首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In flowering plants, success or failure of seed development is determined by various genetic mechanisms. During sexual reproduction, double fertilization produces the embryo and endosperm, which both contain maternally and paternally derived genomes. In endosperm, a reproductive barrier is often observed in inter-specific crosses. Endosperm is a tissue that provides nourishment for the embryo within the seed, in a similar fashion to the placenta of mammals, and for the young seedling after germination. This review considers the relationship between the reproductive barrier in endosperm and genomic imprinting. Genomic imprinting is an epigenetic mechanism that results in mono-allelic gene expression that is parent-of-origin dependent. In Arabidopsis, recent studies of several imprinted gene loci have identified the epigenetic mechanisms that determine genomic imprinting. A crucial feature of genomic imprinting is that the maternally and paternally derived imprinted genes must carry some form of differential mark, usually DNA methylation and/or histone modification. Although the epigenetic marks should be complementary on maternally and paternally imprinted genes within a single species, it is possible that neither the patterns of epigenetic marks nor expression of imprinted genes are the same in different species. Moreover, in hybrid endosperm, the regulation of expression of imprinted genes can be affected by upstream regulatory mechanisms in the male and female gametophytes. Species-specific variations in epigenetic marks, the copy number of imprinted genes, and the epigenetic regulation of imprinted genes in hybrids might all play a role in the reproductive barriers observed in the endosperm of interspecific and interploidy crosses. These predicted molecular mechanisms might be related to earlier models such as the "endosperm balance number" (EBN) and "polar nuclei activation" (PNA) hypotheses.  相似文献   

2.
Genomic imprinting (parent-of-origin-dependent gene regulation) is associated with intra-genomic evolutionary conflict over the optimal pattern of gene expression. Most theoretical models of imprinting focus on the conflict between the maternally and paternally derived alleles at an imprinted locus. Recently, however, more attention has been focused on multi-directional conflicts involving not only the imprinted gene itself, but also the genes that encode the regulatory machinery responsible for establishing and maintaining imprinted gene expression. In this paper, I examine the conflict involved in epigenetic reprogramming of imprinted genes in early mammalian embryonic development. In the earliest phase of development, maternal-store proteins are responsible for most regulatory activity in the embryo. These proteins are under selection to maximize the mother's inclusive fitness, which is not identical to that of either of the sets of genes present in the embryo. Both the maternally and paternally derived genomes in the embryo favor maintenance of the epigenetic modifications established in the female and male germlines, respectively. Maternal-store proteins favor maintenance of some of these modifications, but erasure of others. Here I consider the logical structure of the machinery responsible for these two activities. Methylation maintenance is most effectively performed by AND-linked architectures, which may explain the unusual trafficking behavior of the oocyte-specific DNA methyltransferase, Dnmt1o. By contrast, demethylation is better supported by OR-linked architectures, which may explain the difficulty in identifying the factor(s) responsible for the active demethylation of the paternal genome following fertilization.  相似文献   

3.
4.
Recent reports of cytosine methylation occurring at CpA and CpT dinucleotides in murine ES cells as well as in Drosophila have renewed interest in methylation at sites other than CpGs. Our examination of the murine neurofibromatosis type 1 gene by sodium bisulfite genomic sequencing has revealed non-CpG methylation primarily in the oocyte and the maternally derived allele of the 2-cell embryo, with markedly lower levels found in sperm. Non-CpG methylation was not found in later stages of embryo development or in adult tissue. Our results suggest that maternal-specific de novo non-CpG methylation has occurred sometime between ovulation and formation of the 2-cell embryo, while during the same period the paternally derived allele has undergone site-specific active demethylation. Our data demonstrate both stage and parent-of-origin specific changes in methylation patterns within the neurofibromatosis type 1 coding region-involving cytosines located at both CpG and non-CpG dinucleotides.  相似文献   

5.
Inactivation of expression of the paternal allele at two maternally silent imprinted loci has recently been reported to diminish the quality of care that female mice lavish on their offspring. This suggests that there can be disagreement between the maternally and paternally derived genomes of mothers over how much care for offspring is appropriate, with the paternally derived genome favoring greater care. The reason for such disagreement is not obvious because the maternally and paternally derived alleles at a locus have equal probabilities of being transmitted to each of the mother's ova and, therefore, would appear to have equal interests in a mother's offspring. However, if a female mates with a related male, her two alleles may have different probabilities of being present in the sperm that fertilize her ova. Natural selection can favor silencing of the maternally derived allele at a locus that enhances the quality of maternal care if the average patrilineal relatedness between a female and her mates decreases more rapidly than the average matrilineal relatedness. Just such an asymmetrical decrease in relatedness over time would be expected in a structured population in which patrilineal inbreeding is more common than matrilineal inbreeding.  相似文献   

