首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Q Yao  R W Compans 《Journal of virology》1995,69(11):7045-7053
We have investigated the roles of the cytoplasmic domains of the human parainfluenza virus type 2 (PI2) and type 3 (PI3) fusion (F) proteins in protein transport and cell fusion activity. By using the vaccinia virus-T7 transient expression system, a series of F protein cytoplasmic tail truncation mutants was studied with respect to intracellular and surface expression and the ability to induce cell fusion when coexpressed with the corresponding hemagglutinin-neuraminidase (HN) proteins. All of the cytoplasmic tail truncation mutants of PI2F were expressed at high levels intracellularly or on cell surfaces as measured by immunoprecipitation and cell surface biotinylation assays. In addition, when coexpressed with PI2HN, these truncation mutants of PI2F were all found to be essentially unimpaired in the ability to induce cell fusion as measured by a quantitative cell fusion assay. In contrast, surface expression and cell fusion activity were found to be eliminated by a mutant of PI3F in which the entire cytoplasmic tail was deleted, and the mutant protein appeared to be unable to assemble into a high-molecular-weight oligomeric structure. To further investigate whether there is a specific sequence requirement in the cytoplasmic tail of PI3F, a chimeric protein consisting of the PI3F extracellular and transmembrane domains and the PI2F cytoplasmic tail was constructed. This chimeric protein was detected on the surface, and it was capable of inducing cell fusion when expressed together with PI3HN, although the fusogenic activity was reduced compared with that of wild-type PI3F. These results demonstrate that although PI2 and PI3 viruses belong to the same parainfluenza virus genus, these viruses show marked differences with respect to functional requirements for the cytoplasmic tail of the F glycoprotein.  相似文献   

2.
The role of residues in the conserved hydrophobic N-terminal fusion peptide of the paramyxovirus fusion (F) protein in causing cell-cell fusion was examined. Mutations were introduced into the cDNA encoding the simian virus 5 (SV5) F protein, the altered F proteins were expressed by using an eukaryotic vector, and their ability to mediate syncytium formation was determined. The mutant F proteins contained both single- and multiple-amino-acid substitutions, and they exhibited a variety of intracellular transport properties and fusion phenotypes. The data indicate that many substitutions in the conserved amino acids of the simian virus 5 F fusion peptide can be tolerated without loss of biological activity. Mutant F proteins which were not transported to the cell surface did not cause cell-cell fusion, but all of the mutants which were transported to the cell surface were fusion competent, exhibiting fusion properties similar to or better than those of the wild-type F protein. Mutant F proteins containing glycine-to-alanine substitutions had altered intracellular transport characteristics, yet they exhibited a great increase in fusion activity. The potential structural implications of this substitution and the possible importance of these glycine residues in maintaining appropriate levels of fusion activity are discussed.  相似文献   

3.
S Bagai  R A Lamb 《Journal of virology》1995,69(11):6712-6719
To compare the requirements for paramyxovirus-mediated cell fusion, the fusion (F) and hemagglutinin-neuraminidase (HN) glycoproteins of simian virus 5 (SV5), human parainfluenza virus 3 (HPIV-3), and Newcastle disease virus (NDV) were expressed individually or coexpressed in either homologous or heterologous combinations in CV-1 or HeLa-T4 cells, using the vaccinia virus-T7 polymerase transient expression system. The contribution of individual glycoproteins in virus-induced membrane fusion was examined by using a quantitative assay for lipid mixing based on the relief of self-quenching (dequenching) of fluorescence of the lipid probe octadecyl rhodamine (R18) and a quantitative assay for content mixing based on the cytoplasmic activation of a reporter gene, beta-galactosidase. In these assays, expression of the individual F glycoproteins did not induce significant levels of cell fusion and no cell fusion was observed in experiments when cells individually expressing homologous F or HN proteins were mixed. However, coexpression of homologous F and HN glycoproteins resulted in extensive cell fusion. The kinetics of fusion were found to be very similar for all three paramyxoviruses studied. With NDV and HPIV-3, no cell fusion was detected when F proteins were coexpressed with heterologous HN proteins or influenza virus hemagglutinin (HA). In contrast, SV5 F protein exhibited a considerable degree of fusion activity when coexpressed with either NDV or HPIV-3 HN or with influenza virus HA, although the kinetics of fusion were two- to threefold higher when the homologous SV5 F and HN proteins were coexpressed. Thus, these data indicate that among the paramyxoviruses tested, SV5 has different requirements for cell fusion.  相似文献   

