首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AU-rich element binding factor 1 (AUF1) has a role in the replication cycles of different viruses. Here we demonstrate that AUF1 binds the internal ribosome entry site (IRES) of enterovirus 71 (EV71) and negatively regulates IRES-dependent translation. During EV71 infection, AUF1 accumulates in the cytoplasm where viral replication occurs, whereas AUF1 localizes predominantly in the nucleus in mock-infected cells. AUF1 knockdown in infected cells increases IRES activity and synthesis of viral proteins. Taken together, the results suggest that AUF1 interacts with the EV71 IRES to negatively regulate viral translation and replication.  相似文献   

2.
An internal ribosomal entry site (IRES) that directs the initiation of viral protein translation is a potential drug target for enterovirus 71 (EV71). Regulation of internal initiation requires the interaction of IRES trans-acting factors (ITAFs) with the internal ribosomal entry site. Biotinylated RNA-affinity chromatography and proteomic approaches were employed to identify far upstream element (FUSE) binding protein 2 (FBP2) as an ITAF for EV71. The interactions of FBP2 with EV71 IRES were confirmed by competition assay and by mapping the association sites in both viral IRES and FBP2 protein. During EV71 infection, FBP2 was enriched in cytoplasm where viral replication occurs, whereas FBP2 was localized in the nucleus in mock-infected cells. The synthesis of viral proteins increased in FBP2-knockdown cells that were infected by EV71. IRES activity in FBP2-knockdown cells exceeded that in the negative control (NC) siRNA-treated cells. On the other hand, IRES activity decreased when FBP2 was over-expressed in the cells. Results of this study suggest that FBP2 is a novel ITAF that interacts with EV71 IRES and negatively regulates viral translation.  相似文献   

3.
4.
5.
Enterovirus 71 (EV71) is associated with severe neurological disorders in children, and has been implicated as the infectious agent in several large-scale outbreaks with mortalities. Upon infection, the viral RNA is translated in a cap-independent manner to yield a large polyprotein precursor. This mechanism relies on the presence of an internal ribosome entry site (IRES) element within the 5'-untranslated region. Virus-host interactions in EV71-infected cells are crucial in assisting this process. We identified a novel positive IRES trans-acting factor, far upstream element binding protein 1 (FBP1). Using binding assays, we mapped the RNA determinants within the EV71 IRES responsible for FBP1 binding and mapped the protein domains involved in this interaction. We also demonstrated that during EV71 infection, the nuclear protein FBP1 is enriched in cytoplasm where viral replication occurs. Moreover, we showed that FBP1 acts as a positive regulator of EV71 replication by competing with negative ITAF for EV71 IRES binding. These new findings may provide a route to new anti-viral therapy.  相似文献   

6.
富含AU元件的RNA结合蛋白1(AU-rich element binding factor 1,AUF1)具有剪接加工前体mRNA、转运和降解成熟mRNA的功能,同时调节带有富含AU元件(AU-rich element,ARE)的mRNA翻新。AUF1通过介导炎性细胞因子及其反应从而控制炎症进程。研究表明,AUF1与肠道病毒71型的内部核糖体进入位点(internal ribosome entry site,IRES)结合并与其交互负性调节病毒翻译与复制,它还可被募集到柯萨奇病毒B3型和肠道病毒71型诱导的应激颗粒中。  相似文献   

7.
EV71 (enterovirus 71) RNA contains an internal ribosomal entry site (IRES) that directs cap-independent initiation of translation. IRES-dependent translation requires the host’s translation initiation factors and IRES-associated trans-acting factors (ITAFs). We reported recently that mRNA decay factor AUF1 is a negative-acting ITAF that binds IRES stem-loop II. We also reported that the small RNA-processing enzyme Dicer produces at least four small RNAs (vsRNAs) from the EV71 IRES. One of these, vsRNA1, derived from IRES stem-loop II, reduces IRES activity and virus replication. Since its mechanism of action is unknown, we hypothesized that it might control association of ITAFs with the IRES. Here, we identified the mRNA stability factor HuR and the RISC subunit Argonaute 2 (Ago2) as two ITAFs that bind stem-loop II. In contrast to AUF1, HuR and Ago2 promote EV71 IRES activity and virus replication. In vitro RNA-binding assays revealed that vsRNA1 can alter association of Ago2, HuR, and AUF1 with stem-loop II. This presents a possible mechanism by which vsRNA1 could control viral translation and replication.  相似文献   