6.
The activation of individual alleles during early embryogenesis was studied at the 6-phosphogluconate dehydrogenase gene locus of the Cyprinid fish Rutilus by means of starch gel electrophoresis. By using three alleles occurring at this locus, it was possible to discriminate between (1) maternally transmitted gene products stored in the egg cytoplasm, (2) newly synthesized protein of the maternally derived allele in the embryonic genome, and (3) newly synthesized protein of the paternally derived allele. It was found that, until the fifth day of development, maternal products were present in the embryo. By the seventh day after fertilization, these storage products were nearly exhausted, and a hemizygous phenotype for the maternally derived gene became visible. On the eighth day, the patterns of all four allelic combinations of the mating type used were demonstrable in the offspring. The findings suggest that for the alleles used in this study, the maternally derived gene is preferentially activated during embryogenesis.Supported by the Deutsche Forschungsgemeinschaft.  相似文献   

7.
Genomic imprinting is an epigenetic phenomenon leading to parent-of-origin specific differential expression of maternally and paternally inherited alleles. In plants, genomic imprinting has mainly been observed in the endosperm, an ephemeral triploid tissue derived after fertilization of the diploid central cell with a haploid sperm cell. In an effort to identify novel imprinted genes in Arabidopsis thaliana, we generated deep sequencing RNA profiles of F1 hybrid seeds derived after reciprocal crosses of Arabidopsis Col-0 and Bur-0 accessions. Using polymorphic sites to quantify allele-specific expression levels, we could identify more than 60 genes with potential parent-of-origin specific expression. By analyzing the distribution of DNA methylation and epigenetic marks established by Polycomb group (PcG) proteins using publicly available datasets, we suggest that for maternally expressed genes (MEGs) repression of the paternally inherited alleles largely depends on DNA methylation or PcG-mediated repression, whereas repression of the maternal alleles of paternally expressed genes (PEGs) predominantly depends on PcG proteins. While maternal alleles of MEGs are also targeted by PcG proteins, such targeting does not cause complete repression. Candidate MEGs and PEGs are enriched for cis-proximal transposons, suggesting that transposons might be a driving force for the evolution of imprinted genes in Arabidopsis. In addition, we find that MEGs and PEGs are significantly faster evolving when compared to other genes in the genome. In contrast to the predominant location of mammalian imprinted genes in clusters, cluster formation was only detected for few MEGs and PEGs, suggesting that clustering is not a major requirement for imprinted gene regulation in Arabidopsis.  相似文献   

8.
A PCR-based genomic scan has been undertaken to estimate the extent and ratio of maternally versus paternally methylated DNA regions in endosperm, embryo, and leaf of Zea mays (maize). Analysis of several inbred lines and their reciprocal crosses identified a large number of conserved, differentially methylated DNA regions (DMRs) that were specific to the endosperm. DMRs were hypomethylated at specific methylation-sensitive restriction sites upon maternal transmission, whereas upon paternal transmission, the methylation levels were similar to those observed in embryo and leaf. Maternal hypomethylation was extensive and offers a likely explanation for the 13% reduction in methyl-cytosine content of the endosperm compared with leaf tissue. DMRs showed identity to expressed genic regions, were observed early after fertilization, and maintained at a later stage of endosperm development. The implications of extensive maternal hypomethylation with respect to endosperm development and epigenetic reprogramming will be discussed.  相似文献   

9.
In the vast majority of sexually reproducing flowering plants, a ratio of 2 maternally derived genomes to 1 paternally derived genome (2m:1p) is essential for normal endosperm development, and therefore ultimately for seed development. Even in many pseudogamous apomicts, where the embryo develops without a paternal contribution, fertilisation of the endosperm to obtain the correct 2m:1p parental ratio is still necessary. How do autonomous apomicts, where both embryo and endosperm develop autonomously, circumvent this requirement? The background for the 2m:1p requirement is that the parental genomes are epigenetically different; in either genome, a set of genes is silenced in a sex-specific way by genomic imprinting. Removal of the imprints from the maternally derived endosperm genome leads to expression of normally maternally silenced genes, and effectively supplies the missing paternal genome. In Arabidopsis, we propose that a combination of the fie mutation and hypomethylation of the genome creates such a situation in the endosperm genome. As a result, in a fie mutant, hypomethylated ovule complete autonomous endosperm development takes place in the absence of fertilisation.  相似文献   

