首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TRH regulates PRL secretion and synthesis in GH4C1 rat pituitary cells. TRH responses are associated with activation of protein kinase C (PKC) isozymes and elevation of cytosolic calcium. To determine which PKC isozymes are involved in TRH-directed responses, we evaluated the effect of TRH on GH cell alpha-, beta-, delta-, and epsilon-PKC isozymes. Immunoblot analysis demonstrated that TRH caused rapid redistribution of all isozymes to a Triton X-100-insoluble (i.e. cytoskeletal) fraction. Corollary immunocytofluorescence studies demonstrated that redistributed PKCs accumulate in cell peripheries. Exocytosis involves reorganization of the cytoskeleton, therefore, each of the GH cell PKCs is appropriately located to phosphorylate proteins important for cytoskeleton organization. To determine the relative contributions of calcium and PKC signal transduction pathways in mediating TRH responses, the effects of potassium depolarization (which increases cytosolic calcium) and phorbol dibutyrate (which activates all PKC isozymes without increasing calcium) were compared. The data indicate that TRH-mediated reorganization of vinculin proceeds via a calcium-mediated pathway, whereas fragmentation of actin filaments proceeds via a PKC-dependent pathway. Selective down-modulation of epsilon-PKC with prolonged TRH-treatment was used to demonstrate that epsilon-PKC is not necessary for certain TRH-stimulated biological responses.  相似文献   

2.
3.
4.
Airway goblet cell mucin secretion is controlled by agonist activation of P2Y(2) purinoceptors, acting through Gq/PLC, inositol-1,4,5-trisphosphate (IP(3)), diacylglycerol, Ca(2+) and protein kinase C (PKC). Previously, we showed that SPOC1 cells express cPKCalpha, nPKCdelta, nPKCepsilon, and nPKCeta; of these, only nPKCdelta translocated to the membrane in correlation with mucin secretion (Abdullah LH, Bundy JT, Ehre C, Davis CW. Am J Physiol Lung Physiol 285: L149-L160, 2003). We have verified these results and pursued the identity of the PKC effector isoform by testing the effects of altered PKC expression on regulated mucin release using SPOC1 cell and mouse models. SPOC1 cells overexpressing cPKCalpha, nPKCdelta, and nPKCeta had the same levels of ATPgammaS- and phorbol-1,2-myristate-13-acetate (PMA)-stimulated mucin secretion as the levels in empty retroviral vector expressing cells. Secretagogue-induced mucin secretion was elevated only in cells overexpressing nPKCepsilon (14.6 and 23.5%, for ATPgammaS and PMA). Similarly, only SPOC1 cells infected with a kinase-deficient nPKCepsilon exhibited the expected diminution of stimulated mucin secretion, relative to wild-type (WT) isoform overexpression. ATPgammaS-stimulated mucin secretion from isolated, perfused mouse tracheas was diminished in P2Y(2)-R null mice by 82% relative to WT mice, demonstrating the utility of mouse models in studies of regulated mucin secretion. Littermate WT and nPKCdelta knockout (KO) mice had nearly identical levels of stimulated mucin secretion, whereas mucin release was nearly abolished in nPKCepsilon KO mice relative to its WT littermates. We conclude that nPKCepsilon is the effector isoform downstream of P2Y(2)-R activation in the goblet cell secretory response. The translocation of nPKCdelta observed in activated cells is likely not related to mucin secretion but to some other aspect of goblet cell biology.  相似文献   

5.
6.
TRH and phorbol dibutyrate (PDBu) stimulate PRL secretion and synthesis from GH4C1 rat pituitary cells through activation of protein kinase C (PKC). TRH responses are mediated by increases in cellular levels of two PKC activators, Ca2+ and diacylglycerol (DAG), whereas PDBu acts as a DAG analog. We conducted experiments to compare the effects of Ca2+ and PDBu/DAG on alpha-PKC redistribution and to determine to what components of the particulate fraction activated alpha-PKC associates. Subcellular fractionation experiments demonstrated that TRH and PDBu both caused chelator-stable association of alpha-PKC with the particulate fraction. In contrast, Ca2+-mediated association with the particulate fraction was not chelator stable. Immunocytofluorescence experiments also demonstrated that TRH, PDBu, and increased cytosolic Ca2+ (due to ionomycin or K+ depolarization) caused redistribution. The effect of TRH was rapid and transient, similar to TRH stimulation of phospholipase C. The translocated alpha-PKC in the particulate fraction from TRH- or PDBu-treated cultures was not solubilized with Triton X-100. In comparable studies using an immunofluorescence assay, alpha-PKC immunofluorescence remained in detergent-insoluble preparations from TRH- and PDBu-stimulated, but not resting cells. The association of activated alpha-PKC with chelator- and detergent-insoluble material suggested that activated alpha-PKC may be associated with membrane and cytoskeletal components.  相似文献   

