首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Skeletal muscle atrophy is thought to result from hyperactivation of intracellular protein degradation pathways, including autophagy and the ubiquitin–proteasome system. However, the precise contributions of these pathways to muscle atrophy are unclear. Here, we show that an autophagy deficiency in denervated slow-twitch soleus muscles delayed skeletal muscle atrophy, reduced mitochondrial activity, and induced oxidative stress and accumulation of PARK2/Parkin, which participates in mitochondrial quality control (PARK2-mediated mitophagy), in mitochondria. Soleus muscles from denervated Park2 knockout mice also showed resistance to denervation, reduced mitochondrial activities, and increased oxidative stress. In both autophagy-deficient and Park2-deficient soleus muscles, denervation caused the accumulation of polyubiquitinated proteins. Denervation induced proteasomal activation via NFE2L1 nuclear translocation in control mice, whereas it had little effect in autophagy-deficient and Park2-deficient mice. These results suggest that PARK2-mediated mitophagy plays an essential role in the activation of proteasomes during denervation atrophy in slow-twitch muscles.  相似文献   

2.
《Autophagy》2013,9(4):631-641
Skeletal muscle atrophy is thought to result from hyperactivation of intracellular protein degradation pathways, including autophagy and the ubiquitin–proteasome system. However, the precise contributions of these pathways to muscle atrophy are unclear. Here, we show that an autophagy deficiency in denervated slow-twitch soleus muscles delayed skeletal muscle atrophy, reduced mitochondrial activity, and induced oxidative stress and accumulation of PARK2/Parkin, which participates in mitochondrial quality control (PARK2-mediated mitophagy), in mitochondria. Soleus muscles from denervated Park2 knockout mice also showed resistance to denervation, reduced mitochondrial activities, and increased oxidative stress. In both autophagy-deficient and Park2-deficient soleus muscles, denervation caused the accumulation of polyubiquitinated proteins. Denervation induced proteasomal activation via NFE2L1 nuclear translocation in control mice, whereas it had little effect in autophagy-deficient and Park2-deficient mice. These results suggest that PARK2-mediated mitophagy plays an essential role in the activation of proteasomes during denervation atrophy in slow-twitch muscles.  相似文献   

3.
In order to clarify the cellular mechanisms of denervation atrophy of skeletal muscle, we have studied protein turnover in denervated and control rat soleus muscles in vitro under different conditions. By 24 h after cutting the sciatic nerve, overall protein breakdown was greater in the denervated soleus than in the contralateral control muscle, and by 3 days, net proteolysis had increased about 3-fold. Since protein synthesis increased slightly following denervation, the rise in proteolysis must be responsible for the muscle atrophy and the differential loss of contractile proteins. Like overall proteolysis, the breakdown of actin (as shown by 3-methyl-histidine production by the muscles) increased each day after denervation and by 3 days was 2.5 times faster than in controls. Treatments that block the lysosomal and Ca2(+)-dependent proteolytic systems did not reduce the increase in overall protein degradation and actin breakdown in the denervated muscles (maintained in complete medium at resting length). However, the content of the lysosomal protease, cathepsin B, increased about 2-fold by 3 days after denervation. Furthermore, conditions that activate intralysosomal proteolysis (incubation without insulin or amino acids) stimulated proteolysis 2-3-fold more in the denervated muscles than in controls. Also, incubation conditions that activate the Ca2(+)-dependent pathway (incubation with Ca2+ ionophores or allowing muscles to shorten) were 2-3 times more effective in enhancing overall proteolysis in the denervated muscle. None of these treatments affected 3-methylhistidine production. Thus, multiple proteolytic systems increase in parallel in the denervated muscle, but a nonlysosomal process (independent of Ca2+) appears mainly responsible for the rapid loss of cell proteins, especially of myofibrillar components.  相似文献   

