首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tendon-bone insertion injuries such as rotator cuff and anterior cruciate ligament injuries are currently highly common and severe. The key method of treating this kind of injury is the reconstruction operation. The success of this reconstructive process depends on the ability of the graft to incorporate into the bone. Recently, there has been substantial discussion about how to enhance the integration of tendon and bone through biological methods. Stem cells like bone marrow mesenchymal stem cells (MSCs), tendon stem/progenitor cells, synovium-derived MSCs, adipose-derived stem cells, or periosteum-derived periosteal stem cells can self-regenerate and potentially differentiate into different cell types, which have been widely used in tissue repair and regeneration. Thus, we concentrate in this review on the current circumstances of tendon-bone healing using stem cell therapy.  相似文献   

2.
Tendon stem cells are multi‐potent adult stem cells with broad differentiation plasticity that render them of great importance in cell‐based therapies for the repair of tendons. We called them tendon‐derived stem cells (TDSCs) to indicate the tissue origin from which the stem cells were isolated in vitro. Based on the work of other sources of MSCs and specific work on TDSCs, some properties of TDSCs have been characterized / implicated in vitro. Despite these findings, tendon stem cells remained controversial cells. This was because MSCs residing in different organs, although very similar, were not identical cells. There is evidence of differences in stem cell‐related properties and functions related to tissue origins. Similar to other stem cells, tendon stem cells were identified and characterized in vitro. Their in vivo identities, niche (both anatomical locations and regulators) and roles in tendons were less understood. This review aims to summarize the current evidence of the possible anatomical locations and niche signals regulating the functions of tendon stem cells in vivo. The possible roles of tendon stem cells in tendon healing and non‐healing are presented. Finally, the potential strategies for understanding the in vivo identity of tendon stem cells are discussed.  相似文献   

3.
Wu X  Ren J  Li J 《Cytotherapy》2012,14(5):555-562
The use of tissue-engineering techniques such as stem-cell therapy to renew injured tissues is a promising strategy in regenerative medicine. As a cell-delivery vehicle, fibrin glues (FG) facilitate cell attachment, growth and differentiation and, ultimately, tissue formation and organization by its three-dimensional structure. Numerous studies have provided evidence that stromal cells derived from bone marrow (bone marrow stromal cells; BMSC) and adipose tissue (adipose-derived stromal cells; ADSC) contain a population of adult multipotent mesenchymal stromal cells (MSC) and endothelial progenitor cells that can differentiate into several lineages. By combining MSC with FG, the implantation could take advantage of the mutual benefits. Researchers and physicians have pinned their hopes on stem cells for developing novel approaches in regenerative medicine. This review focuses on the therapeutic potential of MSC with FG in bone defect reconstruction, cartilage and tendon injury repair, ligament, heart and nerve regeneration, and, furthermore, wound healing.  相似文献   

4.
Stem cells have evoked considerable excitement in the animal-owning public because of the promise that stem cell technology could deliver tissue regeneration for injuries for which natural repair mechanisms do not deliver functional recovery and for which current therapeutic strategies have minimal effectiveness. This review focuses on the current use of stem cells within veterinary medicine, whose practitioners have used mesenchymal stem cells (MSCs), recovered from either bone marrow or adipose tissue, in clinical cases primarily to treat strain-induced tendon injury in the horse. The background on why this treatment has been advocated, the data supporting its use and the current encouraging outcome from clinical use in horses treated with bone-marrow-derived cells are presented together with the future challenges of stem-cell therapy for the veterinary community.  相似文献   

