首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long non‐coding RNAs (lncRNAs) are a group greater than 200 nucleotides in length. An increasing number of studies has shown that lncRNAs play important roles in diverse cellular processes, including proliferation, differentiation, apoptosis, invasion and chromatin remodelling. In this regard, deregulation of lncRNAs has been documented in human cancers. TUG1 is a recently identified oncogenic lncRNA whose aberrant upregulation has been detected in different types of cancer, including B‐cell malignancies, oesophageal squamous cell carcinoma, bladder cancer, hepatocellular carcinoma and osteosarcoma. In these malignancies, knock‐down of TUG1 has been shown to suppress cell proliferation, invasion and/or colony formation. Interestingly, TUG1 has been found to be downregulated in non‐small cell lung carcinoma, indicative of its tissue‐specific function in tumourigenesis. Pertinent to clinical practice, TUG1 may act as a prognostic biomarker for tumours. In this review, we summarize current knowledge concerning the role of TUG1 in tumour progression and discuss mechanisms associated with it.  相似文献   

2.
3.
In recent years, increasing evidence has shown the potential role of long non‐coding RNAs (lncRNAs) in multiple cancers. Deregulation of lncRNAs was detected being closely associated with many kinds of tumours where they can act as a tumour suppressor or accelerator. LINC00152 was identified as an oncogene involved in many kinds of cancers, such as gastric cancer, hepatocellular carcinoma, colon cancer, gallbladder cancer and renal cell carcinoma. Moreover, inhibition of LINC00152 can suppress proliferation, migration and invasion of the cancer cells. Increasing evidence has showed that LINC00152 may act as a diagnostic and prognostic biomarker for the above‐mentioned cancers. In our review, we summarize the recent research progress of the expression and role of LINC00152 in various kinds of cancers.  相似文献   

4.
Aberrant overexpression of long non‐coding RNA CRNDE (Colorectal Neoplasia Differentially Expressed) is confirmed in various human cancers, which is correlated with advanced clinicopathological features and poor prognosis. CRNDE promotes cancer cell proliferation, migration and invasion, and suppresses apoptosis in complicated mechanisms, which result in the initialization and development of human cancers. In this review, we provide an overview of the oncogenic role and potential clinical applications of CRNDE.  相似文献   

5.
Long non‐coding RNAs (lncRNAs), a group of non‐protein‐coding RNAs with more than 200 nucleotides in length, are involved in multiple biological processes, such as the proliferation, apoptosis, migration and invasion. Moreover, numerous studies have shown that lncRNAs play important roles as oncogenes or tumour suppressor genes in human cancers. In this paper, we concentrate on actin filament‐associated protein 1‐antisense RNA 1 (AFAP1‐AS1), a well‐known long non‐coding RNA that is overexpressed in various tumour tissues and cell lines, including oesophageal cancer, pancreatic ductal adenocarcinoma, nasopharyngeal carcinoma, lung cancer, hepatocellular carcinoma, ovarian cancer, colorectal cancer, biliary tract cancer and gastric cancer. Moreover, high expression of AFAP1‐AS1 was associated with the clinicopathological features and cancer progression. In this review, we sum up the current studies on the characteristics of AFAP1‐AS1 in the biological function and mechanism of human cancers.  相似文献   

6.
7.
Highly up‐regulated in liver cancer (HULC) was originally identified as the most overexpressed long non‐coding RNA in hepatocellular carcinoma. Since its discovery, the aberrant up‐regulation of HULC has been demonstrated in other cancer types, including gastric cancer, pancreatic cancer, osteosarcoma and hepatic metastasis of colorectal cancer. Recent discoveries have also shed new light on the upstream molecular mechanisms underlying HULC deregulation. As an oncogene, HULC promotes tumorigenesis by regulating multiple pathways, such as down‐regulation of EEF1E1, promotion of abnormal lipid metabolism, and up‐regulation of sphingosine kinase 1. Pertinent to clinical practice, a genetic variant in the HULC gene has been found to alter the risk for hepatocellular carcinoma and oesophageal cancer, whereas cancer patients with high or low expression of HULC exhibit different clinical outcome. These findings highlighted the pathogenic role and clinical utility of HULC in human cancers. Further efforts are warranted to promote the development of HULC‐directed therapeutics.  相似文献   