4.
This study was designed to determine whether the reductions in GLUT-4 seen in 3-day-denervated muscles can be prevented through chemical activation of 5'-AMP-activated protein kinase (AMPK). Muscle AMPK can be chemically activated in rats using subcutaneous injections with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). In this study, the tibial nerve was sectioned on one side; the other was sham operated but without nerve section. Acute injections of AICAR resulted in significantly increased AMPK activity in denervated gastrocnemius but not soleus muscles. Acetyl-CoA carboxylase activity, a reporter of AMPK activation, declined in both gastrocnemius and soleus in both denervated and contralateral muscles. Three days after denervation, GLUT-4 levels were significantly decreased by approximately 40% in gastrocnemius muscles and by approximately 30% in soleus muscles. When rats were injected with AICAR (1 mg/g body wt) for 3 days, the decline in GLUT-4 levels was prevented in denervated gastrocnemius muscles but not in denervated soleus muscles. The extent of denervation-induced muscle atrophy was similar in AICAR-treated vs. saline-treated rats. These studies provide evidence that some effects of denervation may be prevented by chemical activation of the appropriate signaling pathways.  相似文献   

5.
1. Changes in protein turnover of the soleus and EDL muscles of adult mice have been studied 1, 7 and 80 days after denervation. 2. Increased rates of protein degradation 7 and 80 days post-denervation correlated with the atrophy and loss of protein from these muscles. 3. Rates of protein synthesis in the EDL decreased 24 hr after nerve section. However, these synthetic rates increased again to become higher in the 7 day denervated muscles compared with their controls. These latter anabolic changes are inconsistent with the concept of a denervated muscle being inactive. 4. These findings have been compared with a similar study on muscles of growing rats. Any passive stretching of the denervated muscles by continued bone growth appears unlikely to be a crucial factor explaining the increased rates of protein synthesis 7 days after denervation.  相似文献   

6.
7.
It has been reported that phytoextracts that contain alkylresorcinols (ARs) protect against severe myofibrillar degeneration found in isoproterenol-induced myocardial infarction. In this study, we examined the effect of dietary ARs derived from wheat bran extracts on muscle atrophy in denervated mice. The mice were divided into the following four groups: (1) sham-operated (control) mice fed with normal diet (S-ND), (2) denervated mice fed with normal diet (D-ND), (3) control mice fed with ARs-supplemented diet (S-AR) and (4) denervated mice fed with ARs-supplemented diet (D-AR). The intake of ARs prevented the denervation-induced reduction of the weight of the hind limb muscles and the myofiber size. However, the expression of ubiquitin ligases and autophagy-related genes, which is associated with muscle proteolysis, was slightly higher in D-AR than in D-ND. Moreover, the abundance of the autophagy marker p62 was significantly higher in D-AR than in D-ND. Muscle atrophy has been known to be associated with a disturbed energy metabolism. The expression of pyruvate dehydrogenase kinase 4 (PDK4), which is related to fatty acid metabolism, was decreased in D-ND as compared with that in S-ND. In contrast, dietary supplementation with ARs inhibited the decrease of PDK4 expression caused by denervation. Furthermore, the abnormal expression pattern of genes related to the abundance of lipid droplets-coated proteins that was induced by denervation was improved by ARs. These results raise the possibility that dietary supplementation with ARs modifies the disruption of fatty acid metabolism induced by lipid autophagy, resulting in the prevention of muscle atrophy.  相似文献   

8.
Denervated (1-10 days) rat epitrochlearis muscles were isolated, and basal and insulin-stimulated protein and glucose metabolism were studied. Although basal rates of glycolysis and glucose transport were increased in 1-10-day-denervated muscles, basal glycogen-synthesis rates were unaltered and glycogen concentrations were decreased. Basal rates of protein degradation and synthesis were increased in 1-10-day-denervated muscles. The increase in degradation was greater than that in synthesis, resulting in muscle atrophy. Increased rates of proteolysis and glycolysis were accompanied by elevated release rates of leucine, alanine, glutamate, pyruvate and lactate from 3-10-day-denervated muscles. ATP and phosphocreatine were decreased in 3-10-day-denervated muscles. Insulin resistance of glycogen synthesis occurred in 1-10-day denervated muscles. Insulin-stimulated glycolysis and glucose transport were inhibited by day 3 of denervation, and recovered by day 10. Inhibition of insulin-stimulated protein synthesis was observed only in 3-day-denervated muscles, whereas regulation by insulin of net proteolysis was unaffected in 1-10-day-denervated muscles. Thus the results demonstrate enhanced glycolysis, proteolysis and protein synthesis, and decreased energy stores, in denervated muscle. They further suggest a defect in insulin's action on protein synthesis in denervated muscles as well as on glucose metabolism. However, the lack of concurrent changes in all insulin-sensitive pathways and the absence of insulin-resistance for proteolysis suggest multiple and specific cellular defects in insulin's action in denervated muscle.  相似文献   