4.
SER virus, a paramyxovirus that is closely related to simian virus 5 (SV5), is unusual in that it fails to induce syncytium formation. The SER virus F protein has an unusually long cytoplasmic tail (CT), and it was previously observed that truncations or specific mutations of this domain result in enhanced syncytium formation. In addition to the long CT, the SER F protein has nine amino acid differences from the F protein of SV5. We previously observed only a partial suppression of fusion in a chimeric SV5 F protein with a CT derived from SER virus, indicating that these other amino acid differences between the SER and SV5 F proteins also play a role in regulating the fusion phenotype. To examine the effects of individual amino acid differences, we mutated the nine SER residues individually to the respective residues of the SV5 F protein. We found that most of the mutants were expressed well and were transported to the cell surface at levels comparable to that of the wild-type SER F protein. Many of the mutants showed enhanced lipid mixing, calcein transfer, and syncytium formation even in the presence of the long SER F protein CT. Some mutants, such as the I310 M, T438S, M489I, T516V, and N529K mutants, also showed fusion at lower temperatures of 32, 25, and 18 degrees C. The residue Asn529 plays a critical role in the suppression of fusion activity, as the mutation of this residue to lysine caused a marked enhancement of fusion. The effect of the N529K mutation on the enhancement of fusion by a previously described mutant, L539,548A, as well as by chimeric SV5/SER F proteins was also dramatic. These results indicate that activation to a fusogenic conformation is dependent on the interplay of residues in the ectodomain, the transmembrane domain, and the CT domain of paramyxovirus F proteins.  相似文献   

5.
Moll M  Klenk HD  Maisner A 《Journal of virology》2002,76(14):7174-7186
The generation of replication-competent measles virus (MV) depends on the incorporation of biologically active, fusogenic glycoprotein complexes, which are required for attachment and penetration into susceptible host cells and for direct virus spread by cell-to-cell fusion. Whereas multiple studies have analyzed the importance of the ectodomains of the MV glycoproteins hemagglutinin (H) and fusion protein (F), we have investigated the role of the cytoplasmic tails of the F and H proteins for the formation of fusogenic complexes. Deletions in the cytoplasmic tails of transiently expressed MV glycoproteins were found to have varying effects on receptor binding, fusion, or fusion promotion activity. F tail truncation to only three amino acids did not affect fusion capacity. In contrast, truncation of the H cytoplasmic tail was limited. H protein mutants with cytoplasmic tails of <14 residues no longer supported F-mediated cell fusion, predominantly due to a decrease in surface expression and receptor binding. This indicates that a minimal length of the H protein tail of 14 amino acids is required to ensure a threshold local density to have sufficient accumulation of fusogenic H-F complexes. By using reverse genetics, a recombinant MV with an F tail of three amino acids (rMV-FcDelta30), as well as an MV with an H tail of 14 residues (rMV-HcDelta20), could be rescued, whereas generation of viruses with shorter H tails failed. Thus, glycoprotein truncation does not interfere with the successful generation of recombinant MV if fusion competence is maintained.  相似文献   

6.
The cytoplasmic tail of the immature Moloney murine leukemia virus (MoMuLV) envelope protein is approximately 32 amino acids long. During viral maturation, the viral protease cleaves this tail to release a 16-amino-acid R peptide, thereby rendering the envelope protein fusion competent. A series of truncations, deletions, and amino acid substitutions were constructed in this cytoplasmic tail to examine its role in fusion and viral transduction. Sequential truncation of the cytoplasmic tail revealed that removal of as few as 11 amino acids resulted in significant fusion when the envelope protein was expressed in NIH 3T3 cells, similar to that seen following expression of an R-less envelope (truncation of 16 amino acids). Further truncation of the cytoplasmic tail beyond the R-peptide cleavage site toward the membrane-spanning region had no additional effect on the level of fusion observed. In contrast, some deletions and nonconservative amino acid substitutions in the membrane-proximal region of the cytoplasmic tail (residues L602 to F605) reduced the amount of fusion observed in XC cell cocultivation assays, suggesting that this region influences the fusogenicity of full-length envelope protein. Expression of the mutant envelope proteins in a retroviral vector system revealed that decreased envelope-mediated cell-cell fusion correlated with a decrease in infectivity of the resulting virions. Additionally, some mutant envelope proteins which were capable of mediating cell-cell fusion were not efficiently incorporated into retroviral particles, resulting in defective virions. The cytoplasmic tail of MoMuLV envelope protein therefore influences both the fusogenicity of the envelope protein and its incorporation into virions.  相似文献   

