首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:研究不加转染剂,超顺磁性氧化铁纳米粒子(superparamagnetic iron oxide,SPIO)对骨髓间充质干细胞(bonemarrow-derived mesenchymal stem cells,MSCs)的标记效果.方法:全骨髓法培养猪骨髓间充质干细胞,用50 ug/ml铁浓度的SPIO标记MSCs,普鲁士蓝染色鉴定标记效果,流式细胞仪测定标记MSCs的增殖及凋亡,台盼蓝染色检测标记细胞的活力.结果:不加转染剂,SPIO标记MSCs达100%,50 ug/ml铁浓度标记对MSCs活力、增殖及凋亡无影响.结论:不加转染剂,50 ug/ml铁浓度SPIO可安全、有效的标记MSCs.  相似文献   

2.

Aim

The aim of this work was the development of successful cell therapy techniques for cartilage engineering. This will depend on the ability to monitor non-invasively transplanted cells, especially mesenchymal stem cells (MSCs) that are promising candidates to regenerate damaged tissues.

Methods

MSCs were labeled with superparamagnetic iron oxide particles (SPIO). We examined the effects of long-term labeling, possible toxicological consequences and the possible influence of progressive concentrations of SPIO on chondrogenic differentiation capacity.

Results

No influence of various SPIO concentrations was noted on human bone marow MSC viability or proliferation. We demonstrated long-term (4 weeks) in vitro retention of SPIO by human bone marrow MSCs seeded in collagenic sponges under TGF-β1 chondrogenic conditions, detectable by Magnetic Resonance Imaging (MRI) and histology. Chondrogenic differentiation was demonstrated by molecular and histological analysis of labeled and unlabeled cells. Chondrogenic gene expression (COL2A2, ACAN, SOX9, COL10, COMP) was significantly altered in a dose-dependent manner in labeled cells, as were GAG and type II collagen staining. As expected, SPIO induced a dramatic decrease of MRI T2 values of sponges at 7T and 3T, even at low concentrations.

Conclusions

This study clearly demonstrates (1) long-term in vitro MSC traceability using SPIO and MRI and (2) a deleterious dose-dependence of SPIO on TGF-β1 driven chondrogenesis in collagen sponges. Low concentrations (12.5–25 µg Fe/mL) seem the best compromise to optimize both chondrogenesis and MRI labeling.  相似文献   

3.
目的:从脂肪组织中获取间充质干细胞(ADMSCs)并验证其多向分化潜能,探讨ADMSCs在肝再生中的作用。方法:获取大鼠脂肪组织,用胶原酶消化法获取干细胞,并进行体外扩增、传代,取第3代细胞分别用不同诱导培养液进行成骨、成脂诱导,诱导后通过细胞形态学和特殊染色观察诱导效果。用PKH26标记细胞,制作部分肝切除模型,将标记的自体ADMSCs经门静脉植入体内,2周后切下取肝脏制成冰冻切片,荧光显微镜观察植入细胞在肝脏的定位,免疫荧光染色观察其白蛋白的表达。结果:从脂肪组织中分离出的细胞能在体外大量扩增,能被诱导分化为成骨细胞、脂肪细胞,ADMSCs移植2周后,可见PKH26标记细胞散在分布于肝内,免疫荧光染色显示标记细胞白蛋白染色阳性。结论:大鼠脂肪组织中可以获取具有多向分化潜能的间充质干细胞,该细胞在肝再生环境中能向肝细胞分化,参与肝再生。  相似文献   

