首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
FGFs (fibroblast growth factors) and their receptors (FGFRs) play essential roles in tightly regulating cell proliferation, survival, migration and differentiation during development and adult life. Deregulation of FGFR signalling, on the other hand, has been associated with many developmental syndromes, and with human cancer. In cancer, FGFRs have been found to become overactivated by several mechanisms, including gene amplification, chromosomal translocation and mutations. FGFR alterations are detected in a variety of human cancers, such as breast, bladder, prostate, endometrial and lung cancers, as well as haematological malignancies. Accumulating evidence indicates that FGFs and FGFRs may act in an oncogenic fashion to promote multiple steps of cancer progression by inducing mitogenic and survival signals, as well as promoting epithelial-mesenchymal transition, invasion and tumour angiogenesis. Therapeutic strategies targeting FGFs and FGFRs in human cancer are therefore currently being explored. In the present review we will give an overview of FGF signalling, the main FGFR alterations found in human cancer to date, how they may contribute to specific cancer types and strategies for therapeutic intervention.  相似文献   

2.
The fibroblast growth factor receptors (FGFR) play essential roles both during development and in the adult. Upon ligand binding, FGFRs induce intracellular signaling networks that tightly regulate key biological processes, such as cell proliferation, survival, migration, and differentiation. Deregulation of FGFR signaling can thus alter tissue homeostasis and has been associated with several developmental syndromes as well as with many types of cancer. In human cancer, FGFRs have been found to be deregulated by multiple mechanisms, including aberrant expression, mutations, chromosomal rearrangements, and amplifications. In this review, we will give an overview of the main FGFR alterations described in human cancer to date and discuss their contribution to cancer progression.  相似文献   

3.
FGFs, in a complex with their receptors (FGFRs) and heparan sulfate (HS), are responsible for a range of cellular functions, from embryogenesis to metabolism. Both germ line and somatic FGFR mutations are known to play a role in a range of diseases, most notably craniosynestosis dysplasias, dwarfism and cancer. Because of the ability of FGFR signalling to induce cell proliferation, migration and survival, FGFRs are readily co-opted by cancer cells. Mutations in, and amplifications of, these receptors are found in a range of cancers with some of the most striking clinical findings relating to their contribution to pathogenesis and progression of female cancers. Here, we outline the molecular mechanisms of FGFR signalling and discuss the role of this pathway in women's cancers, focusing on breast, endometrial, ovarian and cervical carcinomas, and their associated preclinical and clinical data. We also address the rationale for therapeutic intervention and the need for FGFR-targeted therapy to selectively target cancer cells in view of the fundamental roles of FGF signalling in normal physiology.  相似文献   

4.
Integration of signalling downstream of individual receptor tyrosine kinases (RTKs) is crucial to fine‐tune cellular homeostasis during development and in pathological conditions, including breast cancer. However, how signalling integration is regulated and whether the endocytic fate of single receptors controls such signalling integration remains poorly elucidated. Combining quantitative phosphoproteomics and targeted assays, we generated a detailed picture of recycling‐dependent fibroblast growth factor (FGF) signalling in breast cancer cells, with a focus on distinct FGF receptors (FGFRs). We discovered reciprocal priming between FGFRs and epidermal growth factor (EGF) receptor (EGFR) that is coordinated at recycling endosomes. FGFR recycling ligands induce EGFR phosphorylation on threonine 693. This phosphorylation event alters both FGFR and EGFR trafficking and primes FGFR‐mediated proliferation but not cell invasion. In turn, FGFR signalling primes EGF‐mediated outputs via EGFR threonine 693 phosphorylation. This reciprocal priming between distinct families of RTKs from recycling endosomes exemplifies a novel signalling integration hub where recycling endosomes orchestrate cellular behaviour. Therefore, targeting reciprocal priming over individual receptors may improve personalized therapies in breast and other cancers.  相似文献   

