首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cutaneous melanoma is a skin cancer with increasing incidence. Identification of novel clinical biomarkers able to detect the stage of disease and suggest prognosis could improve treatment and outcome for melanoma patients. Cell‐free microRNAs (cf‐miRNAs) are the circulating copies of short non‐coding RNAs involved in gene expression regulation. They are released into the interstitial fluid, are detectable in blood and other body fluids and have interesting features of ideal biomarker candidates. They are stable outside the cell, tissue specific, vary along with cancer development and are sensitive to change in the disease course such as progression or therapeutic response. Moreover, they are accessible by non‐invasive methods or venipuncture. Some articles have reported different cf‐miRNAs with the potential of diagnostic tools for melanoma staging, recurrence and survival prediction. Although some concordance of results is already emerging, differences in analytical methods, normalization strategies and tumour staging still will require further research and standardization prior to clinical usage of cf‐miRNA analysis. This article reviews this literature with the aim of contributing to a shared focusing on these new promising tools for melanoma treatment and care.  相似文献   

2.
3.
Since the discovery of circulating microRNAs (miRNAs) in body fluids, an increasing number of studies have focused on their potential as non-invasive biomarkers and as therapeutic targets or tools for many diseases, particularly for cancers. Because of their stability, miRNAs are easily detectable in body fluids. Extracellular miRNAs have potential as biomarkers for the prediction and prognosis of cancer. Moreover, they also enable communication between cells within the tumor microenvironment, thereby influencing tumorigenesis. In this review, we summarize the progresses made over the past decade regarding circulating miRNAs, from the development of detection methods to their clinical application as biomarkers and therapeutic tools for cancer. We also discuss the advantages and limitations of different detection methods and the pathways of circulating miRNAs in cell-cell communication, in addition to their clinical pharmacokinetics and toxicity in human organs. Finally, we highlight the potential of circulating miRNAs in clinical applications for cancer.  相似文献   

4.
In recent years, with the increase in cancer mortality caused by metastasis, and with the development of individualized and precise medical treatment, early diagnosis with precision becomes the key to decrease the death rate. Since detecting tumour biomarkers in body fluids is the most non‐invasive way to identify the status of tumour development, it has been widely investigated for the usage in clinic. These biomarkers include different expression or mutation in microRNAs (miRNAs), circulating tumour DNAs (ctDNAs), proteins, exosomes and circulating tumour cells (CTCs). In the present article, we summarized and discussed some updated research on these biomarkers. We overviewed their biological functions and evaluated their multiple roles in human and small animal clinical treatment, including diagnosis of cancers, classification of cancers, prognostic and predictive values for therapy response, monitors for therapy efficacy, and anti‐cancer therapeutics. Biomarkers including different expression or mutation in miRNAs, ctDNAs, proteins, exosomes and CTCs provide more choice for early diagnosis of tumour detection at early stage before metastasis. Combination detection of these tumour biomarkers may provide higher accuracy at the lowest molecule combination number for tumour early detection. Moreover, tumour biomarkers can provide valuable suggestions for clinical anti‐cancer treatment and execute monitoring of treatment efficiency.  相似文献   

5.
Type 2 Diabetes Mellitus (T2DM) is the most prevalent form of diabetes in the USA, thus, the identification of biomarkers that could be used to predict the progression from prediabetes to T2DM would be greatly beneficial. Recently, circulating RNA including microRNAs (miRNAs) present in various body fluids have emerged as potential biomarkers for various health conditions, including T2DM. Whereas studies that examine the changes of miRNA spectra between healthy controls and T2DM individuals have been reported, the goal of this study is to conduct a baseline comparison of prediabetic individuals who either progress to T2DM, or remain prediabetic. Using an advanced small RNA sequencing library construction method that improves the detection of miRNA species, we identified 57 miRNAs that showed significant concentration differences between progressors (progress from prediabetes to T2DM) and non‐progressors. Among them, 26 have been previously reported to be associated with T2DM in either body fluids or tissue samples. Some of the miRNAs identified were also affected by obesity. Furthermore, we identified miRNA panels that are able to discriminate progressors from non‐progressors. These results suggest that upon further validation these miRNAs may be useful to predict the risk of conversion to T2DM from prediabetes.  相似文献   

6.
最近大量的研究表明micro RNAs(miRNAs)是一类重要的调控因子.曾经被认为是非常不稳定的RNA分子——miRNA,却可以稳定存在于血液和其他体液中.更加重要的是,细胞外miRNAs被发现和多种疾病密切相关,它们可以作为诸如肿瘤等各种疾病的非侵入性生物标志物.然而,目前关于细胞外miRNA的来源以及生物学功能还不甚清楚.本文将总结最近细胞外miRNA的研究进展,并将重点介绍细胞外miRNA在疾病诊断及治疗中的作用.  相似文献   