10.
Summary Interspecies intracytoplasmic sperm injection has been carried out to understand species-specific differences in oocyte environments and sperm components during fertilization. While sperm aster organization during cat fertilization requires a paternally derived centriole, mouse and hamster fertilization occur within the maternal centrosomal components. To address the questions of where sperm aster assembly occurs and whether complete fertilization is achieved in cat oocytes by interspecies sperm, we studied the fertilization processes of cat oocytes following the injection of cat, mouse, or hamster sperm. Male and female pronuclear formations were not different in the cat oocytes at 6 h following cat, mouse or hamster sperm injection. Microtubule asters were seen in all oocytes following intracytoplasmic injection of cat, mouse or hamster sperm. Immunocytochemical staining with a histone H3-m2K9 antibody revealed that mouse sperm chromatin is incorporated normally with cat egg chromatin, and that the cat eggs fertilized with mouse sperm enter metaphase and become normal 2-cell stage embryos. These results suggest that sperm aster formation is maternally dependent, and that fertilization processes and cleavage occur in a non-species specific manner in cat oocytes.  相似文献   

11.
Cryopreservation of spermatozoa is a strategy that has been used to conserve the sperm of animal species and animal strains that are valuable for biomedical research. A simple method for preserving spermatozoa after application of intracytoplasmic sperm injection (ICSI) is much needed. It has been shown previously that spermatozoa frozen at 20°C can activate oocytes and support full-term embryo development. However, epigenetic reprogramming could be affected by the environment and by the in vitro manipulation of gametes. Here, we investigated embryo epigenetic reprogramming including DNA methylation and histone modification, in embryos derived from sperm preserved at 20°C without cryoprotectants. The results showed that although both fertilization and embryo developmental competence were decreased, the dynamic epigenetic reprogramming of embryos derived from frozen sperm was similar to the reprogramming of embryos derived from fresh sperm. The results reported in this study indicate that sperm frozen without cryoprotectant is epigenetically safe for ICSI.  相似文献   

12.
Mouse embryos were derived from eggs heterozygous for alleles of the dimeric enzyme glucose phosphate isomerase (Gpi-1a/Gpi-1b) that had been fertilized with sperm carrying a third allele (Gpi-1c). This particular combination makes it possible to study the activity of the paternally derived as well as the maternally derived genes, the persistence of oocyte-coded enzyme throughout early development and the possible simultaneous expression of both the paternally derived allele and the maternal message. The different isozymes present in single embryos were separated by electrophoresis. The results show that the oocyte-coded glucose phosphate isomerase is gradually replaced by embryo-coded enzyme. Expression of the paternally derived allele was first detected at the morula stage, during which the translation of the maternally derived message seemed to be either exhausted or below the detection limit of our system. Some oocyte-coded enzyme persisted until after implantation.  相似文献   

13.
Zygotic gene activation (ZGA) is the critical event that governs the transition from maternal to embryonic control of development. In the mouse, ZGA occurs during the 2-cell stage and appears to be regulated by the time following fertilization, i.e. a zygotic clock, rather than by progression through the first cell cycle. The onset of ZGA must depend on maternally inherited proteins, and post-translational modification of these maternally derived proteins is likely to play a role in ZGA. Consistent with this prediction is that protein phosphorylation catalyzed by the cAMP-dependent protein kinase is involved in ZGA and that protein synthesis is not required for ZGA. Recent results suggest that ZGA may occur earlier than previously thought, i.e. not during the 2-cell stage, but rather in G2 of the 1-cell embryo. Thus ZGA may comprise a period of minor gene activation in the 1-cell embryo that is followed by a period of major gene activation in the 2-cell embryo. Following ZGA, the expression of constitutively activated genes may require an enhancer.  相似文献   