8.
9.
10.
Long non‐coding RNAs (lncRNAs) recently emerge as a novel class of non‐coding RNAs (ncRNAs) with larger than 200 nucleotides in length. Due to lack an obvious open reading frame, lncRNAs have no or limited protein‐coding potential. To date, accumulating evidence indicates the vital regulatory function of lncRNAs in pathological processes of human diseases, especially in carcinogenesis and development. Deregulation of lncRNAs not only alters cellular biological behavior, such as proliferation, migration and invasion, but also represents the poor clinical outcomes. Zinc finger E‐box binding homeobox 1 antisense 1 (ZEB1‐AS1), an outstanding cancer‐related lncRNA, is identified as an oncogenic regulator in diverse malignancies. Dysregulation of ZEB1‐AS1 has been demonstrated to exhibit a pivotal role in tumorigenesis and progression, suggesting its potential clinical value as a promising biomarker or therapeutic target for cancers. In this review, we make a summary on the current findings regarding the biological functions, underlying mechanisms and clinical significance of ZEB1‐AS1 in cancer progression.  相似文献   

11.
Recent studies have revealed that long non‐coding RNAs (lncRNAs) are involved in different physiological processes and human diseases. However, to date, the function and overall clinical significance of the vast majority of lncRNAs in breast cancer remain largely unexplored. Here, we focused on LINC00310 by interrogating the breast invasive carcinoma data set of the Cancer Genome Atlas (TCGA). The results showed that LINC00310 was increased as breast cancer progressed, and the deregulation of LINC00310 was significantly associated with patients’ survival. Experiments with knockout (KO) approach by CRISPR/Cas9 system and the subsequent rescue experiments revealed that LINC00310 promoted cell proliferation by regulating c‐Myc expression in vitro. Nude mouse xenograft assay demonstrated that LINC00310 KO significantly suppressed tumour growth in vivo. Furthermore, we found that serum LINC00310 expression was significantly up‐regulated in patients with breast cancer, and receiver operating characteristic (ROC) curve analysis indicated that LINC00310 had a powerful capability of distinguishing patients with breast cancer from healthy individuals (the area under curve 0.828). Taken together, these results provide a more intuitive approach to explore the clinical relevance and functional roles of lncRNAs. As a result, lncRNAs, such as LINC00310, may be used in clinical applications as circulating markers for breast cancer.  相似文献   

12.
13.
14.
15.
Spinal cord injury (SCI) is a significant health burden worldwide which causes permanent neurological deficits, and there are approximately 17,000 new cases each year. However, there are no effective and current treatments that lead to functional recovery because of the limited understanding of the pathogenic mechanism of SCI. In recent years, the biological roles of long non‐coding RNAs (lncRNAs) in SCI have attracted great attention from the researchers all over the world, and an increasing number of studies have investigated the regulatory roles of lncRNAs in SCI. In this review, we summarized the biogenesis, classification and function of lncRNAs and focused on the investigations on the roles of lncRNAs involved in the pathogenic processes of SCI, including neuronal loss, astrocyte proliferation and activation, demyelination, microglia activation, inflammatory reaction and angiogenesis. This review will help understand the molecular mechanisms of SCI and facilitate the potential use of lncRNAs as diagnostic markers and therapeutic targets for SCI treatment.  相似文献   

16.
Accumulating evidence from genome‐wide analysis and functional studies has begun to unveil the important role of long non‐coding RNAs (lncRNAs) in cancer development. The lncRNA SPRY4‐IT1 is derived from an intron of SPRY4 gene and was originally reported to be upregulated in melanoma in which it functioned as an oncogene. Since this discovery, an increasing number of studies have investigated the expression and function of SPRY4‐IT1 in human cancers. Aberrant expression of SPRY4‐IT1 has now been documented in different cancer types, including osteosarcoma, breast, renal, oesophageal and prostate cancers. However, its deregulation and function in lung and gastric cancers remain controversial. Pertinent to clinical practice, SPRY4‐IT1 expression has been shown to predict survival of cancer patients. In this review, we summarize recent evidence concerning SPRY4‐IT1 deregulation and the associated mechanisms in human cancers. We also discuss the potential clinical utilization of this lncRNA as a diagnostic and prognostic biomarker for cancer patients.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号