首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We studied aspects of the thermal biology and microhabitat selection of the endangered lizard Podarcis hispanica atrata during autumn in the field and laboratory. Body temperatures (T b ) of active lizards were within a narrow range, were largely independent of ambient temperatures, and exhibited little diel variation. Activity T b s largely coincided with the selected temperatures maintained in a laboratory thermogradient and with T b s that maximize running performance. Alternation of basking with other activities and shuttling between sun and shade were obvious aspects of thermoregulatory behaviour. Lizards shifted microhabitat use throughout the day. During early morning and late afternoon, basking lizards were restricted to rocky sites surrounded by shrubs. Near midday lizards used a wider array of microhabitats, and many moved in open grassy sites. Juveniles maintained lower activity T b s, had lower selected temperatures, and basked less frequently than the adults. Juveniles occupied open grassy patches more often than the adults. We discuss the relevance of our results for the conservation of this extremely rare lizard and the management of its habitats.  相似文献   

2.
The lizard genus Liolaemus includes numerous constituent clusters of putatively related taxa, one of which is the Liolaemus boulengeri group, which in turn includes the sand lizards (of the Liolaemus wiegmannii subgroup). Members of the sand lizard group exhibit three different modes of burying into sand. The general morphology of the forelimb muscles of those Liolaemus species is analysed. Herein, we present a study of the forelimb musculature of all species considered by Halloy et al. (1998). This study has three principal goals. First, we are seeking myological characters that will be useful in formulating phylogenetic hypothesis about the species of Liolaemus. With these characters, we also wish to compile morphological data that represent the morphological space implied in the diverse locomotor behaviours of these animals. Second, we are looking for derived features that reflect functional changes in the use of forelimb. Third, we wish to provide a cladistic analysis that can be used to test phylogenetic hypothesis derived from other sources of data. We present 48 characters in a data set and analyse it cladistically. We obtained a hypothesis of relationships of the Liolaemus species and compared this with previous hypotheses based on other characters. The trees obtained are not congruent with previously proposed phylogenies. We were unable to identify in our trees nodes that are based on structures reflecting functional changes in the use of the forelimb. The morphological similarities in the forelimb musculature of all species analysed seems to conform a very conservative general anatomical pattern with which Liolaemus sand lizards perform most of their locomotor behaviours.  相似文献   

3.
I present evidence that the thermal sensitivity of sprint speed of Anolis lizards has evolved to match the activity body temperatures (Tb) experienced by local populations in nature. Anolis lizards from a range of altitudes in Costa Rica have limited thermoregulatory abilities and consequently have field Tb that differ substantially in median and interquartile distance (a measure of variability). Experimentally determined maximal sprint temperatures (Tb at which lizards run fastest) were positively correlated with median field Tb, and performance breadths (ranges of Tb over which lizards run well) were correlated with the variability (interquartile distance) of field Tb in the species I examined. Such correlations would be expected if the thermal sensitivity of sprint speed and field Tb had evolved together to improve the sprint performance of lizards in nature. Integration of laboratory and field studies indicates that several species of Anolis regularly experience impaired sprint speeds in the field, despite apparent evolutionary modification of their thermal physiologies. However, this impairment would have been more severe if the thermal sensitivities of sprint speed had not evolved. Data from other groups of lizards indicate that the thermal sensitivity of sprint speed has not evolved to match Tb of local populations (Hertz et al., 1983; Crowley, 1985). These lizards experience less variable Tb and less impairment of sprint speeds in the field than do the anoles. Thus, selection for modification of the thermal sensitivity of sprint speed might have been stronger for anoles than for other groups of lizards.  相似文献   

