首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RPA (replication protein A), the eukaryotic ssDNA (single-stranded DNA)-binding protein, participates in most cellular processes in response to genotoxic insults, such as NER (nucleotide excision repair), DNA, DSB (double-strand break) repair and activation of cell cycle checkpoint signalling. RPA interacts with XPA (xeroderma pigmentosum A) and functions in early stage of NER. We have shown that in cells the RPA-XPA complex disassociated upon exposure of cells to high dose of UV irradiation. The dissociation required replication stress and was partially attributed to tRPA hyperphosphorylation. Treatment of cells with CPT (camptothecin) and HU (hydroxyurea), which cause DSB DNA damage and replication fork collapse respectively and also leads to the disruption of RPA-XPA complex. Purified RPA and XPA were unable to form complex in vitro in the presence of ssDNA. We propose that the competition-based RPA switch among different DNA metabolic pathways regulates the dissociation of RPA with XPA in cells after DNA damage. The biological significances of RPA-XPA complex disruption in relation with checkpoint activation, DSB repair and RPA hyperphosphorylation are discussed.  相似文献   

2.
Three phosphatidylinositol-3-kinase–related protein kinases implement cellular responses to DNA damage. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia-telangiectasia mutated respond primarily to DNA double-strand breaks (DSBs). Ataxia-telangiectasia and RAD3-related (ATR) signals the accumulation of replication protein A (RPA)–covered single-stranded DNA (ssDNA), which is caused by replication obstacles. Stalled replication intermediates can further degenerate and yield replication-associated DSBs. In this paper, we show that the juxtaposition of a double-stranded DNA end and a short ssDNA gap triggered robust activation of endogenous ATR and Chk1 in human cell-free extracts. This DNA damage signal depended on DNA-PKcs and ATR, which congregated onto gapped linear duplex DNA. DNA-PKcs primed ATR/Chk1 activation through DNA structure-specific phosphorylation of RPA32 and TopBP1. The synergistic activation of DNA-PKcs and ATR suggests that the two kinases combine to mount a prompt and specific response to replication-born DSBs.  相似文献   

3.
Ott RD  Wang Y  Fanning E 《Journal of virology》2002,76(10):5121-5130
The recruitment of DNA polymerase alpha-primase (pol-prim) is a crucial step in the establishment of a functional replication complex in eukaryotic cells, but the mechanism of pol-prim loading and the composition of the eukaryotic primosome are poorly understood. In the model system for simian virus 40 (SV40) DNA replication in vitro, synthesis of RNA primers at the origin of replication requires only the viral tumor (T) antigen, replication protein A (RPA), pol-prim, and topoisomerase I. On RPA-coated single-stranded DNA (ssDNA), T antigen alone mediates priming by pol-prim, constituting a relatively simple primosome. T-antigen activities proposed to participate in its primosome function include DNA helicase and protein-protein interactions with RPA and pol-prim. To test the role of these activities of T antigen in mediating priming by pol-prim, three replication-defective T antigens with mutations in the ATPase or helicase domain have been characterized. All three mutant proteins interacted physically and functionally with RPA and pol-prim and bound ssDNA, and two of them displayed some helicase activity. However, only one of these, 5030, mediated primer synthesis and elongation by pol-prim on RPA-coated ssDNA. The results suggest that a novel activity, present in 5030 T antigen and absent in the other two mutants, is required for T-antigen primosome function.  相似文献   