5.
In this review, the evidence for a role of fibroblast growth factor receptor (FGFR) mediated signalling in carcinogenesis are considered and relevant underlying mechanisms highlighted. FGF signalling mediated by FGFR follows a classic receptor tyrosine kinase signalling pathway and its deregulation at various points of its cascade could result in malignancy. Here we review the accumulating reports that revealed the association of FGF/FGFRs to various types of cancer at a genetic level, along with in vitro and in vivo evidences available so far, which indicates the functional involvement of FGF signalling in tumour formation and progression. An increasing number of drugs against the FGF pathways is currently in clinical testing. We will discuss the strategies for future FGF research in cancer and translational approaches.  相似文献   

6.
Fibroblast growth factors (FGFs) signal through FGF receptors (FGFRs), which are a sub-family of the superfamily of receptor tyrosine kinases, to regulate human development and metabolism. Uncontrolled FGF signaling is responsible for diverse array of developmental disorders, most notably skeletal syndromes due to FGFR gain-of-function mutations. Studies in the last few years have provided significant evidence for the importance of FGF signaling in the pathogenesis of diverse cancers, including endometrial and bladder cancers. FGFs are both potent mitogenic and angiogenic factors and can contribute to carcinogenesis by stimulating cell proliferation and tumor angiogenesis. Gene knockout and pharmacological inhibition of FGFRs in in vivo and in vitro models validate FGFRs as a target for cancer treatment. Considerable efforts are being expended to develop specific, small-molecule inhibitors for treating FGFR-driven cancers. Recent reviews on the FGF/FGFR system have focused primarily on signaling, pathophysiology, and functions in cancer. In this article, we review the key roles of FGFR in cancer, provide an update on the status of clinical trials with small-molecule FGFR inhibitors, and discuss how the current structural data on FGFR kinases guide the design and characterization of new FGFR inhibitors.  相似文献   

7.
8.
Fibroblast growth factors (FGFs) and their receptors (FGFRs) are known to play a critical role in a variety of fundamental processes, including wound healing, angiogenesis, and development of multiple organ systems. Mutations in the FGFR gene family have been linked to a series of syndromes (the craniosynostosis syndromes) whose primary phenotype involves aberrant development of the craniofacial skeleton. Craniosynostosis syndrome-linked FGFR mutations have been shown to be gain of function in terms of receptor activation and have been presumed to result in increased levels of FGF/FGFR signaling. Unfortunately, studies attempting to link expression of mutant FGFRs with changes in cellular phenotype have yielded conflicting results. In an effort to better understand the biochemical consequences of these mutations on receptor function, here we have investigated the effect of the FGFR2C278F mutation of Crouzon craniosynostosis syndrome on receptor trafficking, ubiquitination, degradation, and signaling. We find that FGFR2C278F exhibits diminished glycosylation, increased degradation, and limited cellular sublocalization in the osteoblastic cell line, MC3T3E1(C4). Additionally, we show that trafficking and autoactivation of wild type FGFR2 is glycosylation-dependent. Both FGFR2C278F and unglycosylated wild type FGFR2 signal through phospholipase Cgamma in a ligand-independent manner as well as exhibit dramatically increased binding to the adaptor protein, Frs2. These findings suggest that autoactive FGFR2 can signal from intracellular compartments. Based upon our results, we propose that the functional signaling of craniosynostosis mutant, autoactive receptors is limited in some cell types by protective cellular responses, such as increased trafficking to lysosomes and proteasomes for degradation.  相似文献   

9.
Signalling by fibroblast growth factors (FGFs) through FGF receptors (FGFRs) depends on the cell-surface polysaccharide heparan sulphate (HS) [1] [2]. HS has an ordered domain structure of highly diverse saccharide motifs that present unique displays of sulphate, carboxyl and hydroxyl groups [3]. These motifs interact with many proteins, particularly growth factors. HS binds both to FGFs [4] [5] [6] and FGFRs [7], and probably activates signalling by facilitating ligand-induced receptor dimerisation [8] [9]. Nevertheless, the extent to which specific HS saccharide sequences play a regulatory role has not been established. By screening a library of structurally diverse HS decasaccharides in bioassays of FGF signalling mediated by three different FGFR isoforms, we found that saccharides showed specificity for both ligands and receptors; some saccharides selectively activated FGF signalling through different FGFR isoforms, others acted as negative regulators. We conclude that HS saccharides play critical roles in dictating the specificity of ligand-receptor interactions in FGFR signalling. Controlled alterations in HS structures [10] would provide a mechanism for regulation of cellular responsiveness to growth factors that bind HS.  相似文献   