4.
P. E. Hertz 《Oecologia》1992,90(1):127-136
Summary The field thermal biology of sympatric Anolis cooki and A. cristatellus were evaluated in January and in August in desert scrub forest at Playa de Tamarindo near Guanica, Puerto Rico. Data on randomly positioned copper models of lizards, each equipped with a built-in thermocouple, established null hypotheses about basking frequency and operative temperatures (T e) against which the behavior and body temperatures (T b) of live lizards were evaluated. Both species exhibited non-random hourly basking rates (more marked in cristatellus than in cooki), and cristatellus was virtually inactive during the warm mid-day hours. The relationship between lizards' T b and randomly sampled T e differed between the species: cristatellus's mean T b was 2° to 3° C lower than randomly sampled mean T e in both months, whereas cooki's mean T b was slightly higher than mean T e in January and slightly lower in August. Although cooki's mean T b was higher than that of cristatellus in both months, the T b's of the two species overlapped substantially over an annual cycle. Given the similarities in their field active T b and the low thermal heterogeneity among microsites at Playa de Tamarindo, these species appear not to partition the thermal environment there in a coarse-grained way. Instead, the relatively small differences in their field active T b probably result from small differences in their use of similar microhabitats within their mutually exclusive territories. Thermal resource partitioning by territorial animals is unlikely unless thermal heterogeneity is coarse-grained in relation to territory size.  相似文献   

5.
Summary We studied, in the field and laboratory, aspects of the thermal biology in two populations of the lizard Podarcis tiliguerta along a 1450 m altitudinal gradient. Body temperatures (Tb) at high altitudes average lower, are more variable, but are more elevated above environmental temperatures than at sea level. Lizards partially reduced the impact of altitudinal changes in thermal loads through presumable subtle behavioural adjustments. A comparison of the thermal preferences in the laboratory, the maximal operative temperatures predicted from a biophysical model, and the activity Tb's at both sites, indicates that the main response to changing environmental conditions is an active shift in thermoregulatory set points. Integration of field Tb's and laboratory data on temperature specific sprint speeds, predicts that the mountainous lizards experience reduced running abilities that are especially acute in the early morning. Despite this impairment of running performance, the thermal sensitivity of running speed has not evolved to match the Tb's experienced by both populations. This result supports the view that the thermal physiology of this lizard is evolutionarily conservative, but the lack of information on the relation between running performance and fitness components impedes rejection of alternative hypotheses.  相似文献   

6.
不同经度地区北草蜥的喜好体温和热耐受性   总被引:4,自引:3,他引:1  
杜卫国 《动物学报》2006,52(3):478-482
在外温动物热生理特征的进化理论中,“静态”和“易变”是两个持续争论的对立观点。热生理学特征的种内变异是检验此类假设的最有力证据。本研究比较了不同经度地区北草蜥的热环境和热生理特征,以检验“静态”和“易变”假设。东部沿海地区(宁德)的环境温度高于内陆地区(贵阳),与之相适应,沿海地区北草蜥的喜好体温也高于内陆地区。然而,两地区蜥蜴的上临界温度和下临界温度无显著差异。尽管这些热生理学特征的种群间变异趋势并不一致,但是喜好温度随环境温度变化而改变的结果符合“易变”假设的预测。此外,本研究表明蜥蜴的喜好体温存在沿经度方向的地理变异。  相似文献   

7.
Summary We document activity field temperatures, daily activity patterns, and extent of thermoregulation in four species of Liolaemus lizards inhabiting at high altitude (above 3500 m) in the Andes of northern Chile. These four species have similar activity field temperature (Tb near 29°C) despite their being distributed at different altitudinal belts. However, conspicuous differences exist between higher-altitude (L. alticolor and L. jamesi) and lower-altitude (L. islugensis and L. ornatus) lizards regarding extent of thermoregulation and activity period. Some differences in morphology, behavior, and patterns of microhabitat occupancy are also apparent among these four species and are seemingly related to the thermal environment to which they are subjected. In comparison to eight low-altitude Liolaemus species in central Chile (Tb near 35°C) the four high-altitude species in northern Chile have lower activity field temperature. The latter is apparently due to the constraints imposed by the harsh Andean thermal environment, a hypothesis supported by the fact that high-altitude Liolaemus lizards under laboratory conditions demonstrate body temperatures that exceed by 5°C or more, those recorded in the field.  相似文献   