4.
Unregulated activity of myofibroblasts, highly contractile cells that deposit abundant extracellular matrix (ECM), leads to fibrosis. To study the modulation of myofibroblast activity, we used human adipose-derived mesenchymal stem cells (ADSCs), which have much potential in regenerative medicine. We found that ADSCs treated with TGF-β developed a myofibroblastic phenotype with increases in α-smooth muscle actin (α-SMA), a myofibroblast marker, and ECM proteins type I collagen and fibronectin. In contrast, treatment with bFGF had the opposite effect. bFGF-differentiated ADSCs showed marked down-regulation of α-SMA expression, collagen I, and fibronectin, and loss of focal adhesions and stress fibers. Functionally, bFGF-differentiated ADSCs were significantly more migratory, which correlated with up-regulation of tenascin-C, an anti-adhesive ECM protein, and vimentin, a pro-migratory cytoskeletal protein. On the other hand, TGF-β-differentiated ADSCs were significantly more contractile than bFGF-differentiated cells. Interestingly, cells completely reversed their morphologies, marker expression, signaling pathways, and contractility versus migratory profiles when switched from culture with one growth factor to the other, demonstrating that the myofibroblast differentiation process is not terminal. Cell differentiation was associated with activation of Smad2 downstream of TGF-β and of ERK/MAP kinase downstream of bFGF. Reversibility of the TGF-β-induced myofibroblastic phenotype depends, in part, on bFGF-induced ERK/MAP kinase signaling. These findings show that ADSC differentiation into myofibroblasts and re-differentiation into fibroblast-like cells can be manipulated with growth factors, which may have implications in the development of novel therapeutic strategies to reduce the risk of fibrosis.  相似文献   

5.
目的:探讨磁纳米颗粒(magnetic iron oxide particles,MIOP)体外标记脂肪间充质干细胞(ASCs)向软骨分化及MRI示踪的可行性。方法:从小鼠脂肪组织中分离培养、扩增脂肪间充质干细胞(ASCs),流式鉴定细胞表型后,分别采用不同浓度(25μg/mL,50μg/mL)的MIOP标记ASCs并向软骨细胞诱导分化。普鲁士蓝染色和透射电镜(TEM)鉴定细胞内磁纳米铁颗粒分布情况,应用3.0T MRI体外检测标记软骨细胞MRI信号。结果:从脂肪组织中可以分离获得大量高表达CD90、CD105、Sca-1的ASCs,不同浓度(25μg/mL,50μg/mL)的MIOP与ASCs共同孵育24小时后,普鲁士蓝染色发现ASCs随MIOP浓度的增加,蓝染程度逐渐加深且标记的ASCs可以向软骨细胞分化;TEM证实细胞内分布大量的黑色纳米铁颗粒。体外MRI T2序列证实随着MIOP浓度(25μg/mL,50μg/mL)的增加MRI信号值逐渐减低且具有统计学差异(P0.05)。结论:MIOP可以标记ASCs向软骨分化,体外应用MRI可以对其进行示踪。  相似文献   

6.
探讨超顺磁性氧化铁纳米粒子(Superparamagnefic iron oxide,SPIO)体外标记大鼠骨髓间质干细胞(mesenchymal stem cells,MSCs)的磁共振(magnetic resonance,MR)的成像特征.选取第5代细胞进行SPIO标记,其标记浓度为28 mg/L,选取不同的标记细胞数量,使用1.5 TMR进行T1WISE、T2WIFSE、T2WFGR扫描,测量不同扫描序列标记细胞管的信号强度改变,并进行统计学分析.细胞标记率为92%,细胞存活率为97%,MR成像显示,随着细胞数量的增多,标记细胞信号呈线性减低趋势.MR成像能敏感地显示SPIO标记的骨髓间质干细胞.  相似文献   

7.
It has been shown that adipose-derived mesenchymal stem cells (AMSCs) can differentiate into adipocytes, chondrocytes and osteoblasts. Several clinical trials have shown the ability of AMSCs to regenerate these differentiated cell types. Age-associated dysregulation of the gastrointestinal (GI) immune system has been well documented. Our previous studies showed that impaired mucosal immunity in the GI tract occurs earlier during agingthan is seen in the systemic compartment. In this study, we examined the potential of AMSCs to restore the GI mucosal immune system in aged mice. Aged (>18 mo old) mice were adoptively transferred with AMSCs. Two weeks later, mice were orally immunized with ovalbumin (OVA) plus cholera toxin (CT) three times at weekly intervals. Seven days after the final immunization, when fecal extract samples and plasma were subjected to OVA- and CT-B-specific ELISA, elevated levels of mucosal secretory IgA (SIgA) and plasma IgG antibody (Ab) responses were noted in aged mouse recipients. Similar results were also seen aged mice which received AMSCs at one year of age. When cytokine production was examined, OVA-stimulated Peyer’s patch CD4+ T cells produced increased levels of IL-4. Further, CD4+ T cells from the lamina propria revealed elevated levels of IL-4 and IFN-γ production. In contrast, aged mice without AMSC transfer showed essentially no OVA- or CT-B-specific mucosal SIgA or plasma IgG Ab or cytokine responses. Of importance, fecal extracts from AMSC transferred aged mice showed neutralization activity to CT intoxication. These results suggest that AMSCs can restore impaired mucosal immunity in the GI tract of aged mice.  相似文献   