4.
The replication protein A (RPA)–ssDNA complex formed at arrested replication forks recruits key proteins to activate the ATR-CHK1 signalling cascade. When CHK1 is inhibited during DNA replication stress, RPA2 is extensively hyperphosphorylated. Here, we investigated the role of RPA2 hyperphosphorylation in the fate of cells when CHK1 is inhibited. We show that proteins normally involved in DNA repair (RAD51) or control of RPA phosphorylation (the PP4 protein phosphatase complex) are not recruited to the genome after treatment with CHK1 and DNA synthesis inhibitors. This is not due to RPA2 hyperphosphorylation as suppression of this response does not restore loading suggesting that recruitment requires active CHK1. To determine whether RPA2 hyperphosphorylation protects stalled forks from collapse or induction of apoptosis in CHK1 inhibited cells during replication stress, cells expressing RPA2 genes mutated at key phosphorylation sites were characterized. Mutant RPA2 rescued cells from RPA2 depletion and reduced the level of apoptosis induced by treatment with CHK1 and replication inhibitors however the incidence of double strand breaks was not affected. Our data indicate that RPA2 hyperphosphorylation promotes cell death during replication stress when CHK1 function is compromised but does not appear to be essential for replication fork integrity.  相似文献   

5.
The checkpoint mechanisms that delay cell cycle progression in response to DNA damage or inhibition of DNA replication are necessary for maintenance of genetic stability in eukaryotic cells. Potential targets of checkpoint-mediated regulation include proteins directly involved in DNA metabolism, such as the cellular single-stranded DNA (ssDNA) binding protein, replication protein A (RPA). Studies in Saccharomyces cerevisiae have revealed that the RPA large subunit (Rfa1p) is involved in the G1 and S phase DNA damage checkpoints. We now demonstrate that Rfa1p is phosphorylated in response to various forms of genotoxic stress, including radiation and hydroxyurea exposure, and further show that phosphorylation of Rfa1p is dependent on the central checkpoint regulator Mec1p. Analysis of the requirement for other checkpoint genes indicates that different mechanisms mediate radiation- and hydroxyurea-induced Rfa1p phosphorylation despite the common requirement for functional Mec1p. In addition, experiments with mutants defective in the Cdc13p telomere-binding protein indicate that ssDNA formation is an important signal for Rfa1p phosphorylation. Because Rfa1p contains the major ssDNA binding activity of the RPA heterotrimer and is required for DNA replication, repair and recombination, it is possible that phosphorylation of this subunit is directly involved in modulating RPA activity during the checkpoint response.  相似文献   

6.
Replication protein A (RPA) is a heterotrimeric, single-stranded DNA-binding complex comprised of 70-kDa (RPA1), 32-kDa (RPA2), and 14-kDa (RPA3) subunits that is essential for DNA replication, recombination, and repair in eukaryotes. In addition, recent studies using vertebrate model systems have suggested an important role for RPA in the initiation of cell cycle checkpoints following exposure to DNA replication stress. Specifically, RPA has been implicated in the recruitment and activation of the ATM-Rad3-related protein kinase, ATR, which in conjunction with the related kinase, ATM (ataxia-telangiectasia-mutated), transmits checkpoint signals via the phosphorylation of downstream effectors. In this report, we have explored the effects of RPA insufficiency on DNA replication, cell survival, and ATM/ATR-dependent signal transduction in response to genotoxic stress. RNA interference-mediated suppression of RPA1 caused a slowing of S phase progression, G2/M cell cycle arrest, and apoptosis in HeLa cells. RPA-deficient cells demonstrated high levels of spontaneous DNA damage and constitutive activation of ATM, which was responsible for the terminal G2/M arrest phenotype. Surprisingly, we found that neither RPA1 nor RPA2 were essential for the hydroxyurea- or UV-induced phosphorylation of the ATR substrates CHK1 and CREB (cyclic AMP-response element-binding protein). These findings reveal that RPA is required for genomic stability and suggest that activation of ATR can occur through RPA-independent pathways.  相似文献   

