpin (serine protease inhibitor) superfamily. The biological activity of antithrombin III is mediated by a polysaccharide, heparin. The binding site of this effector is described. A possible structural transition from the native to the cleaved structure is discussed.  相似文献   

12.
Heparin, other glycosaminoglycans, and synthetic sulfated polymers have antithrombotic and anticoagulant activities, which may be mediated through a range of interactions with different proteins. A simple, quantitative method has been developed for assessing the affinity of interaction between sulfated polymers and proteins in the liquid phase. This has been used to compare the binding of a range of glycosaminoglycans and other sulfated polymers to antithrombin III and thrombin, a major inhibitor of and a central protease in the coagulation system, respectively. The results are consistent with the binding of naturally occurring glycosaminoglycans to antithrombin III solely through the well-defined antithrombin III-binding pentasaccharide found in heparin, the apparent affinity of a preparation depending upon its content of this pentasaccharide. Highly sulfated synthetic polymers will, however, bind antithrombin III by a second mechanism. The affinity of heparin for thrombin decreased with decreasing molecular weight. However, results obtained with heparan sulfate preparations did not indicate any clear relationship between either molecular weight or sulfate content and thrombin binding, but suggested that there may be an oligosaccharide sequence containing N-sulfate residues which confers high affinity for thrombin. In addition, some of the synthetic sulfated polymers bound thrombin with very high affinity.  相似文献   

13.
The present study deals with the conformation in solution of two heparin octasaccharides containing the pentasaccharide sequence GlcN(NAc,6S)-GlcA-GlcN(NS,3,6S)-IdoA(2S)-GlcN(NS,6S) [AGA*IA; where GlcN(NAc,6S) is N-acetylated, 6-O-sulfated alpha-D-glucosamine, GlcN(NS,3,6S) is N,3,6-O-trisulfated alpha-D-glucosamine and IdoA(2S) is 2-O-sulfated IdoA (alpha-L-iduronic acid)] located at different positions in the heparin chain and focuses on establishing geometries of IdoA residues (IdoA(2S) and IdoA) both inside and outside the AGA*IA sequence. AGA*IA constitutes the active site for AT (antithrombin) and is essential for the expression of high anticoagulant and antithrombotic activities. Analysis of NMR parameters [NOEs (nuclear Overhauser effects), transferred NOEs and coupling constants] for the two octasaccharides indicated that between the 1C4 and 2S0 conformations present in dynamic equilibrium in the free state for the IdoA(2S) residue within AGA*IA, AT selects the 2S0 form, as previously shown [Hricovini, Guerrini, Bisio, Torri, Petitou and Casu (2001) Biochem. J. 359, 265-272]. Notably, the 2S0 conformation is also adopted by the non-sulfated IdoA residue preceding AGA*IA that, in the absence of AT, adopts predominantly the 1C4 form. These results further support the concept that heparin-binding proteins influence the conformational equilibrium of iduronic acid residues that are directly or indirectly involved in binding and select one of their equi-energetic conformations for best fitting in the complex. The complete reversal of an iduronic acid conformation preferred in the free state is also demonstrated for the first time. Preliminary docking studies provided information on the octasaccharide binding location agreeing most closely with the experimental data. These results suggest a possible biological role for the non-sulfated IdoA residue preceding AGA*IA, previously thought not to influence the AT-binding properties of the pentasaccharide. Thus, for each AT binding sequence longer than AGA*IA, the interactions with the protein could differ and give to each heparin fragment a specific biological response.  相似文献   

14.
Interaction of heparin and antithrombin III. The role of O-sulfate groups   总被引:2,自引:0,他引:2  
A synthetic pentasaccharide corresponding to the sequence involved in heparin for binding and activation of antithrombin III contains eight sulfate groups. The role of some of them in the interaction with the protein has been demonstrated through the study of fragments obtained from heparin. An approach based on the total chemical synthesis of heparin fragments allows us to provide new information on the O-sulfate groups borne by the iduronic acid and the glucosamine units that constitute the reducing-end disaccharide of the above pentasaccharide sequence. Although not strictly necessary for a weak interaction to take place, these two sulfates co-operate to express maximal activity. This suggests that they belong to a secondary sub-region of interaction with antithrombin III, the primary one being accounted for by other critical parts of the structure and particularly the trisaccharide sequence placed at the non-reducing end of the pentasaccharide.  相似文献   

15.
Antithrombin III deficient patients with manifest thromboembolic diseases need long term coumarin treatment. There are contradictory data on the change of AT III during this therapy. The authors observed 5 patients with severe AT III decrease type I, 3 with functional abnormality and 2 with a pathological heparin binding. AT III function was determined by the Gerendás-Rák method and with chromogenic substrate. AT III antigen was measured with Behring M-Partigen and Laurell rocket electrophoresis. Crossed immunoelectrophoresis was carried out in all patients. In patients with type I AT III decrease, AT III hasn't changed even in a long period of more than 10 years. In the other types AT III became normal. The pathological heparin binding wasn't changed.  相似文献   

