首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biodegradation of phenolic compounds is a promising alternative to physical and chemical methods used to remove these toxic pollutants from the environment. The ability of various microorganisms to metabolize phenol and its derivatives (alkylphenols, nitrophenols and halogenated derivatives) has therefore been intensively studied. Knowledge of the enzymes catalyzing the individual reactions, the genes encoding these enzymes and the regulatory mechanisms involved in the expression of the respective genes in bacteria serves as a basis for the development of more efficient degraders of phenols via genetic engineering methods. Engineered bacteria which efficiently degrade phenolic compounds were constructed in laboratories using various approaches such as cloning the catabolic genes in multicopy plasmids, the introduction of heterologous genes or broadening the substrate range of key enzymes by mutagenesis. Efforts to apply the engineered strains in in situ bioremediation are problematic, since engineered strains often do not compete successfully with indigenous microorganisms. New efficient degraders of phenolic compounds may be obtained by complex approaches at the organism level, such as genome shuffling or adaptive evolution. The application of these engineered bacteria for bioremediation will require even more complex analysis of both the biological characteristics of the degraders and the physico-chemical conditions at the polluted sites.  相似文献   

2.
3.
Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation   总被引:30,自引:0,他引:30  
Polycyclic aromatic hydrocarbons (PAHs) are widely distributed and relocated in the environment as a result of the incomplete combustion of organic matter. Many PAHs and their epoxides are highly toxic, mutagenic and/or carcinogenic to microorganisms as well as to higher systems including humans. Although various physicochemical methods have been used to remove these compounds from our environment, they have many limitations. Xenobiotic-degrading microorganisms have tremendous potential for bioremediation but new modifications are required to make such microorganisms effective and efficient in removing these compounds, which were once thought to be recalcitrant. Metabolic engineering might help to improve the efficiency of degradation of toxic compounds by microorganisms. However, efficiency of naturally occurring microorganisms for field bioremediation could be significantly improved by optimizing certain factors such as bioavailability, adsorption and mass transfer. Chemotaxis could also have an important role in enhancing biodegradation of pollutants. Here, we discuss the problems of PAH pollution and PAH degradation, and relevant bioremediation efforts.  相似文献   

4.
Degradation of dioxin-like compounds by microorganisms   总被引:10,自引:0,他引:10  
Polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF; PCDD/F, dioxins) have not been commercially produced in bulk amounts, as were polychlorinated biphenyls and other haloaromatic organics. Within the past two decades a lot␣of information has accumulated on the biodegradation of PCDD/F and other dioxin-like compounds because of their toxicity and because of significant environmental concern about many congeners of this class of chemicals. PCDD/F are subjected to reductive dehalogenations leading to less halogenated congeners, which can be attacked efficiently by fungal and bacterial oxidases and dioxygenases. In several cases these compounds can be utilized as carbon and energy sources. Pathways for their enzymatic degradation and the organisation of the corresponding degradative genes have been elucidated. Consequently, biotechnological applications will exploit the degradative potential of such microorganisms for bioremediation of contaminated sites. Received: 29 August 1997 / Received revision: 6 January 1998 / Accepted: 8 January 1998  相似文献   

5.
This article examines the importance of non-ligninolytic and ligninolytic fungi in the bioremediation of polycyclic aromatic hydrocarbon contaminated wastes. The research from the initial studies in Dave Gibson’s laboratory to the present are discussed. Received 10 August 1997/ Accepted in revised form 15 August 1997  相似文献   

6.
Bacteria have evolved a diverse potential to transform and even mineralize numerous organic compounds of both natural and xenobiotic origin. This article describes the occurrence of N-heteroaromatic compounds and presents a review of the bacterial degradation of pyridine and its derivatives, indole, isoquinoline, and quinoline and its derivatives. The bacterial metabolism of these compounds under different redox conditions – by aerobic, nitrate-reducing, sulfate-reducing and methanogenic bacteria – is discussed. However, in natural habitats, various environmental factors, such as sorption phenomena, also influence bacterial conversion processes. Thus, both laboratory and field studies are necessary to aid our understanding of biodegradation in natural ecosystems and assist the development of strategies for bioremediation of polluted sites. Occurring predominantly near (former) wood-treatment facilities, creosote is a frequent contaminant of soil, subsoil, groundwater, and aquifer sediments. In situ as well as withdrawal-and-treatment techniques have been designed to remediate such sites, which are polluted with complex mixtures of aromatic and heterocyclic compounds. Received: 26 September 1997 / Received revision: 23 December 1997 / Accepted: 27 December 1997  相似文献   