10.
The present investigation extends our previous studies on PGF2alpha-mediated signalling in osteoblast metabolism. In particular, the role of PGF2alpha as modulator of heparan sulphate proteoglycans (HSPGs), fibroblast growth factor 2 (FGF-2) and fibroblast growth factor receptors (FGFRs) was evaluated. We hereby reported the novel observation that PGF2alpha was able to promote the formation of HSPGs/FGF-2/FGFRs complexes. Moreover, our data suggested that PGF2alpha could induce new synthesis of heparan sulphate (HS) chains on osteoblasts by a mechanism involving a modulation of MAPK signalling and that HS is required for the regulation of FGF-2 induced by PGF2alpha. Indeed, a proteolytic cleavage of HSPGs with heparinase III (Hep III) prior to PGF2alpha administration down-regulated the basal expression of phospho-p44/42, likely inhibiting FGFRs tyrosine kinase activity. Interestingly, MAPK signalling influenced syntheses and subcellular localization of FGF-2, its specific receptor and HS. In addition, the proteolytic cleavage by Hep III and the MAPK kinase inhibition by PD-98059 also revealed that PGF2alpha induced cell proliferation is dependent on HSPGs and FGF-2 specific receptor, respectively. Of further relevance of this study, we demonstrated, by using a specific siRNA for FGFR1, that PGF2alpha modulates Runx2 expression by FGFR1 and HS.  相似文献   

11.
Fibroblast growth factor receptor 3 (FGFR3) is a key regulator of growth and differentiation, whose aberrant activation causes a number of genetic diseases including achondroplasia and cancer. Hsp90 is a specialized molecular chaperone involved in stabilizing a select set of proteins termed clients. Here, we delineate the relationship of Hsp90 and co-chaperone Cdc37 with FGFR3 and the FGFR family. FGFR3 strongly associates with these chaperone complexes and depends on them for stability and function. Inhibition of Hsp90 function using the geldanamycin analog 17-AAG induces the ubiquitination and degradation of FGFR3 and reduces the signaling capacity of FGFR3. Other FGFRs weakly interact with these chaperones and are differentially influenced by Hsp90 inhibition. The Hsp90-related ubiquitin ligase CHIP is able to interact and destabilize FGFR3. Our results establish FGFR3 as a strong Hsp90 client and suggest that modulating Hsp90 chaperone complexes may beneficially influence the stability and function of FGFR3 in disease.  相似文献   

12.
Fibroblast growth factor (FGF) plays an important role in human embryogenesis, angiogenesis, cell proliferation, and differentiation. Carcinogenesis is accompanied by aberrant constitutive activation of FGF receptors (FGFRs) resulting from missense mutation in the FGFR1-4 genes, generation of chimeric oncogenes, FGFR1-4 gene amplification, alternative splicing shift toward formation of mesenchymal FGFR isoforms, and FGFR overexpression. Altogether, these alterations contribute to auto-and paracrine stimulation of cancer cells and neoangiogenesis. Certain missense mutations are found at a high rate in urinary bladder cancer and can be used for non-invasive cancer recurrence diagnostics by analyzing urine cell pellet DNA. Chimeric FGFR1/3 and amplified FGFR1/2 genes can predict cell response to the targeted therapy in various oncological diseases. In recent years, high-throughput sequencing has been used to analyze exomes of virtually all human tumors, which allowed to construct phylogenetic trees of clonal cancer evolution with special emphasis on driver mutations in FGFR1-4 genes. At present, FGFR blockers, such as multi-kinase inhibitors, specific FGFR inhibitors, and FGF ligand traps are being tested in clinical trials. In this review, we discuss current data on the functioning of the FGFR family proteins in both normal and cancer cells, mutations in the FGFR1-4 genes, and mechanisms underlying their oncogenic potential, which might be interesting to a broad range of scientists searching for specific tumor markers and targeted anti-cancer drugs.  相似文献   