8.
Previous studies have illustrated that bone marrow-derived mesenchymal stem cell (BMMSC) transplantation has therapeutic effects on diabetes and can prevent mice from renal damage and diabetic nephropathy (DN). Moreover, adipose-derived MSCs possess similar characteristics to BMMSCs. We investigated the effect of ADMSC transplantation on streptozotocin (STZ)-induced renal injury. Diabetes was induced in rats by STZ injection. After ADMSC treatment, renal histological changes and cell apoptosis were evaluated as were the expression of apoptosis-related proteins, Wnt/β-catenin pathway members, and klotho levels. We found that ADMSCs improved renal histological changes. Next, NRK-52E cells were exposed to normal glucose (NG; 5.5 mM glucose plus 24.5 mM mannitol)/high glucose (HG) or ADMSCs, and then measured for changes in the aforementioned proteins. Similarly, changes in these proteins were also determined following transient transfection of klotho siRNA. We found that both ADMSC transplantation and co-incubation reduced the rate of cellular apoptosis, decreased Bax and Wnt/β-catenin levels, and elevated Bcl-2 and klotho levels. Interestingly, klotho knockdown reversed the effects of ADMSCs on the expression of apoptosis-related proteins and Wnt/β-catenin pathway members. Taken together, ADMSCs transplantation might attenuate renal injury in DN via activating klotho and inhibiting the Wnt/β-catenin pathway. This study may provide evidence for the treatment of DN using ADMSCs.  相似文献   

9.
Background: Achilles-tendon rupture prevails as a common tendon pathology. Adipose-derived mesenchymal stem cells (ADMSCs) are multipotent stem cells derived from adipose tissue with attractive regeneration properties; thus, their application in tendinopathies could be beneficial. Methods: Male rabbit ADMSCs were obtained from the falciform ligament according to previously established methods. After tenotomy and suture of the Achilles tendon, 1 × 106 flow-cytometry-characterized male ADMSCs were injected in four female New Zealand white rabbits in the experimental group (ADMSC group), whereas four rabbits were left untreated (lesion group). Confirmation of ADMSC presence in the injured site after 12 weeks was performed with quantitative sex-determining region Y (SRY)-gene RT-PCR. At Week 12, histochemical analysis was performed to evaluate tissue regeneration along with quantitative RT-PCR of collagen I and collagen III mRNA. Results: Presence of male ADMSCs was confirmed at Week 12. No statistically significant differences were found in the histochemical analysis; however, statistically significant differences between ADMSC and lesion group expression of collagen I and collagen III were evidenced, with 36.6% and 24.1% GAPDH-normalized mean expression, respectively, for collagen I (p < 0.05) and 26.3% and 11.9% GAPDH-normalized mean expression, respectively, for collagen III (p < 0.05). The expression ratio between the ADMSC and lesion group was 1.5 and 2.2 for collagen I and collagen III, respectively. Conclusion: Our results make an important contribution to the understanding and effect of ADMSCs in Achilles-tendon rupture.  相似文献   

10.
Oxidative stress is a common feature in neurodegenerative diseases associated with neuroinflammation, and therefore, has been proposed as a key target for novel therapies for these diseases. Recently, adipose-derived stem cell (ASC)-based cell therapy has emerged as a novel strategy for neuroprotection. In this study, we evaluate the therapeutic role of ASC-conditioned medium (ASC-CM) against H2O2-induced neurotoxicity in a new in vitro model of ec23/brain-derived neurotrophic factor (BDNF)-differentiated human SH-SY5Y neuron-like cells (SH-SY5Yd). In the presence of ASC-CM, stressed SH-SY5Yd cells recover normal axonal morphology (with an almost complete absence of H2O2-induced axonal beading), electrophysiological features, and cell viability. This beneficial effect of ASC-CM was associated with its antioxidant capacity and the presence of growth factors, namely, BDNF, glial cell line-derived neurotrophic factor, and transforming growth factor β1. Moreover, the neuroprotective effect of ASC-CM was very similar to that obtained from treatment with BDNF, an essential factor for SH-SY5Yd cell survival. Importantly, we also found that the addition of the antioxidant agent N-acetyl cysteine to ASC-CM abolished its restorative effect; this was associated with a strong reduction in reactive oxygen species (ROS), in contrast to the moderate decrease in ROS produced by ASC-CM alone. These results suggest that neuronal restorative effect of ASC-CM is associated with not only the release of essential neurotrophic factors, but also the maintenance of an appropriate redox state to preserve neuronal function.  相似文献   