7.
The multifunctional Mre11-Rad50-Nbs1 (MRN) protein complex recruits ATM/Tel1 checkpoint kinase and CtIP/Ctp1 homologous recombination (HR) repair factor to double-strand breaks (DSBs). HR repair commences with the 5'-to-3' resection of DNA ends, generating 3' single-strand DNA (ssDNA) overhangs that bind Replication Protein A (RPA) complex, followed by Rad51 recombinase. In Saccharomyces cerevisiae, the Mre11-Rad50-Xrs2 (MRX) complex is critical for DSB resection, although the enigmatic ssDNA endonuclease activity of Mre11 and the DNA-end processing factor Sae2 (CtIP/Ctp1 ortholog) are largely unnecessary unless the resection activities of Exo1 and Sgs1-Dna2 are also eliminated. Mre11 nuclease activity and Ctp1/CtIP are essential for DSB repair in Schizosaccharomyces pombe and mammals. To investigate DNA end resection in Schizo. pombe, we adapted an assay that directly measures ssDNA formation at a defined DSB. We found that Mre11 and Ctp1 are essential for the efficient initiation of resection, consistent with their equally crucial roles in DSB repair. Exo1 is largely responsible for extended resection up to 3.1 kb from a DSB, with an activity dependent on Rqh1 (Sgs1) DNA helicase having a minor role. Despite its critical function in DSB repair, Mre11 nuclease activity is not required for resection in fission yeast. However, Mre11 nuclease and Ctp1 are required to disassociate the MRN complex and the Ku70-Ku80 nonhomologous end-joining (NHEJ) complex from DSBs, which is required for efficient RPA localization. Eliminating Ku makes Mre11 nuclease activity dispensable for MRN disassociation and RPA localization, while improving repair of a one-ended DSB formed by replication fork collapse. From these data we propose that release of the MRN complex and Ku from DNA ends by Mre11 nuclease activity and Ctp1 is a critical step required to expose ssDNA for RPA localization and ensuing HR repair.  相似文献   

8.
It is generally thought that the DNA-damage checkpoint kinases, ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), work independently of one another. Here, we show that ATM and the nuclease activity of meiotic recombination 11 (Mre11) are required for the processing of DNA double-strand breaks (DSBs) to generate the replication protein A (RPA)-coated ssDNA that is needed for ATR recruitment and the subsequent phosphorylation and activation of Chk1. Moreover, we show that efficient ATM-dependent ATR activation in response to DSBs is restricted to the S and G2 cell cycle phases and requires CDK kinase activity. Thus, in response to DSBs, ATR activation is regulated by ATM in a cell-cycle dependent manner.  相似文献   

9.
In eukaryotes, the single strand DNA (ssDNA)-binding protein, replication protein A (RPA), is essential for DNA replication, repair, and recombination. RPA is composed of the following three subunits: RPA1, RPA2, and RPA3. The RPA1 subunit contains four structurally related domains and is responsible for high affinity ssDNA binding. This study uses a depletion/replacement strategy in human cells to reveal the contributions of each domain to RPA cellular functions. Mutations that substantially decrease ssDNA binding activity do not necessarily disrupt cellular RPA function. Conversely, mutations that only slightly affect ssDNA binding can dramatically affect cellular function. The N terminus of RPA1 is not necessary for DNA replication in the cell; however, this region is important for the cellular response to DNA damage. Highly conserved aromatic residues in the high affinity ssDNA-binding domains are essential for DNA repair and cell cycle progression. Our findings suggest that as long as a threshold of RPA-ssDNA binding activity is met, DNA replication can occur and that an RPA activity separate from ssDNA binding is essential for function in DNA repair.  相似文献   

10.
Checkpoint kinase 1 (Chk1) responds to disruption of DNA replication to maintain the integrity of stalled forks, promote homologous recombination-mediated repair of replication fork lesions, and control inappropriate firing of replication origins. This response is essential for viability as replication inhibitors trigger apoptosis in S-phase cells depleted of Chk1. Given the complex network of cellular responses controlled by Chk1, our aim was to determine which of these protect cells from apoptosis following replication stress. Work with cell-free systems has shown that RPA-ssDNA complex forms following replication inhibition through the uncoupling of replication and helicase complexes. Here we show that replication protein A (RPA) foci form in cells treated with replication inhibitors and that the number of foci dramatically increases together with hyperphosphorylation of RPA34 in Chk1-depleted cells in advance of the induction of apoptosis. RPA foci, RPA34 hyperphosphorylation, and apoptosis were suppressed by siRNA-mediated knockdown of Cdc45, an essential replication helicase cofactor required for both the initiation and elongation steps of DNA replication. In contrast, loss of p21, a negative effector of origin firing, stimulates both the accumulation of RPA foci and apoptosis. Taken together, these results suggest that the loss of control of replication origin firing following Chk1 depletion triggers the accumulation of the RPA-ssDNA complex and apoptosis when replication is blocked.  相似文献   