8.
RNA helicases and chaperones are the two major classes of RNA remodeling proteins, which function to remodel RNA structures and/or RNA-protein interactions, and are required for all aspects of RNA metabolism. Although some virus-encoded RNA helicases/chaperones have been predicted or identified, their RNA remodeling activities in vitro and functions in the viral life cycle remain largely elusive. Enteroviruses are a large group of positive-stranded RNA viruses in the Picornaviridae family, which includes numerous important human pathogens. Herein, we report that the nonstructural protein 2CATPase of enterovirus 71 (EV71), which is the major causative pathogen of hand-foot-and-mouth disease and has been regarded as the most important neurotropic enterovirus after poliovirus eradication, functions not only as an RNA helicase that 3′-to-5′ unwinds RNA helices in an adenosine triphosphate (ATP)-dependent manner, but also as an RNA chaperone that destabilizes helices bidirectionally and facilitates strand annealing and complex RNA structure formation independently of ATP. We also determined that the helicase activity is based on the EV71 2CATPase middle domain, whereas the C-terminus is indispensable for its RNA chaperoning activity. By promoting RNA template recycling, 2CATPase facilitated EV71 RNA synthesis in vitro; when 2CATPase helicase activity was impaired, EV71 RNA replication and virion production were mostly abolished in cells, indicating that 2CATPase-mediated RNA remodeling plays a critical role in the enteroviral life cycle. Furthermore, the RNA helicase and chaperoning activities of 2CATPase are also conserved in coxsackie A virus 16 (CAV16), another important enterovirus. Altogether, our findings are the first to demonstrate the RNA helicase and chaperoning activities associated with enterovirus 2CATPase, and our study provides both in vitro and cellular evidence for their potential roles during viral RNA replication. These findings increase our understanding of enteroviruses and the two types of RNA remodeling activities.  相似文献   

9.
Internal ribosome entry sites (IRES) are utilized by a subset of cellular and viral mRNAs to initiate translation during cellular stress and virus infection when canonical cap-dependent translation is compromised. The intergenic region (IGR) IRES of the Dicistroviridae uses a streamlined mechanism in which it can directly recruit the ribosome in the absence of initiation factors and initiates translation using a non-AUG codon. A subset of IGR IRESs including that from the honey bee viruses can also direct translation of an overlapping +1 frame gene. In this study, we systematically examined cellular conditions that lead to IGR IRES-mediated 0 and +1 frame translation in Drosophila S2 cells. Towards this, a novel bicistronic reporter that exploits the 2A “stop-go” peptide was developed to allow the detection of IRES-mediated translation in vivo. Both 0 and +1 frame translation by the IGR IRES are stimulated under a number of cellular stresses and in S2 cells infected by cricket paralysis virus, demonstrating a switch from cap-dependent to IRES-dependent translation. The regulation of the IGR IRES mechanism ensures that both 0 frame viral structural proteins and +1 frame ORFx protein are optimally expressed during virus infection.  相似文献   

10.
The Ribosome Binding Site of Hepatitis C Virus mRNA   总被引:7,自引:0,他引:7       下载免费PDF全文
Hepatitis C virus (HCV) infects an estimated 170 million people worldwide, the majority of whom develop a chronic infection which can lead to severe liver disease, and for which no generally effective treatment yet exists. A promising target for treatment is the internal ribosome entry site (IRES) of HCV, a highly conserved domain within a highly variable RNA. Never before have the ribosome binding sites of any IRES domains, cellular or viral, been directly characterized. Here, we reveal that the HCV IRES sequences most closely associated with 80S ribosomes during protein synthesis initiation are a series of discontinuous domains together comprising by far the largest ribosome binding site yet discovered.  相似文献   