7.
A bacterium obtained by enrichment on nonsorbed phenanthrene was unable to degrade phenanthrene sorbed to polyacrylic beads and had little activity on phenanthrene sorbed to lake-bottom sediment. A bacterium obtained by enrichment on phenanthrene sorbed to polyacrylic beads readily mineralized the compound sorbed to the beads or the sediment. Degradation by the second bacterium of phenanthrene sorbed to beads 38–63 μm or 63–150 μm in diameter was more rapid than the rate of desorption of the hydrocarbon in the absence of the bacterium. Little degradation of sorbed, nonleachable phenanthrene in soil was effected by another isolate obtained by enrichment with the nonsorbed hydrocarbon, but a mixed culture and the bacterium obtained by enrichment on the sorbed compound extensively degraded phenanthrene. Because microorganisms specifically obtained for their capacity to degrade sorbed phenanthrene are more active than species not specialized for use of the bound compound, we suggest that microorganisms enriched on nonsorbed compounds may not be appropriate for evaluation of biodegradation and bioremediation of sorbed compounds. Received: 3 June 1997 / Received revision: 2 September 1997 / Accepted: 15 September 1997  相似文献   

8.
9.
N. Villa  L. Dalprà  L. Larizza 《Chromosoma》1997,106(6):400-404
Fluorescence in situ hybridization with a telomeric probe was used to monitor telomeric renewal following breakage induced by the rare fragile sites FRA10A, FRA12A and FRA16B. Interstitial telomere-like sequences were detected only at the break sites of FRA10A. Received: 26 February 1977; in revised form: 14 August 1997 / Accepted: 22 August 1997  相似文献   

10.
Pollution of the environment with aromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX) is often observed. The cleanup of these toxic compounds has gained much attention in the last decades. In situ bioremediation of aromatic hydrocarbons contaminated soils and groundwater by naturally occurring microorganisms or microorganisms that are introduced is possible. Anaerobic bioremediation is an attractive technology as these compounds are often present in the anoxic zones of the environment. The bottleneck in the application of anaerobic techniques is the lack of knowledge about the anaerobic biodegradation of benzene and the bacteria involved in anaerobic benzene degradation. Here, we review the existing knowledge on the degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria, in particular the physiology and application, including results on the (per)chlorate stimulated degradation of these compounds, which is an interesting new alternative option for bioremediation.  相似文献   

11.
The civilizations in the Mediterranean Sea have deeply changed the local environment, especially with the extraction of subsurface oil and gas, their refinery and transportation. Major environmental impacts are affecting all the sides of the basin with actual and potential natural and socio-economic problems. Events like the recent BP??s oil disaster in the Gulf of Mexico would have a tremendous impact on a close basin like the Mediterranean Sea. The recently EU-funded project ULIXES (http://www.ulixes.unimi.it/) aims to unravel, categorize, catalogue, exploit and manage the microbial diversity available in the Mediterranean Sea for addressing bioremediation of polluted marine sites. The rationale of the project is based on the multiple diverse environmental niches of the Mediterranean Sea and the huge range of microorganisms inhabiting therein. Microbial consortia and their ecology, their components or products are used for designing novel pollutant- and site-tailored bioremediation approaches. ULIXES exploits microbial resource mining by the isolation of novel microorganisms as well as by novel advanced ??meta-omics?? technologies for solving pollution of three major high priority pollutant classes, petroleum hydrocarbons, chlorinated compounds and heavy metals. A network of twelve European and Southern Mediterranean partners is exploring the microbial diversity and ecology associated to a large set of polluted environmental matrices including seashore sands, lagoons, harbors and deep-sea sediments, oil tanker shipwreck sites, as well as coastal and deep sea natural sites where hydrocarbon seepages occur. The mined collections are exploited for developing novel bioremediation processes to be tested in ex situ and in situ field bioremediation trials.  相似文献   