11.
Mesenchymal stem cells (MSC) have emerged as a new therapeutic tool for a number of clinical applications, because they have multipotency and paracrine effects via various factors. In the present study, we investigated the effects of adipose-derived MSC (Ad-MSC) transplantation via intrathecal injection through the cisterna magna on cell proliferation and differentiation of endogenous stem cells in the hippocampal dentate gyrus (DG) using Ki-67 (a marker for proliferating cells), and doublecortin (DCX, a marker for neuroblasts). The transplanted Ad-MSC were detected in the meninges, not in the hippocampal parenchyma. However, the number of Ki-67-immunoreactive cells was significantly increased by 83% in the DG 2 days after single Ad-MSC injection, and by 67% at 23 days after repeated Ad-MSC treatment compared with that in the vehicle-treated group after Ad-MSC transplantation. On the other hand, the number of DCX-immunoreactive cells in the DG was not changed at 2 days after single Ad-MSC injection; however, it was significantly increased by 62% 9 days after single Ad-MSC injection. At 23 days after repeated Ad-MSC application, the number of DCX-immunoreactive cells was much more increased (223% of the vehicle-treated group). At this time point, DCX protein levels were also significantly increased compared with those in the vehicle-treated group. These results suggest that the intrathecal injection of Ad-MSC could enhance endogenous cell proliferation, and the repeated Ad-MSC injection could be more efficient for an enhancement of endogenous cell proliferation and differentiation in the brain.  相似文献   

12.
Spinal and bulbar muscular atrophy (SBMA) or Kennedy''s disease is an X-linked CAG/polyglutamine expansion motoneuron disease, in which an elongated polyglutamine tract (polyQ) in the N-terminal androgen receptor (ARpolyQ) confers toxicity to this protein. Typical markers of SBMA disease are ARpolyQ intranuclear inclusions. These are generated after the ARpolyQ binds to its endogenous ligands, which promotes AR release from chaperones, activation and nuclear translocation, but also cell toxicity. The SBMA mouse models developed so far, and used in preclinical studies, all contain an expanded CAG repeat significantly longer than that of SBMA patients. Here, we propose the use of SBMA patients adipose-derived mesenchymal stem cells (MSCs) as a new human in vitro model to study ARpolyQ toxicity. These cells have the advantage to express only ARpolyQ, and not the wild type AR allele. Therefore, we isolated and characterized adipose-derived MSCs from three SBMA patients (ADSC from Kennedy''s patients, ADSCK) and three control volunteers (ADSCs). We found that both ADSCs and ADSCKs express mesenchymal antigens, even if only ADSCs can differentiate into the three typical cell lineages (adipocytes, chondrocytes and osteocytes), whereas ADSCKs, from SBMA patients, showed a lower growth potential and differentiated only into adipocyte. Moreover, analysing AR expression on our mesenchymal cultures we found lower levels in all ADSCKs than ADSCs, possibly related to negative pressures exerted by toxic ARpolyQ in ADSCKs. In addition, with proteasome inhibition the ARpolyQ levels increased specifically in ADSCKs, inducing the formation of HSP70 and ubiquitin positive nuclear ARpolyQ inclusions. Considering all of this evidence, SBMA patients adipose-derived MSCs cultures should be considered an innovative in vitro human model to understand the molecular mechanisms of ARpolyQ toxicity and to test novel therapeutic approaches in SBMA.  相似文献   