7.
8.
Urinary microRNAs (miRNAs) are emerging as clinically useful tool for early and non‐invasive detection of various types of cancer including bladder cancer (BCA). In this study, 205 patients with BCA and 99 healthy controls were prospectively enrolled. Expression profiles of urinary miRNAs were obtained using Affymetrix miRNA microarrays (2578 miRNAs) and candidate miRNAs further validated in independent cohorts using qRT‐PCR. Whole‐genome profiling identified 76 miRNAs with significantly different concentrations in urine of BCA compared to controls (P < 0.01). In the training and independent validation phase of the study, miR‐31‐5p, miR‐93‐5p and miR‐191‐5p were confirmed to have significantly higher levels in urine of patients with BCA in comparison with controls (P < 0.01). We further established 2‐miRNA‐based urinary DxScore (miR‐93‐5p, miR‐31‐5p) enabling sensitive BCA detection with AUC being 0.84 and 0.81 in the training and validation phase, respectively. Moreover, DxScore significantly differed in the various histopathological subgroups of BCA and decreased post‐operatively. In conclusion, we identified and independently validated cell‐free urinary miRNAs as promising biomarkers enabling non‐invasive detection of BCA.  相似文献   

9.
10.
Heat shock proteins (HSPs) are a large family of molecular chaperones aberrantly expressed in cancer. The expression of HSPs in tumor cells has been shown to be implicated in the regulation of apoptosis, immune responses, angiogenesis and metastasis. Given that extracellular vesicles (EVs) can serve as potential source for the discovery of clinically useful biomarkers and therapeutic targets, it is of particular interest to study proteomic profiling of HSPs in EVs derived from various biological fluids of cancer patients. Furthermore, a divergent expression of circulating microRNAs (miRNAs) in patient samples has opened new opportunities in exploiting miRNAs as diagnostic tools. Herein, we address the current literature on the expression of extracellular HSPs with particular interest in HSPs in EVs derived from various biological fluids of cancer patients and different types of immune cells as promising targets for identification of clinical biomarkers of cancer. We also discuss the emerging role of miRNAs in HSP regulation for the discovery of blood-based biomarkers of cancer. We outline the importance of understanding relationships between various HSP networks and co-chaperones and propose the model for identification of HSP signatures in cancer. Elucidating the role of HSPs in EVs from the proteomic and miRNAs perspectives may provide new opportunities for the discovery of novel biomarkers of cancer.  相似文献   

11.
Oral cancer is one of the leading cancers in South-Asian countries. Despite the easy access of the oral cavity, the detection and five year survival rates of OSCC patients are dismal. Identification of non-invasive biomarkers to determine the progression and recurrence of OSCC could be of immense help to patients. Recent studies on oral cancer suggest the importance of non-invasive biomarker development. Micro-RNAs (miRNAs) are one of the important components of the cell-free nucleic acids available in different body fluids. Here, we have reviewed the current understanding of circulating miRNAs as non-invasive biomarkers in different body fluids of oral cancer patients. A number of circulating miRNAs are found to be common in the body fluids of OSCC patients, while many of these are study specific, the possible sources of this variability could be due to differences in sample processing, assay procedure, clinical stage of the disease, oral habit and environmental factors. The prognostic and therapeutic significance of these circulating miRNAs are suggested by several studies. Mir-371, mir-150, mir-21 and mir-7d were found to be potential prognostic markers, while mir-134, mir-146a, mir-338 and mir-371 were associated with metastases. The prognostic markers, mir-21 and mir-7d were also found to be significantly correlated with resistance to chemotherapy, while mir-375, mir-196 and mir-125b were significantly correlated with sensitivity to radiotherapy. Despite the promising roles of circulating miRNAs, challenges still remain in unravelling the exact regulation of these miRNAs before using them for targeted therapy.  相似文献   

12.
miRNAs (microRNAs) are a class of small RNA that regulate gene expression by binding to mRNAs and modulating the precise amount of proteins that get expressed in a cell at a given time. This form of gene regulation plays an important role in developmental systems and is critical for the proper function of numerous biological pathways. Although miRNAs exert their functions inside the cell, these and other classes of RNA are found in body fluids in a cell-free form that is resistant to degradation by RNases. A broad range of cell types have also been shown to secrete miRNAs in association with components of the RISC (RNA-induced silencing complex) and/or encapsulation within vesicles, which can be taken up by other cells. In the present paper, we provide an overview of the properties of extracellular miRNAs in relation to their capacity as biomarkers, stability against degradation and mediators of cell-cell communication.  相似文献   