9.
《Autophagy》2013,9(1):123-136
Removal of ubiquitinated targets by autophagosomes can be mediated by receptor molecules, like SQSTM1, in a mechanism referred to as selective autophagy. While cytoplasmic protein aggregates, mitochondria, and bacteria are the best-known targets of selective autophagy, their role in the turnover of membrane receptors is scarce. We here showed that fasting-induced wasting of skeletal muscle involves remodeling of the neuromuscular junction (NMJ) by increasing the turnover of muscle-type CHRN (cholinergic receptor, nicotinic/nicotinic acetylcholine receptor) in a TRIM63-dependent manner. Notably, this process implied enhanced production of endo/lysosomal carriers of CHRN, which also contained the membrane remodeler SH3GLB1, the E3 ubiquitin ligase, TRIM63, and the selective autophagy receptor SQSTM1. Furthermore, these vesicles were surrounded by the autophagic marker MAP1LC3A in an ATG7-dependent fashion, and some of them were also positive for the lysosomal marker, LAMP1. While the amount of vesicles containing endocytosed CHRN strongly augmented in the absence of ATG7 as well as upon denervation as a model for long-term atrophy, denervation-induced increase in autophagic CHRN vesicles was completely blunted in the absence of TRIM63. On a similar note, in trim63?/? mice denervation-induced upregulation of SQSTM1 and LC3-II was abolished and endogenous SQSTM1 did not colocalize with CHRN vesicles as it did in the wild type. SQSTM1 and LC3-II coprecipitated with surface-labeled/endocytosed CHRN and SQSTM1 overexpression significantly induced CHRN vesicle formation. Taken together, our data suggested that selective autophagy regulates the basal and atrophy-induced turnover of the pentameric transmembrane protein, CHRN, and that TRIM63, together with SH3GLB1 and SQSTM1 regulate this process.  相似文献   

10.
The ubiquitin-proteasome system is the primary proteolytic pathway implicated in skeletal muscle atrophy under catabolic conditions. Although several studies showed that proteasome inhibitors reduced proteolysis under catabolic conditions, few studies have demonstrated the ability of these inhibitors to preserve skeletal muscle mass and architecture in vivo. To explore this, we studied the effect of the proteasome inhibitor Velcade (also known as PS-341 and bortezomib) in denervated skeletal muscle in rats. Rats were given vehicle or Velcade (3 mg/kg po) daily for 7 days beginning immediately after induction of muscle atrophy by crushing the sciatic nerve. At the end of the study, the rats were euthanized and the soleus and extensor digitorum longus (EDL) muscles were harvested. In vehicle-treated rats, denervation caused a 33.5 +/- 2.8% and 16.2 +/- 2.7% decrease in the soleus and EDL muscle wet weights (% atrophy), respectively, compared to muscles from the contralateral (innervated) limb. Velcade significantly reduced denervation-induced atrophy to 17.1 +/- 3.3% in the soleus (P < 0.01), a 51.6% reduction in atrophy associated with denervation, with little effect on the EDL (9.8 +/- 3.2% atrophy). Histology showed a preservation of muscle mass and preservation of normal cellular architecture after Velcade treatment. Ubiquitin mRNA levels in denervated soleus muscle at the end of the study were significantly elevated 120 +/- 25% above sham control levels and were reduced to control levels by Velcade. In contrast, testosterone proprionate (3 mg/kg sc) did not alleviate denervation-induced skeletal muscle atrophy but did prevent castration-induced levator ani atrophy, while Velcade was without effect. These results show that proteasome inhibition attenuates denervation-induced muscle atrophy in vivo in soleus muscles. However, this mechanism may not be operative in all types of atrophy.  相似文献   