13.
Mesenchymal stem cells (MSCs) can differentiate into neural cells to treat nervous system diseases. Magnetic resonance is an ideal means for cell tracking through labeling cells with superparamagnetic iron oxide (SPIO). However, no studies have described the neural differentiation ability of SPIO-labeled MSCs, which is the foundation for cell therapy and cell tracking in vivo. Our results showed that bone marrow-derived mesenchymal stem cells (BM-MSCs) labeled in vitro with SPIO can be induced into neural-like cells without affecting the viability and labeling efficiency. The cellular uptake of SPIO was maintained after labeled BM-MSCs differentiated into neural-like cells, which were the basis for transplanted cells that can be dynamically and non-invasively tracked in vivo by MRI. Moreover, the SPIO-labeled induced neural-like cells showed neural cell morphology and expressed related markers such as NSE, MAP-2. Furthermore, whole-cell patch clamp recording demonstrated that these neural-like cells exhibited electrophysiological properties of neurons. More importantly, there was no significant difference in the cellular viability and [Ca2+]i between the induced labeled and unlabeled neural-like cells. In this study, we show for the first time that SPIO-labeled MSCs retained their differentiation capacity and could differentiate into neural-like cells with high cell viability and a good cellular state in vitro.  相似文献   

14.
Genetic modification of human adipose tissue–derived multilineage progenitor cells (hADMPCs) is highly valuable for their exploitation in therapeutic applications. Here, we have developed a novel single tet-off lentiviral vector platform. This vector combines (1) a modified tetracycline (tet)-response element composite promoter, (2) a multi-cistronic strategy to express an improved version of the tet-controlled transactivator and the blasticidin resistance gene under the control of a ubiquitous promoter, and (3) acceptor sites for easy recombination cloning of the gene of interest. In the present study, we used the cytomegalovirus (CMV) or the elongation factor 1 α (EF-1α) promoter as the ubiquitous promoter, and EGFP was introduced as the gene of interest. hADMPCs transduced with a lentiviral vector carrying either the CMV promoter or the EF-1α promoter were effectively selected by blasticidin without affecting their stem cell properties, and EGFP expression was strictly regulated by doxycycline (Dox) treatment in these cells. However, the single tet-off lentiviral vector carrying the EF-1α promoter provided more homogenous expression of EGFP in hADMPCs. Intriguingly, differentiated cells from these Dox-responsive cell lines constitutively expressed EGFP only in the absence of Dox. This single tet-off lentiviral vector thus provides an important tool for applied research on hADMPCs.  相似文献   

15.
We have investigated and compared the neurotrophic activity of human dental pulp stem cells (hDPSC), human bone marrow-derived mesenchymal stem cells (hBMSC) and human adipose-derived stem cells (hAMSC) on axotomised adult rat retinal ganglion cells (RGC) in vitro in order to evaluate their therapeutic potential for neurodegenerative conditions of RGC. Using the transwell system, RGC survival and length/number of neurites were quantified in coculture with stem cells in the presence or absence of specific Fc-receptor inhibitors to determine the role of NGF, BDNF, NT-3, VEGF, GDNF, PDGF-AA and PDGF-AB/BB in stem cell-mediated RGC neuroprotection and neuritogenesis. Conditioned media, collected from cultured hDPSC/hBMSC/hAMSC, were assayed for the secreted growth factors detailed above using ELISA. PCR array determined the hDPSC, hBMSC and hAMSC expression of genes encoding 84 growth factors and receptors. The results demonstrated that hDPSC promoted significantly more neuroprotection and neuritogenesis of axotomised RGC than either hBMSC or hAMSC, an effect that was neutralized after the addition of specific Fc-receptor inhibitors. hDPSC secreted greater levels of various growth factors including NGF, BDNF and VEGF compared with hBMSC/hAMSC. The PCR array confirmed these findings and identified VGF as a novel potentially therapeutic hDPSC-derived neurotrophic factor (NTF) with significant RGC neuroprotective properties after coculture with axotomised RGC. In conclusion, hDPSC promoted significant multi-factorial paracrine-mediated RGC survival and neurite outgrowth and may be considered a potent and advantageous cell therapy for retinal nerve repair.  相似文献   