13.
Lung cancer‐associated mortality is the most common cause of cancer death worldwide. Non‐coding RNAs (ncRNAs), with no protein‐coding ability, have multiple biological roles. Long non‐coding RNAs (lncRNAs) are a recently characterized class of ncRNAs that are over 200 nucleotides in length. Many lncRNAs have the ability of facilitating or inhibiting the development and progression of tumours, including non‐small cell lung cancer (NSCLC). Because of their fundamental roles in regulating gene expression, along with their involvement in the biological mechanisms underlying tumourigenesis, they are a promising class of tissue‐ and/or blood‐based cancer biomarkers. In this review, we highlight the emerging roles of lncRNAs in NSCLC, and discuss their potential clinical applications as diagnostic and prognostic markers and as therapeutic targets.  相似文献   

14.
A new class of RNA regulatory genes known as microRNAs (miRNAs) has been found to introduce a whole new layer of gene regulation in eukaryotes. The intensive studies of the past several years have demonstrated that miRNAs are not only found intracellularly, but are also detectable outside cells, including in various body fluids (e.g. serum, plasma, saliva, urine and milk). This phenomenon raises questions about the biological function of such extracellular miRNAs. Substantial amounts of extracellular miRNAs are enclosed in small membranous vesicles (e.g. exosomes, shedding vesicles and apoptotic bodies) or packaged with RNA-binding proteins (e.g. high-density lipoprotein, Argonaute 2 and nucleophosmin 1). These miRNAs may function as secreted signaling molecules to influence the recipient cell phenotypes. Furthermore, secreted extracellular miRNAs may reflect molecular changes in the cells from which they are derived and can therefore potentially serve as diagnostic indicators of disease. Several studies also point to the potential application of siRNA/miRNA delivery as a new therapeutic strategy for treating diseases. In this review, we summarize what is known about the mechanism of miRNA secretion. In addition, we describe the pathophysiological roles of secreted miRNAs and their clinical potential as diagnostic biomarkers and therapeutic drugs. We believe that miRNA transfer between cells will have a significant impact on biological research in the coming years.  相似文献   

15.
MicroRNAs (miRNAs) in body fluids are candidate diagnostics for a variety of conditions and diseases, including breast cancer. One premise for using extracellular miRNAs to diagnose disease is the notion that the abundance of the miRNAs in body fluids reflects their abundance in the abnormal cells causing the disease. As a result, the search for such diagnostics in body fluids has focused on miRNAs that are abundant in the cells of origin. Here we report that released miRNAs do not necessarily reflect the abundance of miRNA in the cell of origin. We find that release of miRNAs from cells into blood, milk and ductal fluids is selective and that the selection of released miRNAs may correlate with malignancy. In particular, the bulk of miR-451 and miR-1246 produced by malignant mammary epithelial cells was released, but the majority of these miRNAs produced by non-malignant mammary epithelial cells was retained. Our findings suggest the existence of a cellular selection mechanism for miRNA release and indicate that the extracellular and cellular miRNA profiles differ. This selective release of miRNAs is an important consideration for the identification of circulating miRNAs as biomarkers of disease.  相似文献   

16.
Liquid biopsies serve as both powerful noninvasive diagnostic tools for early cancer screening and prognostic tools for monitoring cancer progression and treatment efficacy. Exosomes are promising biomarkers for liquid biopsies, since these nano‐sized extracellular vesicles (EVs) enrich proteins, lipids, mRNAs, and miRNAs from cells of origin, including cancer cells. Although exosomes are abundantly present in various bodily fluids, conventional exosome isolation and detection methods that rely on benchtop equipment are time‐consuming, expensive, and involve complicated non‐portable procedures. As an alternative, recently developed microfluidic platforms can perform effective exosome separation and detection for liquid biopsies using a single device. Such methods offer advantages of integrity, speed, cost‐efficiency, and portability over conventional benchtop and early microfluidic‐based single‐functional methods which can only separate or detect exosomes separately. These advances have made exosome‐based point‐of‐care (POC) applications possible. This review outlines recent integrated microfluidic‐based exosomal detection strategies to guide future development of such devices for use in liquid biopsies for early cancer screening, prognostic monitoring, and other potential POC applications.  相似文献   