11.
The purpose of our study was to compare two acquired muscle atrophies and the use of myostatin inhibition for their treatment. Myostatin naturally inhibits skeletal muscle growth by binding to ActRIIB, a receptor on the cell surface of myofibers. Because blocking myostatin in an adult wild-type mouse induces profound muscle hypertrophy, we applied a soluble ActRIIB receptor to models of disuse (limb immobilization) and denervation (sciatic nerve resection) atrophy. We found that treatment of immobilized mice with ActRIIB prevented the loss of muscle mass observed in placebo-treated mice. Our results suggest that this protection from disuse atrophy is regulated by serum and glucocorticoid-induced kinase (SGK) rather than by Akt. Denervation atrophy, however, was not protected by ActRIIB treatment, yet resulted in an upregulation of the pro-growth factors Akt, SGK and components of the mTOR pathway. We then treated the denervated mice with the mTOR inhibitor rapamycin and found that, despite a reduction in mTOR activation, there is no alteration of the atrophy phenotype. Additionally, rapamycin prevented the denervation-induced upregulation of the mTORC2 substrates Akt and SGK. Thus, our studies show that denervation atrophy is not only independent from Akt, SGK and mTOR activation but also has a different underlying pathophysiological mechanism than disuse atrophy.KEY WORDS: Skeletal muscle, Muscle atrophy pathophysiology, TGF-β signaling, Myostatin, Denervation atrophy  相似文献   

12.
13.
Removal of ubiquitinated targets by autophagosomes can be mediated by receptor molecules, like SQSTM1, in a mechanism referred to as selective autophagy. While cytoplasmic protein aggregates, mitochondria, and bacteria are the best-known targets of selective autophagy, their role in the turnover of membrane receptors is scarce. We here showed that fasting-induced wasting of skeletal muscle involves remodeling of the neuromuscular junction (NMJ) by increasing the turnover of muscle-type CHRN (cholinergic receptor, nicotinic/nicotinic acetylcholine receptor) in a TRIM63-dependent manner. Notably, this process implied enhanced production of endo/lysosomal carriers of CHRN, which also contained the membrane remodeler SH3GLB1, the E3 ubiquitin ligase, TRIM63, and the selective autophagy receptor SQSTM1. Furthermore, these vesicles were surrounded by the autophagic marker MAP1LC3A in an ATG7-dependent fashion, and some of them were also positive for the lysosomal marker, LAMP1. While the amount of vesicles containing endocytosed CHRN strongly augmented in the absence of ATG7 as well as upon denervation as a model for long-term atrophy, denervation-induced increase in autophagic CHRN vesicles was completely blunted in the absence of TRIM63. On a similar note, in trim63−/− mice denervation-induced upregulation of SQSTM1 and LC3-II was abolished and endogenous SQSTM1 did not colocalize with CHRN vesicles as it did in the wild type. SQSTM1 and LC3-II coprecipitated with surface-labeled/endocytosed CHRN and SQSTM1 overexpression significantly induced CHRN vesicle formation. Taken together, our data suggested that selective autophagy regulates the basal and atrophy-induced turnover of the pentameric transmembrane protein, CHRN, and that TRIM63, together with SH3GLB1 and SQSTM1 regulate this process.  相似文献   