5.
Mesenchymal stem cells (MSCs) are the most popular among the adult stem cells in tissue engineering and regenerative medicine. Since their discovery and functional characterization in the late 1960s and early 1970s, MSCs or MSC‐like cells have been obtained from various mesodermal and non‐mesodermal tissues, although majority of the therapeutic applications involved bone marrow‐derived MSCs. Based on its mesenchymal origin, it was predicted earlier that MSCs only can differentiate into mesengenic lineages like bone, cartilage, fat or muscle. However, varied isolation and cell culturing methods identified subsets of MSCs in the bone marrow which not only differentiated into mesenchymal lineages, but also into ectodermal and endodermal derivatives. Although, true pluripotent status is yet to be established, MSCs have been successfully used in bone and cartilage regeneration in osteoporotic fracture and arthritis, respectively, and in the repair of cardiac tissue following myocardial infarction. Immunosuppressive properties of MSCs extend utility of MSCs to reduce complications of graft versus host disease and rheumatoid arthritis. Homing of MSCs to sites of tissue injury, including tumor, is well established. In addition to their ability in tissue regeneration, MSCs can be genetically engineered ex vivo for delivery of therapeutic molecule(s) to the sites of injury or tumorigenesis as cell therapy vehicles. MSCs tend to lose surface receptors for trafficking and have been reported to develop sarcoma in long‐term culture. In this article, we reviewed the current status of MSCs with special emphasis to therapeutic application in bone‐related diseases. J. Cell. Biochem. 111: 249–257, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Tendons and ligaments are often affected by mechanical injuries or chronic impairment but other than muscle or bone they possess a low healing capacity. So far, little is known about regeneration of tendons and the role of tendon precursor cells in that process. We hypothesize that perivascular cells of tendon capillaries are progenitors for functional tendon cells and are characterized by expression of marker genes and proteins typical for mesenchymal stem cells and functional tendon cells. Immunohistochemical characterization of biopsies derived from intact human supraspinatus tendons was performed. From these biopsies perivascular cells were isolated, cultured, and characterized using RT-PCR and Western blotting. We have shown for the first time that perivascular cells within tendon tissue express both tendon- and stem/precursor cell-like characteristics. These findings were confirmed by results from in vitro studies focusing on cultured perivascular cells isolated from human supraspinatus tendon biopsies. The results suggest that the perivascular niche may be considered a source for tendon precursor cells. This study provides further information about the molecular nature and localization of tendon precursor cells, which is the basis for developing novel strategies towards tendon healing and facilitated regeneration. H. Tempfer and A. Wagner have contributed equally to this paper.  相似文献   

7.
Rotator cuff tears are frequent shoulder problems that are usually dealt with surgical repair. Despite improved surgical techniques, the tendon-to-bone healing rate is unsatisfactory due to difficulties in restoring the delicate transitional tissue between bone and tendon. It is essential to understand the molecular mechanisms that determine this failure. The study of the molecular environment during embryogenesis and during normal healing after injury is key in devising strategies to get a successful repair. Mesenchymal stem cells (MSC) can differentiate into different mesodermal tissues and have a strong paracrine, anti-inflammatory, immunoregulatory and angiogenic potential. Stem cell therapy is thus a potentially effective therapy to enhance rotator cuff healing. Promising results have been reported with the use of autologous MSC of different origins in animal studies: they have shown to have better healing properties, increasing the amount of fibrocartilage formation and improving the orientation of fibrocartilage fibers with less immunologic response and reduced lymphocyte infiltration. All these changes lead to an increase in biomechanical strength. However, animal research is still inconclusive and more experimental studies are needed before human application. Future directions include expanded stem cell therapy in combination with growth factors or different scaffolds as well as new stem cell types and gene therapy.  相似文献   