11.
Flavonoids are widely distributed natural products with broad biological activities. Apigenin is a dietary flavonoid that has recently been demonstrated to interact with heterogeneous nuclear ribonucleoproteins (hnRNPs) and interferes with their RNA editing activity. We investigated whether apigenin possessed antiviral activity against enterovirus-71 (EV71) infection since EV71 infection requires of hnRNP proteins. We found that apigenin selectively blocks EV71 infection by disrupting viral RNA association with hnRNP A1 and A2 proteins. The estimated EC50 value for apigenin to block EV71 infection was determined at 10.3 µM, while the CC50 was estimated at 79.0 µM. The anti-EV71 activity was selective since no activity was detected against several DNA and RNA viruses. Although flavonoids in general share similar structural features, apigenin and kaempferol were among tested compounds with significant activity against EV71 infection. hnRNP proteins function as trans-acting factors regulating EV71 translation. We found that apigenin treatment did not affect EV71-induced nucleocytoplasmic redistribution of hnRNP A1 and A2 proteins. Instead, it prevented EV71 RNA association with hnRNP A1 and A2 proteins. Accordingly, suppression of hnRNP A1 and A2 expression markedly reduced EV71 infection. As a positive sense, single strand RNA virus, EV71 has a type I internal ribosome entry site (IRES) that cooperates with host factors and regulates EV71 translation. The effect of apigenin on EV71 infection was further demonstrated using a bicistronic vector that has the expression of a GFP protein under the control of EV71 5′-UTR. We found that apigenin treatment selectively suppressed the expression of GFP, but not a control gene. In addition to identification of apigenin as an antiviral agent against EV71 infection, this study also exemplifies the significance in antiviral agent discovery by targeting host factors essential for viral replication.  相似文献   

12.
13.
The roles of virus-derived small RNAs (vsRNAs) have been studied in plants and insects. However, the generation and function of small RNAs from cytoplasmic RNA viruses in mammalian cells remain unexplored. This study describes four vsRNAs that were detected in enterovirus 71-infected cells using next-generation sequencing and northern blots. Viral infection produced substantial levels (>105 copy numbers per cell) of vsRNA1, one of the four vsRNAs. We also demonstrated that Dicer is involved in vsRNA1 generation in infected cells. vsRNA1 overexpression inhibited viral translation and internal ribosomal entry site (IRES) activity in infected cells. Conversely, blocking vsRNA1 enhanced viral yield and viral protein synthesis. We also present evidence that vsRNA1 targets stem-loop II of the viral 5′ untranslated region and inhibits the activity of the IRES through this sequence-specific targeting. Our study demonstrates the ability of a cytoplasmic RNA virus to generate functional vsRNA in mammalian cells. In addition, we also demonstrate a potential novel mechanism for a positive-stranded RNA virus to regulate viral translation: generating a vsRNA that targets the IRES.  相似文献   

14.
Ray PS  Das S 《Nucleic acids research》2004,32(5):1678-1687
Translation of the hepatitis C virus (HCV) RNA is mediated by the interaction of ribosomes and cellular proteins with an internal ribosome entry site (IRES) located within the 5′-untranslated region (5′-UTR). We have investigated whether small RNA molecules corresponding to the different stem–loop (SL) domains of the HCV IRES, when introduced in trans, can bind to the cellular proteins and antagonize their binding to the viral IRES, thereby inhibiting HCV IRES-mediated translation. We have found that a RNA molecule corresponding to SL III could efficiently inhibit HCV IRES-mediated translation in a dose-dependent manner without affecting cap-dependent translation. The SL III RNA was found to bind to most of the cellular proteins which interacted with the HCV 5′-UTR. A smaller RNA corresponding to SL e+f of domain III also strongly and selectively inhibited HCV IRES-mediated translation. This RNA molecule interacted with the ribosomal S5 protein and prevented the recruitment of the 40S ribosomal subunit. This study reveals valuable insights into the role of the SL structures of the HCV IRES in mediating ribosome entry. Finally, these results provide a basis for developing anti-HCV therapy using small RNA molecules mimicking the SL structures of the 5′-UTR to specifically block viral RNA translation.  相似文献   