12.
Carvone, the principal component of spearmint oil, induces biodegradation of polychlorinated biphenyls (PCB) by Arthrobacter sp. strain B1B. This study investigated the effectiveness of the repeated application of carvone-induced bacteria for bioremediation of Aroclor-1242-contaminated soil. Control treatments compared a single inoculation of carvone-induced cells, repeated applications of noninduced cells, and repeated applications of cell-free carvone/fructose medium. The results showed that repeated application of carvone-induced bacteria was the most effective treatment for mineralizing PCB, resulting in 27 ± 6% degradation of Aroclor 1242 after 9 weeks; whereas a single application of cells resulted in no significant degradation. Addition of cell-free, carvone/fructose medium resulted in 10% degradation of PCB, which suggests that this treatment stimulated biodegradation of PCB by the indigenous microflora. The di- and trichlorobiphenyls were the most readily degraded congeners. More highly chlorinated congeners, which had been previously shown to be degraded in liquid culture, were not substantially degraded in soil, indicating that low bioavailability may have limited their degradation. With the development of new technology, which permits automated in situ fermentation and delivery of degrader microorganisms, the repeated application of carvone-induced bacteria may facilitate bioremediation of PCB-contaminated soils. Received: 7 January 1998 / Received revision: 18 June 1998 / Accepted: 27 June 1998  相似文献   

13.
14.
Microbial diversity in hydrocarbon-contaminated soil was characterized during a bioremediation project at an oil refinery. The project consisted of isolation and cultivation of microbes on laboratory media and the subsequent characterization of pure isolates. In a lagoon at the Czechowice Oil Refinery, Poland, a biopile with actively and passively aerated sections was constructed and has been operated since 1997. The bioremediation process has been continuously monitored by physical, chemical, and microbiological methods. One hundred and forty nine bacterial and fungal strains were isolated from site soils by standard procedures. Analysis of cultivable microorganisms revealed a diverse microbial population within the cultured isolates. Among isolated strains, Pseudomonas and Chryseomonas genera predominated in the bacterial population while Candida, Fusarium, and Trichophyton dominated the fungal population. This paper describes the application of traditional microbiological methods (plating and microscopic methods) to evaluate cultivable microbial diversity in bioremediated soil.  相似文献   

15.
Strains of the fission yeast Schizosaccharomyces pombe have been constructed containing single or multiple chromosomally integrated copies of an expression cassette for production of human gastric lipase. Integrant strains of S. pombe secrete active lipase and are stable for lipase production over a minimum of 50 generations in non-selective media. Lipase activity levels for integrant strains containing up to three tandem copies of the expression cassette are strongly correlated with copy number of the cassette in both complete and minimal media. Lipase activity is higher in complete medium than in minimal medium. Strains carrying three chromosomally integrated expression cassette copies can be grown without selection in complete medium and are capable of significantly higher lipase activities than strains containing the expression cassette on a multicopy plasmid. Received: 27 March 1997 / Received revision: 13 August 1997 / Accepted: 25 August 1997  相似文献   

16.
 Although aromatic compounds are most often present in the environment as components of complex mixtures, biodegradation studies commonly focus on the degradation of individual compounds. The present study was performed to investigate the range of aromatic substrates utilized by biphenyl- and naphthalene-degrading environmental isolates and to ascertain the effects of co-occurring substrates during the degradation of mono-aromatic compounds. Bacterial strains were isolated on the basis of their ability to utilize either biphenyl or naphthalene as a sole source of carbon. Growth and transformation assays were conducted on each isolate to determine the range of substrates degraded. One isolate, Pseudomonas putida BP18, was tested for the ability to biodegrade benzene, toluene, ethylbenzene and xylene isomers (BTEX) individually and as components of mixtures. Overall, the results indicate that organisms capable of growth on multi-ring aromatic compounds may be particularly versatile in terms of aromatic hydrocarbon biodegradation. Furthermore, growth and transformation assays performed with strain BP18 suggest that the biodegradation of BTEX and biphenyl by this strain is linked to a catabolic pathway with overlapping specificities. The broad substrate specificity of these environmental isolates has important implications for bioremediation efforts in the field. Received: 4 August 1999 / Received revision: 25 October 1999 / Accepted: 5 November 1999  相似文献   