14.
mTORC1 (mammalian target of rapamycin complex 1) integrates information regarding availability of nutrients and energy to coordinate protein synthesis and autophagy. Using ribonucleic acid interference screens for autophagy-regulating phosphatases in human breast cancer cells, we identify CIP2A (cancerous inhibitor of PP2A [protein phosphatase 2A]) as a key modulator of mTORC1 and autophagy. CIP2A associates with mTORC1 and acts as an allosteric inhibitor of mTORC1-associated PP2A, thereby enhancing mTORC1-dependent growth signaling and inhibiting autophagy. This regulatory circuit is reversed by ubiquitination and p62/SQSTM1-dependent autophagic degradation of CIP2A and subsequent inhibition of mTORC1 activity. Consistent with CIP2A’s reported ability to protect c-Myc against proteasome-mediated degradation, autophagic degradation of CIP2A upon mTORC1 inhibition leads to destabilization of c-Myc. These data characterize CIP2A as a distinct regulator of mTORC1 and reveals mTORC1-dependent control of CIP2A degradation as a mechanism that links mTORC1 activity with c-Myc stability to coordinate cellular metabolism, growth, and proliferation.  相似文献   

15.
Yan X  Sun Q  Ji J  Zhu Y  Liu Z  Zhong Q 《Autophagy》2012,8(2):213-221
Supplementation of branched chain amino acids, especially leucine, is critical to improve malnutrition by regulating protein synthesis and degradation. Emerging evidence has linked leucine deprivation induced protein breakdown to autophagy. In this study, we aimed to establish a cell-free assay recapitulating leucine-mediated autophagy in vitro and dissect its biochemical requirement. We found that in a cell-free assay, membrane association of Barkor/Atg14(L), a specific autophagosome-binding protein, is suppressed by cytosol from nutrient-rich medium and such suppression is released by nutrient deprivation. We also showed that rapamycin could efficiently reverse the suppression of nutrient rich cytosol, suggesting an essential role of mTORC1 in autophagy inhibition in this cell-free system. Furthermore, we demonstrated that leucine supplementation in the cultured cells blocks Barkor puncta formation and autophagy activity. Hence, we establish a novel cell-free assay recapitulating leucine-mediated autophagy inhibition in an mTORC1-dependent manner; this assay will help us to dissect the regulation of amino acids in autophagy and related human metabolic diseases.  相似文献   

16.
Dietary administration of the anabolic agent, clenbuterol, has already been shown to inhibit or reverse denervation-induced atrophy in rat soleus muscles. We now show that the ameliorative effects of clenbuterol in denervated rat muscles are due principally to a large increase in protein synthesis. This results from both an increase in protein synthetic capacity and a normalised translational efficiency. The responses of innervated and denervated muscles are therefore fundamentally different, the changes in denervated muscles being reminiscent of the classical pleiotypic response of cells to growth factors.  相似文献   

17.
Protein synthesis inhibitors such as cycloheximide (CHX) are known to suppress protein degradation including autophagy. The fact that CHX inhibits autophagy has been generally interpreted to indicate that newly synthesized protein is indispensable for autophagy. However, CHX is also known to increase the intracellular level of amino acids and activate mTORC1 activity, a master negative regulator of autophagy. Accordingly, CHX can affect autophagic activity through inhibition of de novo protein synthesis and/or modulation of mTORC1 signaling. In this study, we investigated the effects of CHX on autophagy using specific autophagy markers. We found that CHX inhibited starvation-induced autophagy but not Torin1-induced autophagy. CHX also suppressed starvation-induced puncta formation of GFP-ULK1, an early-step marker of the autophagic process which is regulated by mTORC1. CHX activated mTORC1 even under autophagy-inducible starvation conditions. Finally, the inhibitory effect of CHX on starvation-induced autophagy was cancelled by the mTOR inhibitor Torin1. These results suggest that CHX inhibits starvation-induced autophagy through mTORC1 activation and also that autophagy does not require new protein synthesis at least in the acute phase of starvation.  相似文献   