14.
15.
16.
Epigenetic Resetting of a Gene Imprinted in Plant Embryos   总被引:1,自引:0,他引:1  
Genomic imprinting resulting in the differential expression of maternal and paternal alleles in the fertilization products has evolved independently in placental mammals and flowering plants. In most cases, silenced alleles carry DNA methylation [1]. Whereas these methylation marks of imprinted genes are generally erased and reestablished in each generation in mammals [2], imprinting marks persist in endosperms [3], the sole tissue of reported imprinted gene expression in plants. Here we show that the maternally expressed in embryo 1 (mee1) gene of maize is imprinted in both the embryo and endosperm and that parent-of-origin-specific expression correlates with differential allelic methylation. This epigenetic asymmetry is maintained in the endosperm, whereas the embryonic maternal allele is demethylated on fertilization and remethylated later in embryogenesis. This report of imprinting in the plant embryo confirms that, as in mammals, epigenetic mechanisms operate to regulate allelic gene expression in both embryonic and extraembryonic structures. The embryonic methylation profile demonstrates that plants evolved a mechanism for resetting parent-specific imprinting marks, a necessary prerequisite for parent-of-origin-dependent gene expression in consecutive generations. The striking difference between the regulation of imprinting in the embryo and endosperm suggests that imprinting mechanisms might have evolved independently in both fertilization products of flowering plants.  相似文献   

17.
Acrosome-reacted CB6F1 mouse spermatozoa with slight flagellar motility were microinjected under the zona pellucida of CB6F1 mouse oocytes. Electron microscopy revealed the presence of swollen and decondensed sperm heads in the oocyte cytoplasm. Sixty-one percent of the microinjected oocytes reached a morphologically apparent two-cell stage, but chromosomal analysis demonstrated only haploid chromosomal complements in all cases. The exposure of microinjected oocytes to suspensions of spermatozoa of mice homozygous for a 2,4 reciprocal translocation resulted in normal fertilization and embryonic development with a maternally as well as a paternally derived haploid genome. Identical results were obtained with oocytes microinjected with medium and subjected to in vitro fertilization thereafter. Thus it can be suggested that the microinjected spermatozoa with insufficient flagellar motility are incorporated into the oocyte cytoplasm by phagocytosis. These spermatozoa do not induce a polyspermy block but induce the oocyte to parthenogenetic development.  相似文献   

18.
Arabidopsis haiku mutants reveal new controls of seed size by endosperm   总被引:2,自引:0,他引:2  
In flowering plants, maternal seed integument encloses the embryo and the endosperm, which are both derived from double fertilization. Although the development of these three components must be coordinated, we have limited knowledge of mechanisms involved in such coordination. The endosperm may play a central role in these mechanisms as epigenetic modifications of endosperm development, via imbalance of dosage between maternal and paternal genomes, affecting both the embryo and the integument. To identify targets of such epigenetic controls, we designed a genetic screen in Arabidopsis for mutants that phenocopy the effects of dosage imbalance in the endosperm. The two mutants haiku 1 and haiku 2 produce seed of reduced size that resemble seed with maternal excess in the maternal/paternal dosage. Homozygous haiku seed develop into plants indistinguishable from wild type. Each mutation is sporophytic recessive, and double-mutant analysis suggests that both mutations affect the same genetic pathway. The endosperm of haiku mutants shows a premature arrest of increase in size that causes precocious cellularization of the syncytial endosperm. Reduction of seed size in haiku results from coordinated reduction of endosperm size, embryo proliferation, and cell elongation of the maternally derived integument. We present further evidence for a control of integument development mediated by endosperm-derived signals.  相似文献   

19.
Genomic imprinting is an epigenetic mechanism controlling parental-origin-specific gene expression. Perturbing the parental origin of the distal portion of mouse chromosome 12 causes alterations in the dosage of imprinted genes resulting in embryonic lethality and developmental abnormalities of both embryo and placenta. A 1 Mb imprinted domain identified on distal chromosome 12 contains three paternally expressed protein-coding genes and multiple non-coding RNA genes, including snoRNAs and microRNAs, expressed from the maternally inherited chromosome. An intergenic, parental-origin-specific differentially methylated region, the IG-DMR, which is unmethylated on the maternally inherited chromosome, is necessary for the repression of the paternally expressed protein-coding genes and for activation of the maternally expressed non-coding RNAs: its absence causes the maternal chromosome to behave like the paternally inherited one. Here, we characterise the developmental consequences of this epigenotype switch and compare these with phenotypes associated with paternal uniparental disomy of mouse chromosome 12. The results show that the embryonic defects described for uniparental disomy embryos can be attributed to this one cluster of imprinted genes on distal chromosome 12 and that these defects alone, and not the mutant placenta, can cause prenatal lethality. In the placenta, the absence of the IG-DMR has no phenotypic consequence. Loss of repression of the protein-coding genes occurs but the non-coding RNAs are not repressed on the maternally inherited chromosome. This indicates that the mechanism of action of the IG-DMR is different in the embryo and the placenta and suggests that the epigenetic control of imprinting differs in these two lineages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号