8.
Aim In an effort to disentangle the ecological processes that confine ectotherms to alpine environments, we studied the thermoregulatory and microhabitat selection behaviours of the rock lizard Iberolacerta cyreni, which is endemic to some mountains of central Spain, and of the wall lizard Podarcis muralis, which is a potential competitor of rock lizards. Location We chose three areas in the Sierra de Guadarrama (central Spain) that differed in their thermal quality [mean deviation of environmental operative temperatures from the lizards’ preferred thermal range (PTR)] and refuge availability: a pine forest (1770 m a.s.l.) in which P. muralis was the only species found, and two mixed shrub and rock sites (1770 and 1900 m a.s.l.) where both species were present. Methods In the field we collected data on refuge availability, sun exposure, body temperature (Tb) and operative temperature (Te). Thus, we estimated the thermal habitat quality of the areas sampled and the thermoregulation accuracy and effectiveness of both species. Results The pine forest had the lowest thermal quality and refuge availability. The lower‐elevation shrub site offered the best thermal quality, but refuges were much scarcer than at the higher‐elevation site. Both species thermoregulated accurately, because mean deviations of body temperature (Tb) from PTR were considerably smaller than those of Te. Podarcis muralis had higher Tb values than did I. cyreni, which had similar Tb values at both shrub sites, whereas P. muralis had lower Tb values at higher elevation. Overall, the thermoregulatory effectiveness (extent to which Tb values are closer to the PTR than are Te values) of both species was similar, but whereas I. cyreni thermoregulated more efficiently at higher elevation, the opposite was true for P. muralis. At the lower‐elevation shrub site, I. cyreni remained closer to refuges than did P. muralis. Main conclusions Our results suggest that the pine forest belt might prevent the expansion of rock lizards towards lower elevations as a result of its low thermal quality and scarcity of refuges, that the thermoregulatory effectiveness of rock lizards in alpine environments depends more on refuge availability than on thermal habitat quality, and that competition with wall lizards is unlikely to explain either the distribution or the thermoregulatory effectiveness of rock lizards.  相似文献   

9.
The importance of the thermal environment for ectotherms and its relationship with thermal physiology and ecology is widely recognized. Several models have been proposed to explain the evolution of the thermal biology of ectotherms, but experimental studies have provided mixed support. Lizards from the Liolaemus goetschi group can be found along a wide latitudinal range across Argentina. The group is monophyletic and widely distributed, and therefore provides excellent opportunities to study the evolution of thermal biology. We studied thermal variables of 13 species of the L. goetschi group, in order to answer three questions. First, are aspects of the thermal biology of the L. goetschi group modelled by the environment or are they evolutionarily conservative? Second, have thermal characteristics of these animals co-evolved? And third, how do the patterns of co-evolution observed within the L. goetschi group compare to those in a taxonomically wider selection of species of Liolaemus? We collected data on 13 focal species and used species information of Liolaemus lizards available in the literature and additional data obtained by the authors. We tackled these questions using both conventional and phylogenetically based analyses. Our results show that lizards from the L. goetschi group and the genus Liolaemus in general vary in critical thermal minimum in relation to mean air temperature, and particularly the L. goetschi group shows that air temperature is associated with critical thermal range, as well as with body temperature. Although the effect of phylogeny cannot be ignored, our results indicate that these thermal biology aspects are modelled by cold environments of Patagonia, while other aspects (preferred body temperature and critical thermal maximum) are more conservative. We found evidence of co-evolutionary patterns between critical thermal minimum and preferred body temperature at both phylogenetic scales (the L. goetschi group and the extended sample of 68 Liolaemus species).  相似文献   