18.
《Autophagy》2013,9(2):213-221
Supplementation of branched chain amino acids, especially leucine, is critical to improve malnutrition by regulating protein synthesis and degradation. Emerging evidence has linked leucine deprivation induced protein breakdown to autophagy. In this study, we aimed to establish a cell-free assay recapitulating leucine-mediated autophagy in vitro and dissect its biochemical requirement. We found that in a cell-free assay, membrane association of Barkor/Atg14(L), a specific autophagosome-binding protein, is suppressed by cytosol from nutrient-rich medium and such suppression is released by nutrient deprivation. We also showed that rapamycin could efficiently reverse the suppression of nutrient rich cytosol, suggesting an essential role of mTORC1 in autophagy inhibition in this cell-free system. Furthermore, we demonstrated that leucine supplementation in the cultured cells blocks Barkor puncta formation and autophagy activity. Hence, we establish a novel cell-free assay recapitulating leucine-mediated autophagy inhibition in an mTORC1-dependent manner; this assay will help us to dissect the regulation of amino acids in autophagy and related human metabolic diseases.  相似文献   

19.
《Autophagy》2013,9(7):737-747
Protein synthesis and autophagy work as two opposing processes to control cell growth in response to nutrient supply. The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) pathway, which acts as a master regulator to control protein synthesis, has recently been shown to inhibit autophagy by phosphorylating and inactivating ULK1, an autophagy regulatory protein. ULK1 also inhibits phosphorylation of a mTORC1 substrate, S6K1, indicating that a complex signaling interplay exists between mTORC1 and ULK1. Here, we demonstrate that ULK1 induces multisite phosphorylation of Raptor in vivo and in vitro. Using phospho-specific antibodies we identify Ser855 and Ser859 as being strongly phosphorylated by ULK1, with moderate phosphorylation of Ser792 also observed. Interestingly, ULK1 overexpression also increases phosphorylation of Raptor Ser863 and the mTOR autophosphorylation site, Ser2481 in a mTORC1-dependent manner. Despite this evidence for heightened mTORC1 kinase activity following ULK1 overexpresssion, mTORC1-mediated phosphorylation of S6K1 and 4E-BP1 is significantly inhibited. ULK1 expression has no effect on protein-protein interactions between the components of mTORC1, but does reduce the ability of Raptor to bind to the substrate 4E-BP1. Furthermore, shRNA knockdown of ULK1 leads to increased phosphorylation of mTORC1 substrates and decreased phosphorylation of Raptor at Ser859 and Ser792. We propose a new mechanism whereby ULK1 contributes to mTORC1 inhibition through hindrance of substrate docking to Raptor. This is a novel negative feedback loop that occurs upon activation of autophagy to maintain mTORC1 inhibition when nutrient supplies are limiting.  相似文献   

20.
Protein synthesis and autophagy work as two opposing processes to control cell growth in response to nutrient supply. The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) pathway, which acts as a master regulator to control protein synthesis, has recently been shown to inhibit autophagy by phosphorylating and inactivating ULK1, an autophagy regulatory protein. ULK1 also inhibits phosphorylation of a mTORC1 substrate, S6K1, indicating that a complex signaling interplay exists between mTORC1 and ULK1. Here, we demonstrate that ULK1 induces multisite phosphorylation of Raptor in vivo and in vitro. Using phospho-specific antibodies we identify Ser855 and Ser859 as being strongly phosphorylated by ULK1, with moderate phosphorylation of Ser792 also observed. Interestingly, ULK1 overexpression also increases phosphorylation of Raptor Ser863 and the mTOR autophosphorylation site, Ser2481 in a mTORC1-dependent manner. Despite this evidence for heightened mTORC1 kinase activity following ULK1 overexpresssion, mTORC1-mediated phosphorylation of S6K1 and 4E-BP1 is significantly inhibited. ULK1 expression has no effect on protein-protein interactions between the components of mTORC1, but does reduce the ability of Raptor to bind to the substrate 4E-BP1. Furthermore, shRNA knockdown of ULK1 leads to increased phosphorylation of mTORC1 substrates and decreased phosphorylation of Raptor at Ser859 and Ser792. We propose a new mechanism whereby ULK1 contributes to mTORC1 inhibition through hindrance of substrate docking to Raptor. This is a novel negative feedback loop that occurs upon activation of autophagy to maintain mTORC1 inhibition when nutrient supplies are limiting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号