11.
The cellular single-stranded DNA (ssDNA)-binding protein replication protein A (RPA) becomes phosphorylated periodically during the normal cell cycle and also in response to DNA damage. In Saccharomyces cerevisiae, RPA phosphorylation requires the checkpoint protein Mec1, a protein kinase homologous in structure and function to human ATR. We confirm here that immunocomplexes containing a tagged version of Mec1 catalyze phosphorylation of purified RPA, likely reflecting an RPA kinase activity intrinsic to Mec1. A significant stimulation of this activity is observed upon the addition of covalently closed ssDNA derived from the bacteriophage M13. This stimulation is not observed with mutant RPA deficient for DNA binding, indicating that DNA-bound RPA is a preferred substrate. Stimulation is also observed upon the addition of linear ssDNA homopolymers or hydrolyzed M13 ssDNA. In contrast to circular ssDNA, these DNA cofactors stimulate both wild type and mutant RPA phosphorylation. This finding suggests that linear ssDNA can also stimulate Mec1-mediated RPA phosphorylation by activating Mec1 or an associated protein. Although the Mec1-interacting protein Ddc2 is required for RPA phosphorylation in vivo, it is required for neither basal nor ssDNA-stimulated RPA phosphorylation in vitro. Therefore, activation of Mec1-mediated RPA phosphorylation by either circular or linear ssDNA does not operate through Ddc2. Our results provide insight into the mechanisms that function in vivo to specifically induce RPA phosphorylation upon initiation of DNA replication, repair, or recombination.  相似文献   

12.
The treatment of mammalian cells with genotoxic substances can trigger DNA damage responses that include the hyperphosphorylation of replication protein A (RPA), a protein that plays key roles in the recognition, signaling, and repair of damaged DNA. We have previously reported that in the presence of a viral polymerase inhibitor, herpes simplex virus type 1 (HSV-1) infection induces the hyperphosphorylation of RPA (D. E. Wilkinson and S. K. Weller, J. Virol. 78:4783-4796, 2004). We initiated the present study to further characterize this genotoxic response to HSV-1 infection. Here we report that infection in the presence of polymerase inhibitors triggers an S-phase-specific response to DNA damage, as demonstrated by induction of the hyperphosphorylation of RPA and its accumulation within viral foci specific to the S phase of the cell cycle. This DNA damage response occurred in the presence of viral polymerase inhibitors and required the HSV-1 polymerase holoenzyme as well as the viral single-stranded-DNA binding protein. Treatment with an inhibitor of the viral helicase-primase did not induce the hyperphosphorylation of RPA or its accumulation in infected cells. Taken together, these results suggest that the S-phase-specific DNA damage response to infection is dependent on the specific inhibition of the polymerase. Finally, RPA hyperphosphorylation was not induced during productive infection, indicating that active viral replication does not trigger this potentially detrimental stress response.  相似文献   

13.
Woodman IL  Brammer K  Bolt EL 《DNA Repair》2011,10(3):306-313
Hel308 is a super-family 2 helicase in archaea with homologues in higher eukaryotes (HelQ and PolQ) that contribute to repair of DNA strand crosslinks (ICLs). However, the contribution of Hel308 to repair processes in archaea is far from clear, including how it co-operates with other proteins of DNA replication, repair and recombination. In this study we identified a physical interaction of Hel308 with RPA. Hel308 did not interact with SSB, and interaction with RPA required a conserved amino acid motif at the Hel308 C-terminus. We propose that in archaea RPA acts as a platform for loading of Hel308 onto aberrant single-stranded DNA (ssDNA) that arises at blocked replication forks. In line with data from a human Hel308 homologue, the helicase activity of archaeal Hel308 was only modestly stimulated (1.5-2 fold) by RPA under some conditions, and much less so than for other known interactions between helicases and single strand DNA (ssDNA) binding proteins. This supports a model for RPA localising Hel308 to DNA damage sites in archaea, rather than it directly stimulating the mechanism of helicase unwinding.  相似文献   