7.
Although it is well known that plasma concentration of prolactin (PRL) increases during aging in rats, how the anterior pituitary (AP) aging per se affects PRL secretion remains obscure. The objectives of this study were to determine if changes in the pituitary PRL responsiveness to acetylcholine (ACh; a paracrine factor in the AP), as compared with that to other PRL stimulators or inhibitors, contribute to the known age-related increase in PRL secretion, and if protein kinase C (PKC) is involved. We also determined if replenishment with aging-declined hormones such as estrogen/thyroid hormone influences the aging-caused effects on pituitary PRL responses. AP cells were prepared from old (23-24-month-old) as well as young (2-3-month-old) ovariectomized rats. Cells were pretreated for 5 days with diluent or 17beta-estradiol (E(2); 0.6 nM) in combination with or without triiodothyronine (T(3); 10 nM). Then, cells were incubated for 20 min with thyrotropin-releasing hormone (TRH; 100 nM), angiotensin II (AII; 0.2-20 nM), vasoactive intestinal peptide (VIP; 10(-9)-10(-5) M), dopamine (DA; 10(-9)-10(-5) M), or ACh (10(-7)-10(-3) M). Cells were also challenged with ACh, TRH, or phorbol 12-myristate 13-acetate (PMA; 10(-6) M) following PKC depletion by prolonged PMA (10(-6) M for 24 h) pretreatment. We found that estrogen priming of AP cells could reverse the aging-caused effects on pituitary PRL responses to AII and DA. In hormone-replenished cells aging enhanced the stimulation of PRL secretion by TRH and PMA, but not by AII and VIP. Aging also reduced the responsiveness of cells to ACh and DA in suppressing basal PRL secretion, and attenuated ACh inhibition of TRH-induced PRL secretion. Furthermore, ACh suppressed TRH-induced PRL secretion mainly via the PMA-sensitive PKC in the old AP cells, but via additional mechanisms in young AP cells. On the contrary, basal PRL secretion was PKC (PMA-sensitive)-independent in the old AP cells, but dependent in the young AP cells. Taken together, these results suggest differential roles of PMA-sensitive PKC in regulating basal and ACh-regulated PRL responses in old versus young AP cells. The persistent aging-induced differences in AP cell responsiveness to ACh, DA, TRH, and PMA following hormone (E(2)/T(3)) replenishment suggest an intrinsic pituitary change that may contribute, in part, to the elevated in vivo PRL secretion observed in aged rats.  相似文献   

8.
Thyrotropin-releasing hormone (TRH) affects hormone secretion and synthesis in GH4C1 cells, a clonal strain of rat pituitary cells. Recent evidence suggests that the intracellular mediators, inositol 1,4,5-trisphosphate and 1,2-diacylglycerol, which are generated as a result of TRH-induced hydrolysis of the polyphosphatidylinositols, may be responsible for some of the physiological events regulated by TRH. Because diacylglycerol is an activator of protein kinase C, we have examined a role for this enzyme in TRH action. The subcellular distribution of protein kinase C in control and TRH-treated cells was determined by measuring both enzyme activity and 12,13-[3H]phorbol dibutyrate binding in the cytosol and by measuring enzyme activity in the particulate fraction. Acute exposure of GH4C1 cells to TRH resulted in a decrease of cytosolic protein kinase C, and an increase in the level of the enzyme associated with the particulate fraction. The redistribution of protein kinase C induced by TRH was dose- and time-dependent, with maximal effects occurring within the first minute of TRH treatment. Analogs of TRH which do not bind to the TRH receptor did not induce redistribution of protein kinase C, while the active analog, methyl-TRH, did promote redistribution. Treatment of GH4C1 cells with phorbol myristate acetate also resulted in a shift in protein kinase C distribution, although the response was slower than that produced by TRH. TRH-induced redistribution of protein kinase C implies translocation of the enzyme from a soluble to a membrane-associated form. Because protein kinase C requires a lipid environment for activity, association with the membrane fraction of the cell suggests activation of the enzyme; thus, protein kinase C may play a role in some of the actions of TRH on GH4C1 cells.  相似文献   