15.
Picornavirus infection alters the endoplasmic reticulum (ER) membrane but it is unclear whether this induces ER stress. Infection of rhabdomyosarcoma cells with enterovirus 71 (EV71), a picornavirus, caused overexpression of the ER‐resident chaperone proteins, BiP and calreticulin, and phosphorylation of eIF2α, but infection with UV‐inactivated virus did not, indicating that ER stress was induced by viral replication and not by viral attachment or entry. Silencing (si)RNA knockdown demonstrated that phosphorylation of eIF2α was dependent on PKR: eIF2α phosphorylation was reduced by siPKR but not by siPERK. We provided evidence showing that PERK is upstream of PKR and is thus able to negatively regulate the PKR‐eIF2α pathway. Pulse‐chase experiments revealed that EV71 infection inhibited translation and activation of ATF6. Expression of BiP at the protein level was activated by a virus‐dependent, ATF6‐independent mechanism. EV71 upregulated XBP1 mRNA level, but neither IRE1‐mediated XBP1 splicing nor its active spliced protein was detected, and its downstream gene, EDEM, was not activated. Epigenetic BiP overexpression alleviated EV71‐induced ER stress and reduced viral protein expression and replication. Our results suggest that EV71 infection induces ER stress but modifies the outcome to assist viral replication.  相似文献   

16.
Picornaviruses and other positive-strand RNA viruses like hepatitis C virus (HCV) enter the cell with a single RNA genome that directly serves as the template for translation. Accordingly, the viral RNA genome needs to recruit the cellular translation machinery for viral protein synthesis. By the use of internal ribosome entry site (IRES) elements in their genomic RNAs, these viruses bypass translation competition with the bulk of capped cellular mRNAs and, moreover, establish the option to largely shut-down cellular protein synthesis. In this review, I discuss the structure and function of viral IRES elements, focusing on the recruitment of the cellular translation machinery by the IRES and on factors that may contribute to viral tissue tropism on the level of translation.  相似文献   

17.
Translation initiation by internal ribosome binding is a recently discovered mechanism of eukaryotic viral and cellular protein synthesis in which ribosome subunits interact with the mRNAs at internal sites in the 5' untranslated RNA sequences and not with the 5' methylguanosine cap structure present at the extreme 5' ends of mRNA molecules. Uncapped poliovirus mRNAs harbor internal ribosome entry sites (IRES) in their long and highly structured 5' noncoding regions. Such IRES sequences are required for viral protein synthesis. In this study, a novel poliovirus was isolated whose genomic RNA contains two gross deletions removing approximately 100 nucleotides from the predicted IRES sequences within the 5' noncoding region. The deletions originated from previously in vivo-selected viral revertants displaying non-temperature-sensitive phenotypes. Each revertant had a different predicted stem-loop structure within the 5' noncoding region of their genomic RNAs deleted. The mutant poliovirus (Se1-5NC-delta DG) described in this study contains both stem-loop deletions in a single RNA genome, thereby creating a minimum IRES. Se1-5NC-delta DG exhibited slow growth and a pinpoint plaque phenotype following infection of HeLa cells, delayed onset of protein synthesis in vivo, and defective initiation during in vitro translation of the mutated poliovirus mRNAs. Interestingly, the peak levels of viral RNA synthesis in cells infected with Se1-5NC-delta DG occurred at slightly later times in infection than those achieved by wild-type poliovirus, but these mutant virus RNAs accumulated in the host cells during the late phases of virus infection. UV cross-linking assays with the 5' noncoding regions of wild-type and mutated RNAs were carried out in cytoplasmic extracts from HeLa cells and neuronal cells and in reticulocyte lysates to identify the cellular factors that interact with the putative IRES elements. The cellular proteins that were cross-linked to the minimum IRES may represent factors playing an essential role in internal translation initiation of poliovirus mRNAs.  相似文献   