17.
We consider the problem of estimating a small stimulus-induced response to stimulation that is masked by a fluctuating background when measurements of the background in the absence of stimulation are available, as is common in optical imaging of the cortex and in many other experimental situations. Two related methods based on the Karhunen-Loève procedure are discussed. One seeks the function, an indicator function, that is most parallel to the response data and most orthogonal to the background data. The second removes the subspace spanned by the background from the response. Numerical investigations on simulated optical imaging data show that the first method is generally superior. Connections between the two methods and techniques for assessing the quality of the result are discussed. Received: 17 January 1997 / Accepted in revised form: 4 August 1997  相似文献   

18.
The development of effective in situ and on-site bioremediation technologies can facilitate the cleanup of chemically-contaminated soil sites. Knowledge of biodegradation kinetics and the bioavailability of organic pollutants can facilitate decisions on the efficacy of in situ and on-site bioremediation of contaminated soils and determine the attainable treatment end-points. Two kinds of compounds have been studied: (1) phenol and alkyl phenols, which represent hydrophilic compounds, exhibiting high water solubility and moderate to low soil partitioning; and (2) polycyclic aromatic hydrocarbons which are hydrophobic compounds with low water solubility and exhibit significant partitioning in soil organic carbon. Representative data are given for phenol and naphthalene. The results provide support for a systematic multi-level protocol using soil slurry, wafer and porous tube or column reactors to determine the biokinetic parameters for toxic organic pollutants. Insights into bioremediation rates of soil contaminants in compact soil systems can be attained using the protocol. Received 04 December 1995/ Accepted in revised form 31 January 1997  相似文献   

19.
A comprehensive overview of elements in bioremediation   总被引:3,自引:0,他引:3  
Sustainable development requires the development and promotion of environmental management and a constant search for green technologies to treat a wide range of aquatic and terrestrial habitats contaminated by increasing anthropogenic activities. Bioremediation is an increasingly popular alternative to conventional methods for treating waste compounds and media with the possibility to degrade contaminants using natural microbial activity mediated by different consortia of microbial strains. Many studies about bioremediation have been reported and the scientific literature has revealed the progressive emergence of various bioremediation techniques. In this review, we discuss the various in situ and ex situ bioremediation techniques and elaborate on the anaerobic digestion technology, phytoremediation, hyperaccumulation, composting and biosorption for their effectiveness in the biotreatment, stabilization and eventually overall remediation of contaminated strata and environments. The review ends with a note on the recent advances genetic engineering and nanotechnology have had in improving bioremediation. Case studies have also been extensively revisited to support the discussions on biosorption of heavy metals, gene probes used in molecular diagnostics, bioremediation studies of contaminants in vadose soils, bioremediation of oil contaminated soils, bioremediation of contaminants from mining sites, air sparging, slurry phase bioremediation, phytoremediation studies for pollutants and heavy metal hyperaccumulators, and vermicomposting.  相似文献   

20.
Although most organisms have detoxification abilities (i.e mineralization, transformation and/or immobilization of pollutants), microorganisms, particularly bacteria, play a crucial role in biogeochemical cycles and in sustainable development of the biosphere. Next to glucosyl residues, the benzene ring is the most widely distributed unit of chemical structure in nature, and many of the aromatic compounds are major environmental pollutants. Bacteria have developed strategies for obtaining energy from virtually every compound under oxic or anoxic conditions (using alternative final electron acceptors such as nitrate, sulfate, and ferric ions). Clusters of genes coding for the catabolism of aromatic compounds are usually found in mobile genetic elements, such as transposons and plasmids, which facilitate their horizontal gene transfer and, therefore, the rapid adaptation of microorganisms to new pollutants. A successful strategy for in situ bioremediation has been the combination, in a single bacterial strain or in a syntrophic bacterial consortium, of different degrading abilities with genetic traits that provide selective advantages in a given environment. The advent of high-throughput methods for DNA sequencing and analysis of gene expression (genomics) and function (proteomics), as well as advances in modelling microbial metabolism in silico, provide a global, rational approach to unravel the largely unexplored potentials of microorganisms in biotechnological processes thereby facilitating sustainable development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号