16.
Calcitonin gene-related peptide (CGRP) promotes osteoblast recruitment and osteogenic activity. However, no evidence suggests that CGRP could affect the differentiation of stem cells toward osteoblasts. In this study, we genetically modified adipose-derived stem cells (ADSCs) by introducing the CGRP gene through adenoviral vector transduction and investigated on cellular proliferation and osteoblast differentiation in vitro and osteogenesis in vivo as well. For the in vitro analyses, rat ADSCs were transducted with adenoviral vectors containing the CGRP gene (Ad-CGRP) and were cultured in complete osteoblastic medium. The morphology, proliferative capacity, and formation of localized regions of mineralization in the cells were evaluated. The expression of alkaline phosphatase (ALP) and special markers of osteoblasts, such as Collagen I, Osteocalcin (BPG) and Osteopontin (OPN), were measured by cytochemistry, MMT, RT-PCR, and Western blot. For the in vivo analyses, the Ad-CGRP-ADSCs/Beta-tricalcium phosphate (β-TCP) constructs were implanted in rat radial bone defects for 12 weeks. Radiography and histomorphology evaluations were carried out on 4 weeks and 12 weeks. Our analyses indicated that heterogeneous spindle-shaped cells and localized regions of mineralization were formed in the CGRP-transduced ADSCs (the transduced group). A higher level of cellular proliferation, a high expression level of ALP on days 7 and 14 (p<0.05), and increased expression levels of Collagen I, BPG and OPN presented in transduced group (p<0.05). The efficiency of new bone formation was dramatically enhanced in vivo in Ad-CGRP-ADSCs/β-TCP group but not in β-TCP group and ADSCs/β-TCP group. Our results reveal that ADSCs transduced with an Ad-CGRP vector have stronger potential to differentiate into osteoblasts in vitro and are able to regenerate a promising new tissue engineering bone in vivo. Our findings suggest that CGRP-transduced ADSCs may serve as seed cells for bone tissue engineering and provide a potential way for treating bone defects.  相似文献   

17.
自然存在的间充质干细胞数量少,限制了其研究应用。依靠自主发明的间充质干细胞过滤分离器,分离制备了人羊膜间充质干细胞,并对制备的干细胞进行了三维培养扩增。结果表明,制备的干细胞形态长势良好,并能诱导分化为类胰岛样组织。与常规方法相比,干细胞收获率提高了8倍以上,且细胞活性状态良好。间充质干细胞过滤分离器可以批量制备高质量的各种间充质干细胞,有利于高效率地建设各种间充质干细胞库,以促进间充质干细胞的研究应用。  相似文献   

18.
19.
间充质干细胞对免疫细胞的抑制作用及其机制   总被引:1,自引:0,他引:1  
间充质干细胞是一群来源于发育早期中胚层的具有自我更新和多向分化潜能的干细胞,具有分化为脂肪细胞、肝细胞、成骨细胞、软骨细胞、神经细胞等多种细胞的能力.近年来的相关研究表明,间充质干细胞具有低免疫原性,它可以通过抑制淋巴细胞的增殖、抑制抗原呈递细胞分化成熟及功能发挥、抑制细胞毒性T淋巴细胞的形成、增加调节性T细胞比例等多种途径发挥免疫调节作用,从而成为移植领域、各种退行性和衰竭性疑难病症的替代治疗的研究热点.本文就间充质干细胞对免疫细胞的抑制作用及其机制的研究进展进行综述.  相似文献   

20.
目的:探讨间充质干细胞(MSC)共培养对体外诱导脐带血单个核细胞来源的造血干/祖细胞生成巨核细胞的影响。方法:分离得到骨髓和脐带2种来源的MSC,并对它们进行表面标志和多向分化能力的鉴定,同时通过实时定量PCR及对RT-PCR产物的电泳分析,对比相同培养代数下2种MSC表达造血因子的情况;用梯度离心法分离得到单个核细胞,通过直接接触或Trans-well分隔的方式分别与MSC共培养,观察细胞增殖情况,并检测巨核系特异性的表面标志和相关基因的表达。结果:骨髓和脐带来源的MSC均分泌对巨核细胞增殖分化有促进作用的造血因子,与造血干/祖细胞直接共培养,对于巨核细胞的增殖有明显的促进作用,分化效果不明显;在非接触共培养的条件下,对巨核细胞的增殖及分化都产生促进作用,且骨髓来源的MSC较脐带来源的MSC效果更加明显。结论:MSC与脐带血造血干/祖细胞非接触培养,对其向巨核分化和增殖的促进作用明显,本实验所用的骨髓来源MSC促分化效果更好。本研究为今后进一步优化巨核系诱导分化体系奠定了基础,并对未来体外大规模制备巨核系祖细胞应用于临床治疗有一定的指导作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号