7.
Deletion and truncation mutants of the human erythrocyte Ca2+ pump (hPMCA4b) were expressed in COS-1 cells. The reactivity patterns of these mutants with seven monoclonal antibodies were examined. Of the seven, six (JA9, JA3, 1G4, 4A4, 3E10 and 5F10) react from the cytoplasmic side. JA9 and JA3 reacted near the NH2 terminus and the COOH terminus of the molecule, respectively. 5F10 and 3E10 recognized portions of the large hydrophilic region in the middle of the protein. The epitopes of 1G4 and 4A4 were discontinuous and included residues from the long hydrophilic domain and residues between the proposed transmembrane domains M2 and M3. Antibody 1B10, which reacts from the extracellular side, recognized the COOH-terminal half of the molecule. These results show that the NH2 terminus, the COOH terminus, the region between M2 and M3, and the large hydrophilic region are all on the cytoplasmic side. This means that there are an even number of membrane crossings in both the NH2-terminal and the COOH-terminal halves. Between residues 75 and 300 there must be at least two membrane crossings, and there are at least two membrane crossings in the COOH-terminal half of the molecule.  相似文献   

8.
Recently we showed that the membrane-proximal stem region of the vesicular stomatitis virus (VSV) G protein ectodomain (G stem [GS]), together with the transmembrane and cytoplasmic domains, was sufficient to mediate efficient VSV budding (C. S. Robison and M. A. Whitt, J. Virol. 74:2239-2246, 2000). Here, we show that GS can also potentiate the membrane fusion activity of heterologous viral fusion proteins when GS is coexpressed with those proteins. For some fusion proteins, there was as much as a 40-fold increase in syncytium formation when GS was coexpressed compared to that seen when the fusion protein was expressed alone. Fusion potentiation by GS was not protein specific, since it occurred with both pH-dependent as well as pH-independent fusion proteins. Using a recombinant vesicular stomatitis virus encoding GS that contained an N-terminal hemagglutinin (HA) tag (GS(HA) virus), we found that the GS(HA) virus bound to cells as well as the wild-type virus did at pH 7.0; however, the GS(HA) virus was noninfectious. Analysis of cells expressing GS(HA) in a three-color membrane fusion assay revealed that GS(HA) could induce lipid mixing but not cytoplasmic mixing, indicating that GS can induce hemifusion. Treatment of GS(HA) virus-bound cells with the membrane-destabilizing drug chlorpromazine rescued the hemifusion block and allowed entry and subsequent replication of GS(HA) virus, demonstrating that GS-mediated hemifusion was a functional intermediate in the membrane fusion pathway. Using a series of truncation mutants, we also determined that only 14 residues of GS, together with the VSV G transmembrane and cytoplasmic tail, were sufficient for fusion potentiation. To our knowledge, this is the first report which shows that a small domain of one viral glycoprotein can promote the fusion activity of other, unrelated viral glycoproteins.  相似文献   

9.
Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Fusion is mediated by the viral fusion (F) protein, and it undergoes large irreversible conformational changes to cause membrane merger. The C terminus of PIV5 F contains a membrane-proximal 7-residue external region (MPER), followed by the transmembrane (TM) domain and a 20-residue cytoplasmic tail. To study the sequence requirements of the F protein C terminus for fusion, we constructed chimeras containing the ectodomain of parainfluenza virus 5 F (PIV5 F) and either the MPER, the TM domain, or the cytoplasmic tail of the F proteins of the paramyxoviruses measles virus, mumps virus, Newcastle disease virus, human parainfluenza virus 3, and Nipah virus. The chimeras were expressed, and their ability to cause cell fusion was analyzed. The chimeric proteins were variably expressed at the cell surface. We found that chimeras containing the ectodomain of PIV5 F with the C terminus of other paramyxoviruses were unable to cause cell fusion. Fusion could be restored by decreasing the activation energy of refolding through introduction of a destabilizing mutation (S443P). Replacing individual regions, singly or doubly, in the chimeras with native PIV5 F sequences restored fusion to various degrees, but it did not have an additive effect in restoring activity. Thus, the F protein C terminus may be a specific structure that only functions with its cognate ectodomain. Alanine scanning mutagenesis of MPER indicates that it has a regulatory role in fusion since both hyperfusogenic and hypofusogenic mutations were found.  相似文献   

10.
It was previously reported that truncation or proteolytic removal of the C-terminal 16 amino acids (the R peptide) from the cytoplasmic tail of the murine leukemia virus (MuLV) envelope protein greatly increases its fusion activity. In this study, to investigate the specificity of the effect of the R peptide on the fusion activity of viral envelope proteins, we expressed simian immunodeficiency virus (SIV)-MuLV chimeric proteins in which the entire cytoplasmic tail of the SIV envelope protein was replaced by either the full-length MuLV cytoplasmic tail or a truncated MuLV cytoplasmic tail with the R peptide deleted. Extensive fusion of CD4-positive cells with the chimeric protein containing a truncated MuLV cytoplasmic tail was observed. In contrast, no cell fusion activity was found for the chimeric protein with a full-length MuLV cytoplasmic tail. We constructed another SIV-MuLV chimeric protein in which the MuLV R peptide was added to an SIV envelope protein cytoplasmic tail 17 amino acids from its membrane-spanning domain. No fusion activity was observed within this construct, while the corresponding truncated SIV envelope protein lacking the R peptide showed extensive fusion activity. No significant difference in the transport or surface expression was observed among the various SIV-MuLV chimeric proteins and the truncated SIV envelope protein. Our results thus demonstrate that the MuLV R peptide has profound inhibitory effects on virus-induced cell fusion, not only with MuLV but also in a distantly related retroviral envelope protein which utilizes a different receptor and fuses different cell types.  相似文献   