13.
Fibroblast growth factors (FGFs) are potent mitogens, morphogens, and inducers of angiogenesis, and FGF signaling governs the genesis of diverse tissues and organs from the earliest stages. With such fundamental embryonic and homeostatic roles, it follows that aberrant FGF signaling underlies a variety of diseases. Pathological modifications to FGF expression are known to cause salivary gland aplasia and autosomal dominant hypophosphatemic rickets, while mutations in FGF receptors (FGFRs) result in a range of skeletal dysplasias. Anomalous FGF signaling is also associated with cancer development and progression. Examples include the overexpression of FGF2 and FGF6 in prostate cancer, and FGF8 overexpression in breast and prostate cancers. Alterations in FGF signaling regulators also impact tumorigenesis, which is exemplified by the down-regulation of Sprouty 1, a negative regulator of FGF signaling, in prostate cancer. In addition, several FGFRs are mutated in human cancers (including FGFR2 in gastric cancer and FGFR3 in bladder cancer). We recently identified intriguing alterations in the FGF pathway in a novel model of bladder carcinoma that consists of a parental cell line (TSU-Pr1/T24) and two sublines with increasing metastatic potential (TSU-Pr1-B1 and TSU-Pr1-B2), which were derived successively through in vivo cycling. It was found that the increasingly metastatic sublines (TSU-Pr1-B1 and TSU-Pr1-B2) had undergone a mesenchymal to epithelial transition. FGFR2IIIc expression, which is normally expressed in mesenchymal cells, was increased in the epithelial-like TSU-Pr1-B1 and TSU-Pr1-B2 sublines and FGFR2 knock-down was associated with the reversion of cells from an epithelial to a mesenchymal phenotype. These observations suggest that modified FGF pathway signaling should be considered when studying other cancer types.  相似文献   

14.
FGF signaling plays a ubiquitous role in human biology as a regulator of embryonic development, homeostasis and regenerative processes. In addition, aberrant FGF signaling leads to diverse human pathologies including skeletal, olfactory, and metabolic disorders as well as cancer. FGFs execute their pleiotropic biological actions by binding, dimerizing and activating cell surface FGF receptors (FGFRs). Proper regulation of FGF-FGFR binding specificity is essential for the regulation of FGF signaling and is achieved through primary sequence variations among the 18 FGFs and seven FGFRs. The severity of human skeletal syndromes arising from mutations that violate FGF-FGFR specificity is a testament to the importance of maintaining precision in FGF-FGFR specificity. The discovery that heparin/heparan sulfate (HS) proteoglycans are required for FGF signaling led to numerous models for FGFR dimerization and heralded one of the most controversial issues in FGF signaling. Recent crystallographic analyses have led to two fundamentally different models for FGFR dimerization. These models differ in both the stoichiometry and minimal length of heparin required for dimerization, the quaternary arrangement of FGF, FGFR and heparin in the dimer, and in the mechanism of 1:1 FGF-FGFR recognition and specificity. In this review, we provide an overview of recent structural and biochemical studies used to differentiate between the two crystallographic models. Interestingly, the structural and biophysical analyses of naturally occurring pathogenic FGFR mutations have provided the most compelling and unbiased evidences for the correct mechanisms for FGF-FGFR dimerization and binding specificity. The structural analyses of different FGF-FGFR complexes have also shed light on the intricate mechanisms determining FGF-FGFR binding specificity and promiscuity and also provide a plausible explanation for the molecular basis of a large number craniosynostosis mutations.  相似文献   

15.
In recent years the study of fibroblast growth factor receptors (FGFRs) in normal development and human genetic disorders has increased our understanding of some complex cellular processes. At least fifteen genetic disorders result from mutations within FGFR genes including skeletal dysplasias such as Apert syndrome and achondroplasia. In vitro experiments and the generation of animal models indicate that these mutations result in activation of the receptors and that FGFRs act as negative regulators of bone growth. FGFRs also play a role in wound healing and cancer. In this article, we review the expression of FGFRs in human development, the phenotypes resulting from FGFR mutations, and recent data identifying pathways downstream of the activated receptors.  相似文献   