14.
Gross chromosomal rearrangement (GCR) is a type of genomic instability associated with many cancers. In yeast, multiple pathways cooperate to suppress GCR. In a screen for genes that promote GCR, we identified MPH1, which encodes a 3'-5' DNA helicase. Overexpression of Mph1p in yeast results in decreased efficiency of homologous recombination (HR) as well as delayed Rad51p recruitment to double-strand breaks (DSBs), which suggests that Mph1p promotes GCR by partially suppressing HR. A function for Mph1p in suppression of HR is further supported by the observation that deletion of both mph1 and srs2 synergistically sensitize cells to methyl methanesulfonate-induced DNA damage. The GCR-promoting activity of Mph1p appears to depend on its interaction with replication protein A (RPA). Consistent with this observation, excess Mph1p stabilizes RPA at DSBs. Furthermore, spontaneous RPA foci at DSBs are destabilized by the mph1Delta mutation. Therefore, Mph1p promotes GCR formation by partially suppressing HR, likely through its interaction with RPA.  相似文献   

15.
Human replication protein A (RPA p34), a crucial component of diverse DNA excision repair pathways, is implicated in DNA double-strand break (DSB) repair. To evaluate its role in DSB repair, the intranuclear dynamics of RPA was investigated after DNA damage and replication blockage in human cells. Using two different agents [ionizing radiation (IR) and hydroxyurea (HU)] to generate DSBs, we found that RPA relocated into distinct nuclear foci and colocalized with a well-known DSB binding factor, gamma-H2AX, at the sites of DNA damage in a time-dependent manner. Colocalization of RPA and gamma-H2AX foci peaked at 2 h after IR treatment and subsequently declined with increasing postrecovery times. The time course of RPA and gamma-H2AX foci association correlated well with the DSB repair activity detected by a neutral comet assay. A phosphatidylinositol-3 (PI-3) kinase inhibitor, wortmannin, completely abolished both RPA and gamma-H2AX foci formation triggered by IR. Additionally, radiosensitive ataxia telangiectasia (AT) cells harboring mutations in ATM gene product were found to be deficient in RPA and gamma-H2AX colocalization after IR. Transfection of AT cells with ATM cDNA fully restored the association of RPA foci with gamma-H2AX illustrating the requirement of ATM gene product for this process. The exact coincidence of RPA and gamma-H2AX in response to HU specifically in S-phase cells supports their role in DNA replication checkpoint control. Depletion of RPA by small interfering RNA (SiRNA) substantially elevated the frequencies of IR-induced micronuclei (MN) and apoptosis in human cells suggestive of a role for RPA in DSB repair. We propose that RPA in association with gamma-H2AX contributes to both DNA damage checkpoint control and repair in response to strand breaks and stalled replication forks in human cells.  相似文献   

16.
The HepA-related protein (HARP/SMARCAL1) is an ATP-dependent annealing helicase that is capable of rewinding DNA structures that are stably unwound due to binding of the single-stranded DNA (ssDNA)-binding protein Replication Protein A (RPA). HARP has been implicated in maintaining genome integrity through its role in DNA replication and repair, two processes that generate RPA-coated ssDNA. In addition, mutations in HARP cause a rare disease known as Schimke immuno-osseous dysplasia. In this study, we purified HARP containing complexes with the goal of identifying the predominant factors that stably associate with HARP. We found that HARP preferentially interacts with RPA molecules that are bound to the DNA-dependent protein kinase (DNA-PK). We also found that RPA is phosphorylated by DNA-PK in vitro, while the RPA-HARP complexes are not. Our results suggest that, in addition to its annealing helicase activity, which eliminates the natural binding substrate for RPA, HARP blocks the phosphorylation of RPA by DNA-PK.  相似文献   