8.
The attachment between tendon and bone occurs across a complex transitional tissue that minimizes stress concentrations and allows for load transfer between muscles and skeleton. This unique tissue cannot be reconstructed following injury, leading to high incidence of recurrent failure and stressing the need for new clinical approaches. This review describes the current understanding of the development and function of the attachment site between tendon and bone. The embryonic attachment unit, namely, the tip of the tendon and the bone eminence into which it is inserted, was recently shown to develop modularly from a unique population of Sox9‐ and Scx‐positive cells, which are distinct from tendon fibroblasts and chondrocytes. The fate and differentiation of these cells is regulated by transforming growth factor beta and bone morphogenetic protein signaling, respectively. Muscle loads are then necessary for the tissue to mature and mineralize. Mineralization of the attachment unit, which occurs postnatally at most sites, is largely controlled by an Indian hedgehog/parathyroid hormone‐related protein feedback loop. A number of fundamental questions regarding the development of this remarkable attachment system require further study. These relate to the signaling mechanism that facilitates the formation of an interface with a gradient of cellular and extracellular phenotypes, as well as to the interactions between tendon and bone at the point of attachment. Birth Defects Research (Part C) 102:101–112, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Development of the musculoskeletal system requires coordinated formation of distinct types of tissues, including bone, cartilage, muscle, and tendon. Compared to muscle, cartilage, and bone, cellular and molecular bases of tendon development have not been well understood due to the lack of tendon cell lines. The purpose of this study was to establish and characterize tendon cell lines. Three clonal tendon cell lines (TT-E4, TT-G11, and TT-D6) were established using transgenic mice harboring a temperature-sensitive mutant of SV40 large T antigen. Proliferation of these cells was significantly enhanced by treatment with bFGF and TGF-beta but not BMP2. Tendon phenotype-related genes such as those encoding scleraxis, Six1, EphA4, COMP, and type I collagen were expressed in these tendon cell clones. In addition to tendon phenotype-related genes, expression of osteopontin and Cbfal was observed. These clonal cell lines formed hard fibrous connective tissue when implanted onto chorioallantoic membrane in ovo. Furthermore, these cells also formed tendon-like tissues when they were implanted into defects made in patella tendon in mice. As these tendon cell lines also produced fibrocartilaginous tissues in tendon defect implantation experiments, mesenchymal stem cell properties were examined. Interestingly, these cells expressed genes related to osteogenic, chondrogenic, and adipogenic lineages at low levels when examined by RT-PCR. TT-G11 and TT-E4 cells differentiated into either osteoblasts or adipocytes, respectively, when they were cultured in cognate differentiation medium. These observations indicated that the established tendon cell line possesses mesenchymal stem cell-like properties, suggesting the existence of mesenchymal stem cell in tendon tissue.  相似文献   

10.
Human mesenchymal stem cells (MSCs) derived from adult tissues have been considered a candidate cell type for cell‐based tissue engineering and regenerative medicine. These multipotent cells have the ability to differentiate along several mesenchymal lineages and possibly along non‐mesenchymal lineages. MSCs possess considerable immunosuppressive properties that can influence the surrounding tissue positively during regeneration, but perhaps negatively towards the pathogenesis of cancer and metastasis. The balance between the naïve stem state and differentiation is highly dependent on the stem cell niche. Identification of stem cell niche components has helped to elucidate the mechanisms of stem cell maintenance and differentiation. Ultimately, the fate of stem cells is dictated by their microenvironment. In this review, we describe the identification and characterization of bone marrow‐derived MSCs, the properties of the bone marrow stem cell niche, and the possibility and likelihood of MSC involvement in cancer progression and metastasis. J. Cell. Physiol. 222: 268–277, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Cartilage and tendon injuries are a significant source of animal wastage and financial loss within the horse-racing industry. Moreover, both cartilage and tendon have limited intrinsic capacity for self-repair, and the functionally inferior tissue produced within a lesion may reduce performance and increase the risk of reinjury. Stem cells offer tremendous potential for accelerating and improving tissue healing, and adult mesenchymal stem cells (MSCs) are already used to treat cartilage and tendon injuries in horses. However, MSCs are scarce in the bone marrow isolates used, have limited potential for proliferation and differentiation in vitro, and do not appear to noticeably improve long-term functional repair. Embryonic stem cells (ESCs) or induced pluripotent stem (iPS) cells could overcome many of the limitations and be used to generate tissues of value for equine regenerative medicine. To date, six lines of putative ESCs have been described in the horse. All expressed stem cell-associated markers and exhibited longevity and pluripotency in vitro, but none have been proven to exhibit pluripotency in vivo. Moreover, it is becoming clear that the markers used to characterize the putative ESCs were inadequate, primarily because studies in domestic species have revealed that they are not specific to ESCs or the pluripotent inner cell mass, but also because the function of most in the maintenance of pluripotency is not known. Future derivation and validation of equine embryonic or other pluripotent stem cells would benefit greatly from a reliable panel of molecular markers specific to pluripotent cells of the developing horse embryo.  相似文献   