10.
The composition of tissue and membrane fatty acids in ectothermic vertebrates is influenced by both temperature acclimation and diets. If such change in body lipid composition and thermal physiology were linked, a diet-induced change in body lipid composition should result in a change in thermal physiology. We therefore investigated whether the selected body temperature of the agamid lizardAmphibolurus nuchalis (body mass 20 g) is influenced by the lipid composition of dietary fatty acids and whether diet-induced changes in thermal physiology are correlated with changes in body lipid composition. The selected body temperature in two groups of lizards was indistinguishable before dietary treatments. The selected body temperature in lizards after 3 weeks on a diet rich in saturated fatty acids rose by 2.1 °C (photophase) and 3.3 °C (scotophase), whereas the body temperature of lizards on a diet rich in unsaturated fatty acids fell by 1.5 °C (photophase) and 2.0 °C (scotophase). Significant diet-induced differences were observed in the fatty acid composition of depot fat, liver and muscle. These observations suggest that dietary lipids may influence selection of body temperature in ectotherms via alterations of body lipid composition.Abbreviations bm body mass - FA fatty acid(s) - MUFA monounsaturated fatty acids - PUFA polyunsaturated fatty acids - SFA saturated fatty acids - T a air temperature - T b body temperature - UFA unsaturated fatty acids  相似文献   

11.
The parietal, or third, eye is a photosensory organ situated in the middle of the skull of many lizards. Despite many hypotheses, its exact ecological functions are still unclear. Studies have compared the presence and absence of a functioning parietal eye, although there are no quantitative studies of parietal‐eye traits in relation to ecology, physiology or behaviour. In the present study, we report the first comparative study of relative parietal‐eye size in relation to climatic and thermophysiological variables. We studied thirty species of Liolaemus, a genus of South‐American lizards inhabiting a range of climatic conditions, but found little evidence for adaptation to thermal environment, in that parietal‐eye size did not vary meaningfully with latitude, altitude or any measures of environmental temperature. Neither did it relate to thermophysiology; there was a weak relation to thermal tolerance, although this was partially confounded with body size, which explained 23% of the among‐species variance after controlling for within‐species variation. The negative results obtained could not be explained by phylogenetic constraints because we found no evidence of phylogenetic inertia. We also observed high intraspecific variation indicating that parietal‐eye size may not be under strong selection for accuracy. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 870–883.  相似文献   

12.
The trends of body temperatures in the field (Tb) and preferred body temperatures in the laboratory (Tpref) of the genus Liolaemus relative to reproductive mode, air temperature (Tair), precipitation, latitude, and elevation were studied using phylogenetic comparative analysis. Results were discussed in the framework of the evolution of thermal physiology and vulnerability to global climate change. Reproductive mode affects Tb but not Tpref. Whereas Tb and Tpref showed a significant association with Tair, there was no relationship with latitude or elevation.  相似文献   

13.
The thermal coadaptation hypothesis posits that ectotherms thermoregulate behaviorally to maintain body temperatures (Tb) that maximize performance, such as net energy gain. Huey's (1982) energetics model describes how food availability and Tb interact to affect net energy gain. We tested the thermal coadaptation hypothesis and Huey's energetics model with growth rates of juvenile Yarrow's spiny lizards (Sceloporus jarrovii). We compared the preferred (selected) Tb range (Tsel) of lizards in high and low energy states to their optimal temperature (To) for growth over nine weeks, and determined whether the To for growth depended on food availability. We also measured the same lizards’ resting metabolic rate at five Tbs to test the energetics model assumptions that metabolic cost increases exponentially with Tb and does not differ between energy states. The Tsel of lizards on both diets overlapped with the To for growth. The assumptions of the energetics model were verified, but the To for net energy gain did not depend on food availability. Therefore, we found support for the thermal coadaptation hypothesis. We did not find support for the energetics model, but this may have been due to low statistical power.  相似文献   