17.
MicroRNAs are a class of small, non‐coding RNAs that can negatively regulate protein‐coding genes, and are associated with almost all known physiological and pathological processes, especially cancer. The number of studies documenting miRNA expression patterns in malignancy continues to expand rapidly, with continuously gained critical information regarding how aberrantly expressed miRNAs may contribute to carcinogenesis. miRNAs can influence cancer pathogenesis, playing a potential role as either oncogenes or tumour suppressors. Recently, several miRNAs have been reported to exert different regulatory functions in oesophageal cancer – the carcinoma typically arising from the epithelial lining of the oesophagus. These miRNAs also have potential clinical applications towards developing biomarkers or targets for possible use in diagnosis or therapy in oesophageal cancer. In this review, we have summarized the two (oncogenic or tumour suppressive) roles of miRNAs here, and their applications as potential biomarkers or therapeutic targets, which may illuminate future treatment for oesophageal cancer.  相似文献   

18.
Spinal cord injury (SCI) is considered an incurable condition, having a heterogenous recovery and uncertain prognosis. Therefore, a reliable prediction of the improvement in the acute phase could benefit patients. Physicians are unanimous in insisting that at the initial damage of the spinal cord (SC), the patient should be carefully evaluated in order to help selecting an appropriate neuroprotective treatment. However, currently, neurologic impairment after SCI is measured and classified by functional examination. The identification of prognostic biomarkers of SCI would help to designate SC injured patients and correlate to diagnosis and correct treatment. Some proteins have already been identified as good potential biomarkers of central nervous system injury, both in cerebrospinal fluid (CSF) and blood serum. However, the problem for using them as biomarkers is the way they should be collected, as acquiring CSF through a lumbar puncture is significantly invasive. Remarkably, microRNAs (miRNAs) have emerged as interesting biomarker candidates because of their stability in biological fluids and their tissue specificity. Several miRNAs have been identified to have their expressions altered in SCI in many animal models, making them promising candidates as biomarkers after SCI. Moreover, there are yet no effective therapies for SCI. It is already known that altered lysophospholipids (LPs) signaling are involved in the biology of disorders, such as inflammation. Reports have demonstrated that LPs when locally distributed can regulate SCI repair and key secondary injury processes such as apoptosis and inflammation, and so could become in the future new therapeutic approaches for treating SCI.  相似文献   

19.
Cancer diagnosis have mainly relied on the incorporation of molecular biomarkers as part of routine diagnostic tool. The molecular alteration ranges from those involving DNA, RNA, noncoding RNAs (microRNAs and long noncoding RNAs [lncRNAs]) and proteins. lncRNAs are recently discovered noncoding endogenous RNAs that critically regulates the development, invasion, and metastasis of cancer cells. They are dysregulated in different types of malignancies and have the potential to serve as diagnostic markers for cancer. The expression of noncoding RNAs is altered following many diseases, and besides, some of them can be secreted from the cells into the circulation following the apoptotic and necrotic cell death. These secreted noncoding RNAs are known as cell free RNA. These RNAs can be secreted from the cell through the apoptotic body, extracellular vesicles including microvesicle and exosome, and bind to proteins. Since, lncRNAs display high organ and cell specificity, can be found in the blood, urine, tumor tissue, or other tissues or bodily fluids of some patients with cancer, this review summarizes the most significant and up-to-date findings of research on lncRNAs involvement in different cancers, focusing on the potential of cancer-related lncRNAs as biomarkers for diagnosis, prognosis, and therapy.  相似文献   

20.
MicroRNAs are small noncoding RNAs that play an important role in the regulation of various biological processes through their interaction with cellular messenger RNAs. They are frequently dysregulated in cancer and have shown great potential as tissue-based markers for cancer classification and prognostication. microRNAs are also present in extracellular human body fluids such as serum, plasma, saliva, and urine. Most of circulating microRNAs are present in human plasma and serum cofractionate with the Argonaute2 (Ago2) protein. However, circulating microRNAs have been also found in membrane-bound vesicles such as exosomes. Since microRNAs circulate in the bloodstream in a highly stable, extracellular form, they may be used as blood-based biomarkers for cancer and other diseases. A knowledge base of extracellular circulating miRNAs is a fundamental tool for biomedical research. In this work, we present miRandola, a comprehensive manually curated classification of extracellular circulating miRNAs. miRandola is connected to miRò, the miRNA knowledge base, allowing users to infer the potential biological functions of circulating miRNAs and their connections with phenotypes. The miRandola database contains 2132 entries, with 581 unique mature miRNAs and 21 types of samples. miRNAs are classified into four categories, based on their extracellular form: miRNA-Ago2 (173 entries), miRNA-exosome (856 entries), miRNA-HDL (20 entries) and miRNA-circulating (1083 entries). miRandola is available online at: http://atlas.dmi.unict.it/mirandola/index.html.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号