16.
Fibroblast growth factor receptors (FGFRs) play diverse roles in the control of cell proliferation, cell differentiation, angiogenesis and development. Activating the mutations of FGFRs in the germline has long been known to cause a variety of skeletal developmental disorders, but it is only recently that a similar spectrum of somatic FGFR mutations has been associated with human cancers. Many of these somatic mutations are gain-of-function and oncogenic and create dependencies in tumor cell lines harboring such mutations. A combination of knockdown studies and pharmaceutical inhibition in preclinical models has further substantiated genomically altered FGFR as a therapeutic target in cancer, and the oncology community is responding with clinical trials evaluating multikinase inhibitors with anti-FGFR activity and a new generation of specific pan-FGFR inhibitors.  相似文献   

17.
Members of the fibroblast growth factor receptor tyrosine kinase family (FGFR1–4) play an important role in many signalling cascades. Although tightly regulated, aberrant activity of these enzymes may lead to, or become features of, disease pathologies including cancer. FGFR isoforms have been the subject of drug discovery programmes, with a number of kinase-domain inhibitors in pre-clinical and clinical development. Here, we present the first (83 % complete) backbone resonance assignments of apo-FGFR1 kinase.  相似文献   

18.
Fibroblast growth factors (FGFs) are signalling peptides that control important cell processes such as proliferation, differentiation, migration, adhesion and survival. Through binding to different types of receptor on the cell surface, these peptides can have different effects on a target cell, the effect achieved depending on many features. Thus, each of the known FGFs elicits specific biological responses. FGF receptors (FGFR 1–5) initiate diverse intracellular pathways, which in turn lead to a variety of results. FGFs also bind the range of FGFRs with a series of affinities and each type of cells expresses FGFRs in different qualitative and quantitative patterns, which also affect responses. To summarize, cell response to binding of an FGF ligand depends on type of FGF, FGF receptor and target cell, all interacting in concert. This review aims to examine properties of the FGF family and its members receptors. It also aims to summarize features of intracellular signalling and highlight differential effects of the various FGFs in different circumstances.  相似文献   

19.
成纤维细胞生长因子(FGFs)通过作用于其受体(成纤维细胞生长因子受体,FGFRs)在许多生理过程中发挥重要作用,如胚胎形成、创伤修复、血管生成等。近年来,越来越多的证据表明FGFRs是某些癌症的驱动基因,并且以"细胞自治"的方式维持肿瘤细胞的恶性特征,通过诱导促有丝分裂和生存信号、促进肿瘤细胞侵袭转移、促进上皮间质转化、促进血管生成及参与肿瘤复发耐药作用作为癌基因参与肿瘤发生发展进程的多重步骤,但也有研究证实FGFR信号在某些肿瘤类型中具有抑制肿瘤的功能。这些研究结果使得FGFRs成为越来越具有吸引力的癌症治疗新靶点。本文阐述了FGFRs信号通路在多种肿瘤中的作用,并且对处于研发或试验阶段的抗FGFRs药物(包括小分子酪氨酸激酶抑制剂和单克隆抗体)进行了概括。  相似文献   

20.
Fibroblast growth factors (FGFs) are key regulators of tissue development, homeostasis and repair, and abnormal FGF signalling is associated with various human diseases. In human and murine epidermis, FGF receptor 3 (FGFR3) activation causes benign skin tumours, but the consequences of FGFR3 deficiency in this tissue have not been determined. Here, we show that FGFR3 in keratinocytes is dispensable for mouse skin development, homeostasis and wound repair. However, the defect in the epidermal barrier and the resulting inflammatory skin disease that develops in mice lacking FGFR1 and FGFR2 in keratinocytes were further aggravated upon additional loss of FGFR3. This caused fibroblast activation and fibrosis in the FGFR1/FGFR2 double‐knockout mice and even more in mice lacking all three FGFRs, revealing functional redundancy of FGFR3 with FGFR1 and FGFR2 for maintaining the epidermal barrier. Taken together, our study demonstrates that FGFR1, FGFR2 and FGFR3 act together to maintain epidermal integrity and cutaneous homeostasis, with FGFR2 being the dominant receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号