9.
Protein kinase C (PKC) molecular species of GH4C1 cells were analyzed after separation by hydroxyapatite column chromatography. A novel Ca2(+)-independent PKC, nPKC epsilon, was identified together with two conventional Ca2(+)-dependent PKCs, PKC alpha and beta II by analysis of kinase and phorbol ester-binding activities, immunoblotting using isozyme-specific antibodies, and Northern blotting. These PKCs are down-regulated differently when cells are stimulated by outer stimuli; phorbol esters deplete PKC beta II and nPKC epsilon from the cells more rapidly than PKC alpha, whereas thyrotropin-releasing hormone (TRH) at 200 nM depletes nPKC epsilon exclusively with a time course similar to that induced by phorbol esters. However, translocation of PKC alpha and beta II to the membranes is elicited by both TRH and phorbol esters. These results suggest that TRH and phorbol ester activate PKC alpha and beta II differently but that nPKC epsilon is stimulated similarly by both stimuli. Thus, in GH4C1 cells, Ca2(+)-independent nPKC epsilon may play a crucial role distinct from that mediated by Ca2(+)-dependent PKC alpha and beta II in a cellular response elicited by both TRH and phorbol esters.  相似文献   

10.
11.
Thyrotropin-releasing hormone (TRH) stimulates biphasic prolactin (PRL) secretion from rat pituitary GH3 cells. The pretreatment of cells with EGTA (100 microM) plus arachidonic acid (15 microM), a condition which decreased TRH-responsive intracellular Ca2+ pools, eliminated the activity of TRH on burst PRL secretion (2 min) but did not alter that on sustained PRL secretion (30 min). However, the treatment of cells with EGTA, arachidonic acid and H-7 (300 microM), a potent inhibitor of protein kinase C (PKC), almost completely suppressed the activity of TRH for sustained PRL secretion. In cells down-modulated for PKC, TRH abolished this Ca2(+)-independent sustained PRL secretion. These results suggest that TRH acts through a separate, Ca2(+)-independent secretory mechanism, besides by modulating the Ca2(+)-dependent mechanism and that PKC is involved in this Ca2(+)-independent secretory pathway.  相似文献   

12.
13.
14.
Thyrotropin-releasing hormone (TRH) induces rapid and transient conversion of protein kinase C (Ca2+/phospholipid-dependent enzyme) from a soluble to a particulate-bound form in GH4C1 rat pituitary cells. Ionomycin (200 nM), a calcium ionophore, had no effect by itself on the subcellular distribution of protein kinase C. However, pretreatment of the cells with 200 nM ionomycin inhibited by greater than 50% the ability of TRH to cause translocation of protein kinase C from the cytosol to the particulate cell fraction. Inhibition by ionomycin required that the cells be incubated with the ionophore for at least 10 s before TRH addition. Ionomycin pretreatment did not alter the kinetics of TRH-induced protein kinase C redistribution. Incubation of the cells with 43 mM potassium prior to TRH addition almost completely reversed the inhibition induced by ionomycin. We propose that the mechanism by which ionomycin attenuates TRH action on protein kinase C may involve the capacity of the ionophore to empty the intracellular calcium reservoir which normally releases calcium into the cytosol in response to TRH. Our result provides evidence that the rise in intracellular calcium, which accompanies diacylglycerol formation following TRH action on polyphosphatidylinositide hydrolysis, may be required to achieve maximal conversion of protein kinase C to its presumed active, membrane-bound form in these cells.  相似文献   

15.
16.
In fast-spiking neurons such as those in the medial nucleus of the trapezoid body (MNTB) in the auditory brainstem, Kv3.1 potassium channels are required for high frequency firing. The Kv3.1b splice variant of this channel predominates in the mature nervous system and is a substrate for phosphorylation by protein kinase C (PKC) at Ser-503. In resting neurons, basal phosphorylation at this site decreases Kv3.1 current, reducing neuronal ability to follow high frequency stimulation. We used a phospho-specific antibody to determine which PKC isozymes control serine 503 phosphorylation in Kv3.1b-tranfected cells and in auditory neurons in brainstem slices. By using isozyme-specific inhibitors, we found that the novel PKC-delta isozyme, together with the novel PKC-epsilon and conventional PKCs, contributed to the basal phosphorylation of Kv3.1b in MNTB neurons. In contrast, only PKC-epsilon and conventional PKCs mediate increases in phosphorylation produced by pharmacological activation of PKC in MNTB neurons or by metabotropic glutamate receptor activation in Kv3.1/mGluR1-cotransfected cells. We also measured the time course of dephosphorylation and recovery of basal phosphorylation of Kv3.1b following brief high frequency electrical stimulation of the trapezoid body, and we determined that the recovery process is mediated by both novel PKC-delta and PKC-epsilon isozymes and by conventional PKCs. The association between Kv3.1b and PKC isozymes was confirmed by reciprocal coimmunoprecipitation of Kv3.1b with multiple PKC isozymes. Our results suggest that the Kv3.1b channel is regulated by both conventional and novel PKC isozymes and that novel PKC-delta contributes specifically to the maintenance of basal phosphorylation in auditory neurons.  相似文献   