17.
《Epigenetics》2013,8(5):693-697
The HepA-related protein (HARP/SMARCAL1) is an ATP-dependent annealing helicase that is capable of rewinding DNA structures that are stably unwound due to binding of the single-stranded DNA (ssDNA)-binding protein Replication Protein A (RPA). HARP has been implicated in maintaining genome integrity through its role in DNA replication and repair, two processes that generate RPA-coated ssDNA. In addition, mutations in HARP cause a rare disease known as Schimke immuno-osseous dysplasia. In this study, we purified HARP containing complexes with the goal of identifying the predominant factors that stably associate with HARP. We found that HARP preferentially interacts with RPA molecules that are bound to the DNA-dependent protein kinase (DNA-PK). We also found that RPA is phosphorylated by DNA-PK in vitro, while the RPA-HARP complexes are not. Our results suggest that, in addition to its annealing helicase activity, which eliminates the natural binding substrate for RPA, HARP blocks the phosphorylation of RPA by DNA-PK.  相似文献   

18.
Homologous recombination (HR) is a key pathway that repairs DNA double‐strand breaks (DSBs) and helps to restart stalled or collapsed replication forks. How HR supports replication upon genotoxic stress is not understood. Using in vivo and in vitro approaches, we show that the MMS22L–TONSL heterodimer localizes to replication forks under unperturbed conditions and its recruitment is increased during replication stress in human cells. MMS22L–TONSL associates with replication protein A (RPA)‐coated ssDNA, and the MMS22L subunit directly interacts with the strand exchange protein RAD51. MMS22L is required for proper RAD51 assembly at DNA damage sites in vivo, and HR‐mediated repair of stalled forks is abrogated in cells expressing a MMS22L mutant deficient in RAD51 interaction. Similar to the recombination mediator BRCA2, recombinant MMS22L–TONSL limits the assembly of RAD51 on dsDNA, which stimulates RAD51‐ssDNA nucleoprotein filament formation and RAD51‐dependent strand exchange activity in vitro. Thus, by specifically regulating RAD51 activity at uncoupled replication forks, MMS22L–TONSL stabilizes perturbed replication forks by promoting replication fork reversal and stimulating their HR‐mediated restart in vivo.  相似文献   

19.
Replication protein A (RPA) is a key regulator of eukaryotic DNA metabolism. RPA is a highly conserved heterotrimeric protein and contains multiple oligonucleotide/oligosaccharide-binding folds. The major RPA function is binding to single-stranded DNA (ssDNA) intermediates forming in DNA replication, repair, and recombination. Although binding ssDNA with high affinity, RPA can rapidly diffuse along ssDNA and destabilizes the DNA secondary structure. A highly dynamic RPA binding to ssDNA allows other proteins to access ssDNA and to displace RPA from the RPA–ssDNA complex. As has been shown recently, RPA in complex with ssDNA is posttranslationally modified in response to DNA damage. These modifications modulate the RPA interactions with its protein partners and control the DNA damage signaling pathways. The review considers up-to-date data on the RPA function as an active coordinator of ssDNA intermediate processing within DNA metabolic pathways, DNA repair in particular.  相似文献   

20.
Replicative DNA damage bypass, mediated by the ubiquitylation of the sliding clamp protein PCNA, facilitates the survival of a cell in the presence of genotoxic agents, but it can also promote genomic instability by damage-induced mutagenesis. We show here that PCNA ubiquitylation in budding yeast is activated independently of the replication-dependent S phase checkpoint but by similar conditions involving the accumulation of single-stranded DNA at stalled replication intermediates. The ssDNA-binding replication protein A (RPA), an essential complex involved in most DNA transactions, is required for damage-induced PCNA ubiquitylation. We found that RPA directly interacts with the ubiquitin ligase responsible for the modification of PCNA, Rad18, both in yeast and in mammalian cells. Association of the ligase with chromatin is detected where RPA is most abundant, and purified RPA can recruit Rad18 to ssDNA in vitro. Our results therefore implicate the RPA complex in the activation of DNA damage tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号