16.
Synthetic pentadeca-, heptadeca- and nonadecasaccharides, comprising an antithrombin III (AT III) binding pentasaccharide prolonged at the non-reducing end by a thrombin binding domain have been obtained. The pentadecasaccharide is the shortest oligosaccharide able to catalyse thrombin inhibition by AT III. The nonadecasaccharide is a more potent thrombin inhibitor than standard heparin.  相似文献   

17.
Antithrombin (AT) inhibits most of the serine proteases generated in the blood coagulation cascade, but its principal targets are factors IXa, Xa, and thrombin. Heparin binding to AT, via a specific pentasaccharide sequence, alters the conformation of AT in a way that promotes efficient inhibition of factors IXa and Xa, but not of thrombin. The conformational change most likely to be relevant to protease recognition is the expulsion of the N-terminal portion of the reactive center loop (hinge region) from the main beta-sheet A. Here we investigate the hypothesis that the exosites on the surface of AT are accessible for interaction with a protease only when the hinge region is fully extended, as seen in the related Michaelis complex between heparin cofactor II and thrombin. We engineered a disulfide bond between residues 222 on strand 3A and 381 in the reactive center loop to prevent the extension of the hinge region upon pentasaccharide binding. The disulfide bond did not significantly alter the ability of the variant to bind to heparin or to inhibit thrombin. Although the basal rate of factor Xa inhibition was not affected, that of factor IXa inhibition was reduced to the limit of detection. In addition, the disulfide bond completely abrogated the pentasaccharide accelerated inhibition of factors Xa and IXa. We conclude that AT hinge region extension is the activating conformational change for inhibition of factors IXa and Xa, and propose models for the progressive and activated AT Michaelis complexes with thrombin, factor Xa, and factor IXa.  相似文献   

18.
An efficient [DEF+GH] route was developed to the synthesis of Idraparinux, which is a fully O-sulfated, O-methylated mimic of the unique Antithrombin III binding domain of heparin.  相似文献   

19.
Antithrombin III (ATIII) is the main inhibitor of the coagulation proteases like factor Xa and thrombin. Anticoagulant activity of ATIII is increased by several thousand folds when activated by vascular wall heparan sulfate proteoglycans (HSPGs) and pharmaceutical heparins. ATIII isoforms in human plasma, alpha-ATIII and beta-ATIII differ in the amount of glycosylation which is the basis of differences in their heparin binding affinity and function. Crystal structures and site directed mutagenesis studies have mapped the heparin binding site in ATIII, however the hydrogen bond switch and energetics of interaction during the course of heparin dependent conformational change remains largely unclear. An analysis of heparin bound conformational states of ATIII using PEARLS software showed that in heparin bound intermediate state, Arg 47 and Arg 13 residues make hydrogen bonds with heparin but in the activated conformation Lys 11 and Lys 114 have more hydrogen bond interactions. In the protease bound-antithrombin-pentasaccharide complex Lys 114, Pro 12 and Lys 125 form important hydrogen bonding interactions. The results showed that A-helix and N-terminal end residues are more important in the initial interactions but D-helix is more important during the latter stage of conformational activation and during the process of protease inhibition. We carried out the residue wise Accessible Surface Area (ASA) analysis of alpha and beta ATIII native states and the results indicated major differences in burial of residues from Ser 112 to Ser 116 towards the N-terminal end. This region is involved in the P-helix formation on account of heparin binding. A cavity analysis showed a progressively larger cavity formation during activation in the region just adjacent to the heparin binding site towards the C-terminal end. We hypothesize that during the process of conformational change after heparin binding beta form of antithrombin has low energy barrier to form D-helix extension toward N and C-terminal end as compared to alpha isoform.  相似文献   

20.
Since the discovery of anti-HIV activity in oligo(tyrosine sulfate)s in our laboratory, we have been interested in their potential as heparin pentasaccharide mimics. In this study, we investigated their interactions with synthetic heparin-binding peptides, derived from human antithrombin III (hAT III) and heparin-interacting protein (HIP), using surface noncovalent affinity mass spectrometry. We compared binding affinities to those heparin-binding peptides between oligo(tyrosine sulfate)s and several known sulfated compounds and found that oligo(tyrosine sulfate)s bind to hAT III (123-139) more strongly than a heparin-derived hexasaccharide dp6. Moreover, we found longer oligo(tyrosine sulfate) has higher binding affinity to hAT III (123-139).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号