17.
Characterization of Protein Kinase C in Photoreceptor Outer Segments   总被引:1,自引:0,他引:1  
Abstract: Protein kinase C (PKC) has been implicated in regulating several proteins involved in phototransduction. This contribution characterizes the biochemical and immunological properties of PKC isozyme(s) in the photoreceptor outer segment. Activity measurements revealed that at least 85% of the PKC in this specialized compartment belongs to the subfamily of Ca2+-regulated (conventional) PKCs. Of the known Ca2+-dependent PKCs, only PKCα was immunodetected by western blot analysis of rod outer segment proteins. However, the ratio of immunoreactivity to enzyme activity for rod outer segment PKC was no more than 40% of that for brain PKC, using antibodies against conventional PKCs. Therefore, at least half the Ca2+/lipid-stimulated activity in rod outer segment preparations cannot be accounted for by the known isozymes, suggesting the presence of a previously uncharacterized isozyme. Despite extensive tests using a variety of antibodies against different domains of PKCα, PKCα could not be detected in rod outer segments by immunofluorescence of retinal sections. In summary, our data reveal that most of the PKC in photoreceptor outer segments is of the conventional type and that most, if not all, of this conventional PKC activity comes from a novel isozyme(s).  相似文献   

18.
19.
Basu A  Akkaraju GR 《Biochemistry》1999,38(14):4245-4251
Activation of caspases is critical for the induction of apoptosis. We have shown previously that cell death mediated by the anticancer agent cis-diamminedichloroplatinum(II) (cDDP) is influenced by the protein kinase C (PKC) signal transduction pathway. In the present study, we have examined whether regulation of cDDP sensitivity by PKC involves caspase activation. cDDP caused a time- and concentration-dependent increase in the generation of the catalytic fragment (CF) of novel (n) PKCdelta, nPKCepsilon, and atypical (a) PKCzeta but had little effect on conventional (c) PKCalpha. Cleavage of PKC isozymes was associated with the activation of caspase-3 and -7 but not of caspase-2. PKC activators enhanced cDDP-induced cleavage of these isozymes and activation of caspase-3. Rottlerin, an inhibitor of nPKCdelta, blocked caspase-3 activation and proteolytic cleavage of nPKCdelta by cDDP. Bryostatin 1, which elicits a biphasic concentration-response in potentiating cell death by cDDP, exhibited a similar biphasic effect on cDDP-induced activation of caspase-3 and caspase-7 and the cleavage of poly(ADP-ribose) polymerase; while 1 nM bryostatin 1 induced maximum activation of these caspases, 1 microM bryostatin 1 had little effect. z-DEVD-fmk, an inhibitor of caspase-3-like proteases, prevented cDDP-induced cell death. Bryostatin 1 also induced a similar biphasic down-regulation of nPKCdelta but not of cPKCalpha or nPKCepsilon. These results suggest that nPKCdelta not only acts downstream of caspases but also regulates the activation of caspases and that the biphasic concentration response of bryostatin 1 on cDDP-induced cell death could be explained by its distinct effect on nPKCdelta down-regulation and caspase activation.  相似文献   

20.
Dopamine is the primary inhibitory regulator of lactotroph proliferation and prolactin (PRL) secretion in vivo, acting via dopamine D2 receptors (short D2S and long D2L forms). In GH4C1 pituitary cells transfected with D2S or D2L receptor cDNA, dopamine inhibits PRL secretion and DNA synthesis. These actions were blocked by pertussis toxin, implicating G(i)/G(o) proteins. To address roles of specific G(i)/G(o)4 proteins in these actions a series of GH4C1 cell lines specifically depleted of individual Galpha subunits was examined. D2S-mediated inhibition of BayK8644-stimulated PRL secretion was primarily dependent on G(o) over G(i), as observed for BayK8644-induced calcium influx. By contrast, inhibitory coupling of the D2S receptor to TRH-induced PRL secretion was partially impaired by depletion of any single G protein, but especially G(i)3. Inhibitory coupling of D2L receptors to PRL secretion required G(o), but not G(i)2, muscarinic receptor coupling was resistant to depletion of any G(i)/G(o) protein, whereas the 5-HT1A and somatostatin receptors required G(i)2 or G(i)3 for coupling. The various receptors also demonstrated distinct G protein requirements for inhibition of DNA synthesis: depletion of any G(i)/G(o) subunit completely uncoupled the D2S receptor, the D2L receptor was uncoupled by depletion of G(i)2, and muscarinic and somatostatin receptors were resistant to depletion of G(i)2 only. These results demonstrate distinct receptor-G protein preferences for inhibition of TRH-induced PRL secretion and DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号