14.
Populations at the warm range margins of the species distribution may be at the greatest risks of extinction from global warming unless they can tolerate extreme environmental conditions. Yet, some studies suggest that the thermal behavior of some lizard species is evolutionarily rigid. During two successive years, we compared the thermal biology of two populations of Liolaemus pictus living at the northern (warmer) and one population living at the southern (colder) range limits, thus spanning an 800 km latitudinal distance. Populations at the two range margins belong to two deeply divergent evolutionary clades. We quantified field body temperatures (Tb), laboratory preferred body temperatures (PBT), and used operative temperature data (Te) to calculate the effectiveness of thermoregulation (E). During one year in all populations, we further exposed half of the lizards to a cold or a hot acclimation treatment to test for plasticity in the thermal behavior. The environment at the southern range limit was characterized by cooler weather and lower Te. Despite that, females had higher Tb and both males and females had higher PBT in the southernmost population (or clade) than in the northernmost populations. Acclimation to cold conditions led to higher PBT in all populations suggesting that plastic responses to thermal conditions, instead of evolutionary history, may contribute to geographic variation. Lizards regulated moderately well their body temperature (E≈0.7): they avoided warm microhabitats in the northern range but capitalized on warm microhabitats in the southern range. We review literature data to show that Liolaemus species increase their thermoregulation efficiency in thermally challenging environments. Altogether, this indicates that habitats of low thermal quality generally select against thermoconformity in these lizards.  相似文献   

15.
Preferred body temperatures (T sel) of ectotherms are important for ecological and evolutionary studies. In lizards, the measurement of T sel is controversial for several reasons, generally related to hypotheses addressing how T sel may evolve in the wild. Although seldom explicitly tested, evolutionary hypotheses of adaptation to local climate require that T sel meets the conditions of natural selection, which include repeatability, heritability and a link to fitness. Here, we investigated repeatability (τ, intra-class correlation coefficient) of T sel at several time-scales using four Cordylid species from heterogeneous thermal habitats. Although there was significant inter-individual variation within days (P < 0.005 in most cases), there was no significant inter-individual variation when calculated across several days (P > 0.05). Repeatability was low in all species investigated (from 0 to 0.482) when compared against other estimates of repeatability of T sel in the literature. Irrespective of how T sel was calculated, it showed inconsistent and variable temporal effects across species. Furthermore, repeatability of T sel did not change with acclimation to laboratory conditions. These data have implications for understanding the evolution of thermoregulation in these and other ectotherms.  相似文献   

16.
Summary Lacerta viridis maintained under natural photoperiodic conditions show daily and seasonal changes in metabolic rates and body temperature (T b) as well as seasonal differences in sensitivity to temperature change. At all times of the year lizards have a daily fluctuation in oxygen consumption, with higher metabolic rates during the light phase of the day when tested at a constant ambient temperature (T a) of 30°C. Rhythmicity of metabolic rate persists under constant darkness, but there is a decrease in the amplitude of the rhythm.Oxygen consumption measured at various Tas shows significant seasonal differences at T as above 20°C. Expressed as the Arrhenius activation energy, metabolic sensitivity of Lacerta viridis shows temperature dependence in autumn, which changes to metabolic temperature independence in spring at T as above 20°C. The results indicate a synergic relationship between changing photoperiod and body temperature selection, resulting in seasonal metabolic adjustment and seasonal adaptation.Abbreviations ANOVA analysis of variance - LD long day (16 h light) - SD short day (8 h light) - T a ambient temperature - T b body temperature  相似文献   