18.
Shih SR  Stollar V  Li ML 《Journal of virology》2011,85(19):9658-9666
Enterovirus 71 (EV71) infections continue to remain an important public health problem around the world, especially in the Asia-Pacific region. There is a significant mortality rate following such infections, and there is neither any proven therapy nor a vaccine for EV71. This has spurred much fundamental research into the replication of the virus. In this review, we discuss recent work identifying host cell factors which regulate the synthesis of EV71 RNA and proteins. Three of these proteins, heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), far-upstream element-binding protein 2 (FBP2), and FBP1 are nuclear proteins which in EV71-infected cells are relocalized to the cytoplasm, and they influence EV71 internal ribosome entry site (IRES) activity. hnRNP A1 stimulates IRES activity but can be replaced by hnRNP A2. FBP2 is a negative regulatory factor with respect to EV71 IRES activity, whereas FBP1 has the opposite effect. Two other proteins, hnRNP K and reticulon 3, are required for the efficient synthesis of viral RNA. The cleavage stimulation factor 64K subunit (CstF-64) is a host protein that is involved in the 3' polyadenylation of cellular pre-mRNAs, and recent work suggests that in EV71-infected cells, it may be cleaved by the EV71 3C protease. Such a cleavage would impair the processing of pre-mRNA to mature mRNAs. Host cell proteins play an important role in the replication of EV71, but much work remains to be done in order to understand how they act.  相似文献   

19.
Translation of hepatitis C virus (HCV) RNA is initiated by internal loading of the ribosome into the HCV internal ribosome entry site (IRES). Previously, heterogeneous ribonucleoprotein L (hnRNP L) was shown to bind specifically to the 3′ border region of the HCV IRES and enhance HCV mRNA translation. Here, we provide evidence for the functional requirement of hnRNP L for the HCV IRES-mediated translation initiation using specific RNA aptamers. In vitro selection techniques were employed to isolate RNA aptamers against hnRNP L, which were shown to contain consensus sequences with repetitive ACAC/U. The hnRNP L-specific RNA aptamers efficiently inhibited the in vitro translation reactions mediated by the HCV IRES in rabbit reticulocyte lysates. RNA ligands with only (ACAU)5 or (AC)10 nucleotide sequences could also specifically bind to hnRNP L, and specifically and effectively impeded in vitro translation reactions controlled by the HCV IRES. Importantly, the hnRNP L-specific RNA aptamers inhibited the HCV IRES function in cells in a dose-dependent manner, and the aptamer-mediated inhibition of the HCV IRES was considerably relieved by the addition of hnRNP L-expressing vector. These results strongly demonstrate the functional requirement of cellular hnRNP L for the HCV IRES activity.  相似文献   

20.
The highly conserved internal ribosome entry site (IRES) of hepatitis C virus (HCV) regulates translation of the viral RNA genome and is essential for the expression of HCV proteins in infected host cells. The structured subdomain IIa of the IRES element is the target site of recently discovered benzimidazole inhibitors that selectively block viral translation through capture of an extended conformation of an RNA internal loop. Here, we describe the development of a FRET-based screening assay for similarly acting HCV translation inhibitors. The assay relies on monitoring fluorescence changes that indicate rearrangement of the RNA target conformation upon ligand binding. Screening of a small pilot set of potential RNA binders identified a benzoxazole scaffold as a ligand that bound selectively to IIa IRES target and was confirmed as an inhibitor of in vitro viral translation. The screening approach outlined here provides an efficient method to discover HCV translation inhibitors that may provide leads for the development of novel antiviral therapies directed at the highly conserved IRES RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号