12.
Background aimsDelivery of bone marrow–derived stem and progenitor cells to the site of injury is an effective strategy to enhance bone healing. An alternate approach is to mobilize endogenous, heterogeneous stem cells that will home to the site of injury. AMD3100 is an antagonist of the chemokine receptor 4 (CXCR4) that rapidly mobilizes stem cell populations into peripheral blood. Our hypothesis was that increasing circulating numbers of stem and progenitor cells using AMD3100 will improve bone fracture healing.MethodsA transverse femoral fracture was induced in C57BL/6 mice, after which they were subcutaneously injected for 3 d with AMD3100 or saline control. Mesenchymal stromal cells, hematopoietic stem and progenitor cells and endothelial progenitor cells in the peripheral blood and bone marrow were evaluated by means of flow cytometry, automated hematology analysis and cell culture 24 h after injection and/or fracture. Healing was assessed up to 84 d after fracture by histomorphometry and micro–computed tomography.ResultsAMD3100 injection resulted in higher numbers of circulating mesenchymal stromal cells, hematopoietic stem cells and endothelial progenitor cells. Micro-computed tomography data demonstrated that the fracture callus was significantly larger compared with the saline controls at day 21 and significantly smaller (remodeled) at day 84. AMD3100-treated mice have a significantly higher bone mineral density than do saline-treated counterparts at day 84.ConclusionsOur data demonstrate that early cell mobilization had significant positive effects on healing throughout the regenerative process. Rapid mobilization of endogenous stem cells could provide an effective alternative strategy to cell transplantation for enhancing tissue regeneration.  相似文献   

13.
14.
While extracellular matrix (ECM)‐derived coatings have the potential to direct the response of cell populations in culture, there is a need to investigate the effects of ECM sourcing and processing on substrate bioactivity. To develop improved cell culture models for studying adipogenesis, the current study examines the proliferation and adipogenic differentiation of human adipose‐derived stem/stromal cells (ASCs) on a range of ECM‐derived coatings. Human decellularized adipose tissue (DAT) and commercially available bovine tendon collagen (COL) are digested with α‐amylase or pepsin to prepare the coatings. Physical characterization demonstrates that α‐amylase digestion generates softer, thicker, and more stable coatings, with a fibrous tissue‐like ultrastructure that is lost in the pepsin‐digested thin films. ASCs cultured on the α‐amylase‐digested ECM have a more spindle‐shaped morphology, and proliferation is significantly enhanced on the α‐amylase‐digested DAT coatings. Further, the α‐amylase‐digested DAT provides a more pro‐adipogenic microenvironment, based on higher levels of adipogenic gene expression, glycerol‐3‐phosphate dehydrogenase (GPDH) enzyme activity, and perilipin staining. Overall, this study supports α‐amylase digestion as a new approach for generating bioactive ECM‐derived coatings, and demonstrates tissue‐specific bioactivity using adipose‐derived ECM to enhance ASC proliferation and adipogenic differentiation.  相似文献   

15.
Detection of the optimal cell transplantation strategy for myocardial infarction (MI) has attracted a great deal of attention. Commitment of engrafted cells to angiogenesis within damaged myocardium is regarded as one of the major targets in cell‐based cardiac repair. Bone marrow–derived CD34‐positive cells, a well‐characterized population of stem cells, might represent highly functional endothelial progenitor cells and result in the formation of new blood vessels. Recently, physical microenvironment (extracellular matrix stiffness) around the engrafted cells was found to exert an essential impact on their fate. Stem cells are able to feel and respond to the tissue‐like matrix stiffness to commit to a relevant lineage. Notably, the infarct area after MI experiences a time‐dependent stiffness change from flexible to rigid. Our previous observations demonstrated myocardial stiffness‐dependent differentiation of the unselected bone marrow–derived mononuclear cells (BMMNCs) along endothelial lineage cells. Myocardial stiffness (~42 kPa) within the optimal time domain of cell engraftment (at week 1 to 2) after MI provided a more favourable physical microenvironment for cell specification and cell‐based cardiac repair. However, the difference in tissue stiffness‐dependent cell differentiation between the specific cell subsets expressing and no expressing CD34 phenotype remains uncertain. We presumed that CD34‐positive cell subsets facilitated angiogenesis and subsequently resulted in cardiac repair under induction of infarcted myocardium‐like matrix stiffness compared with CD34‐negative cells. If the hypothesis were true, it would contribute greatly to detect the optimal cell subsets for cell therapy and to establish an optimized therapy strategy for cell‐based cardiac repair.  相似文献   