17.
Summary During the month of February 1979, several hundred hatchling land iguanas (Conolophus pallidus) were observed emerging from their natal burrows in a 2 ha communal nesting area on Isla Santa Fe, Galapagos Islands. During this emergence, as many as nine Galapagos hawks were observed to patrol the nesting area and attack hatchling iguanas.The hypothesis that the ability of hatchling land iguanas to escape predation could be influenced by the interaction of the physiological state of the lizards and the thermal environment was analyzed using (1) empirical data on the effect of body temperature (T b) on locomotory ability of iguanas and (2) biophysical modeling of the T b's of hatchlings under natural conditions. This hypothesis was tested by assessing the success of natural hawk attacks on lizards exposed to different thermal environments.During those periods when predicted T b's of hatchlings were always <32°C, (at which temperatures land iguanas were shown to have less than maximal ability to sprint rapidly) hawks were successful in 67% of the observed attacks. However, when T b's of hatchlings were always 32° C, hawks were successful on only 19% of observed attacks. During periods when hatchling T b's could be <32° C or 32–40° C (depending upon which microhabitat the hatchling occupied before the attack), the hawks were successful in 46% of the observed attacks.These data indicate that the physical environment, as mediated through the physiological state of the lizards and to correlated locomotary abilities, significantly affects the ability of hatchling land iguanas to escape predation.  相似文献   

18.
Summary Voluntary body temperature selection of unrestrained Lacerta viridis revealed consistant photoperiod entrained diel patterns. Each daily cycle was characterized by an elevation in body temperature (T b) to a high level plateau which declined at the onset of scotophase to a low level; both of which were maintained within narrow ranges.Under natural photoperiod in fall, lizards responded to shorter days by sinking low level T b's and expanding the duration of these low levels until no rhythmicity was shown. Subsequent exposure to long day, LD 16:8, induced self-arousal and a slightly altered diel T b selection with significantly higher T b's being chosen at both the elevated and lower daily levels. Changes in the relations of diel T b selection due to shift in photoperiod, suggest that photoperiod acts as a seasonal indicator for thermal adaptation.This research was carried out in partial fulfillment of a diploma degree at the J.W.G. University, Frankfurt/Main  相似文献   

19.
J. C. Lee 《Oecologia》1980,44(2):171-176
Summary In a habitat judged to be energetically costly for thermoregulation, mean body temperatures (MBT's) ofAnolis sagrei are significantly higher than those ofA. distichus. As indexed by the slope of the regression of body temperatures (T b ) on substrate temperature (T s ),A. sagrei is more dependent upon environmental temperatures thanA. distichus.In a habitat judged to be less costly for thermoregulation and where interspecific competition for perch sites may be less, MBT's ofA. sagrei are significantly higher, proportionally more lizards occupy sunny perches, and the slope of the regression of T b on T s is significantly less, than for conspecifics in the costly habitat.As indexed by length-specific fat body weights, well-nourished lizards in the costly habitat have T b 's which are independent of environmental temperature; T b 's of poorly-nourished lizards are highly dependent upon environmental temperature. This relationship does not hold for lizards in the low-cost habitat.These results corroborate the hypothesis that energetic costs are important in controlling the extent to which lizards thermoregulate. In high-cost habitats lizards thermoregulate less precisely than in low-cost habitats. Lizards that exploit the habitat as if it were highly productive thermoregulate more precisely than lizards that exploit the environment as if it were of low productivity.  相似文献   

20.
The ability for effective, accurate and precise thermoregulation is of paramount importance for ectotherms. Sympatric lizards often partition their niche and select different microhabitats. These microhabitats, however, usually differ in their thermal conditions and lizards have to adapt their thermoregulation behavior accordingly. Here, we evaluated the impact of habitat partitioning on the thermal biology of three syntopic, congeneric lacertids (Podarcis peloponnesiacus, P. tauricus and P. muralis) from central Peloponnese, Greece. We assessed thermoregulation effectiveness (E) using the three standard thermal parameters: body (Tb), operative (Te) and preferred (Tpref) temperatures. We hypothesized that the microhabitats used by each species would differ in thermal quality. We also predicted that all species would effectively thermoregulate, as they inhabit a thermally challenging mountain habitat. As expected, the partition of the habitat had an effect on the thermoregulation of lizards since microhabitats had different thermal qualities. All three species were effective and accurate thermoregulators but one of them achieved smaller E values as a result of the lower Tb in the field. This discrepancy could be attributed to the cooler (but more benign) thermal microhabitats that this species occupies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号