16.
Adipose tissue (AT) is recognized as a complex organ involved in major home-ostatic body functions, such as food intake, energy balance, immunomodulation, development and growth, and functioning of the reproductive organs. The role of AT in tissue and organ homeostasis, repair and regeneration is increasingly recognized. Different AT compartments (white AT, brown AT and bone marrow AT) and their interrelation with bone metabolism will be presented. AT-derived stem cell populations - adipose-derived mesenchymal stem cells and pluripotent-like stem cells. Multilineage differentiating stress-enduring and dedifferentiated fat cells can be obtained in relatively high quantities compared to other sources. Their role in different strategies of bone and fracture healing tissue engineering and cell therapy will be described. The current use of AT- or AT-derived stem cell populations for fracture healing and bone regenerative strategies will be presented, as well as major challenges in furthering bone regenerative strategies to clinical settings.  相似文献   

17.
Differentiation of mesenchymal stem cells (MSCs) into anterior cruciate ligament (ACL) cells is regulated by many factors. Mechanical stress affects the healing and remodeling process of ACL after surgery in important ways. Besides, co-culture system had also showed the promise to induce MSCs toward different kinds of cells on current research. The purpose of this study was to investigate the gene expression of ACL cells' major extracellular matrix (ECM) component molecules of MSCs under three induction groups. In addition, to follow our previous study, cell electrophoresis technique and mRNA level gene expression of MSC protein were also used to analyze the differentiation of MSCs. The results reveal that specific regulatory signals which released from ACL cells appear to be responsible for supporting the selective differentiation toward ligament cells in co-culture system and mechanical stress promotes the secretion of key ligament ECM components. Therefore, the combined regulation could assist the development of healing and remolding of ACL tissue engineering. Furthermore, this study also verifies that cell electrophoresis could be used in investigation of cell differentiation. Importantly, analysis of the data suggests the feasibility of utilizing MSCs in clinical applications for repairing or regenerating ACL tissue.  相似文献   

18.
19.
Tendon is a strong connective tissue that transduces muscle-generated forces into skeletal motion. In fulfilling this role, tendons are subjected to repeated mechanical loading and high stress, which may result in injury. Tissue engineering with stem cells offers the potential to replace injured/damaged tissue with healthy, new living tissue. Critical to tendon tissue engineering is the induction and guidance of stem cells towards the tendon phenotype. Typical strategies have relied on adult tissue homeostatic and healing factors to influence stem cell differentiation, but have yet to achieve tissue regeneration. A novel paradigm is to use embryonic developmental factors as cues to promote tendon regeneration. Embryonic tendon progenitor cell differentiation in vivo is regulated by a combination of mechanical and chemical factors. We propose that these cues will guide stem cells to recapitulate critical aspects of tenogenesis and effectively direct the cells to differentiate and regenerate new tendon. Here, we review recent efforts to identify mechanical and chemical factors of embryonic tendon development to guide stem/progenitor cell differentiation toward new tendon formation, and discuss the role this work may have in the future of tendon tissue engineering.  相似文献   

20.
The development of a tissue‐engineered alternative for current ligament grafts requires the creation of a fibrocartilaginous interface between the engineered ligament midsubstance and bone tissue. Therefore, the focus of this study was to examine the potential for cartilaginous extracellular matrix (ECM) formation by altering culture parameters for bovine anterior cruciate ligament (ACL) fibroblasts and marrow stromal cells (MSCs). Specifically, cells were cultured without chondrogenic media supplements on aggrecan‐coated surfaces, tissue culture‐treated control surfaces, and nonadhesive surfaces that promoted cell aggregation, and examined over 14 days. Aggrecan‐coated surfaces promoted the aggregation of ACL fibroblasts and MSCs within 24 h after seeding. Aggrecan gene expression was significantly upregulated in cell aggregates, regardless of how cell clustering was induced, with as much as 10.9 ± 1.2‐fold upregulation in ACL fibroblasts and 9.7 ± 1.1‐fold in MSCs after 3 days, compared to control surfaces. Dimethylmethylene blue (DMMB) results and immunostaining verified the presence of aggrecan in ACL fibroblast and MSC aggregates throughout the culture period. Results indicate that ACL fibroblasts retained the ability to alter their gene expression and produce aggrecan, though MSCs, in general, had a more consistent response to aggregation. These findings support the use of aggregate‐inducing materials to encourage production of aggrecan and suggest that altering the degree of clustering could produce a range of phenotypes from a single cell source. As such, this represents a first step which may inform future approaches to producing tissue‐engineered ligament grafts. Biotechnol. Bioeng. 2011; 108:151–162. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号