11.
The paramyxovirus fusion (F) protein mediates membrane fusion. The biologically active F protein consists of a membrane distal subunit F2 and a membrane anchored subunit F1. A highly stable structure has been identified comprised of peptides derived from the simian virus 5 (SV5) F1 heptad repeat A, which abuts the hydrophobic fusion peptide (peptide N-1), and the SV5 F1 heptad repeat B, located 270 residues downstream and adjacent to the transmembrane domain (peptides C-1 and C-2). In isolation, peptide N-1 is 47% alpha-helical and peptide C-1 and C-2 are unfolded. When mixed together, peptides N1 + C1 form a thermostable (Tm > 90 degrees C), 82% alpha-helical, discrete trimer of heterodimers (mass 31,300 M(r)) that is resistant to denaturation by 2% SDS at 40 degrees C. The authors suggest that this alpha-helical trimeric complex represents the core most stable form of the F protein that is either fusion competent or forms after fusion has occurred. Peptide C-1 is a potent inhibitor of both the lipid mixing and aqueous content mixing fusion activity of the SV5 F protein. In contrast, peptide N-1 inhibits cytoplasmic content mixing but not lipid mixing, leading to a stable hemifusion state. Thus, these peptides define functionally different steps in the fusion process. The parallels among both the fusion processes and the protein structures of paramyxovirus F proteins, HIV gp41 and influenza virus haemagglutinin are discussed, as the analogies are indicative of a conserved paradigm for fusion promotion among fusion proteins from widely disparate viruses.  相似文献   

12.
Paramyxovirus fusion proteins have two heptad repeat domains, HR1 and HR2, which have been implicated in the fusion activity of the protein. Peptides with sequences from these two domains form a six-stranded coiled coil, with the HR1 sequences forming a central trimer (K. A. Baker, R. E. Dutch, R. A. Lamb, and T. S. Jardetzky, Mol. Cell 3:309-319, 1999; X. Zhao, M. Singh, V. N. Malashkevich, and P. S. Kim, Proc. Natl. Acad. Sci. USA 97:14172-14177, 2000). We have extended our previous mutational analysis of the HR1 domain of the Newcastle disease virus fusion protein, focusing on the role of the amino acids forming the hydrophobic core of the trimer, amino acids in the "a" and "d" positions of the helix from amino acids 123 to 182. Both conservative and nonconservative point mutations were characterized for their effects on synthesis, stability, proteolytic cleavage, and surface expression. Mutant proteins expressed on the cell surface were characterized for fusion activity by measuring syncytium formation, content mixing, and lipid mixing. We found that all mutations in the "a" position interfered with proteolytic cleavage and surface expression of the protein, implicating the HR1 domain in the folding of the F protein. However, mutation of five of seven "d" position residues had little or no effect on surface expression but, with one exception at residue 175, did interfere to various extents with the fusion activity of the protein. One of these "d" mutations, at position 154, interfered with proteolytic cleavage, while the rest of the mutants were cleaved normally. That most "d" position residues do affect fusion activity argues that a stable HR1 trimer is required for formation of the six-stranded coiled coil and, therefore, optimal fusion activity. That most of the "d" position mutations do not block folding suggests that formation of the core trimer may not be required for folding of the prefusion form of the protein. We also found that mutations within the fusion peptide, at residue 128, can interfere with folding of the protein, implicating this region in folding of the molecule. No characterized mutation enhanced fusion.  相似文献   

13.
Cell fusion in the budding yeast Saccharomyces cerevisiae is a temporally and spatially regulated process that involves degradation of the septum, which is composed of cell wall material, and occurs between conjugating cells within a prezygote, followed by plasma membrane fusion. The plasma membrane protein Fus1p is known to be required for septum degradation during cell fusion, yet its role at the molecular level is not understood. We identified Sho1p, an osmosensor for the HOG MAPK pathway, as a binding partner for Fus1 in a two-hybrid screen. The Sho1p-Fus1p interaction occurs directly and is mediated through the Sho1p-SH3 domain and a proline-rich peptide ligand on the Fus1p COOH-terminal cytoplasmic region. The cell fusion defect associated with fus1Delta mutants is suppressed by a sho1Delta deletion allele, suggesting that Fus1p negatively regulates Sho1p signaling to ensure efficient cell fusion. A two-hybrid matrix containing fusion proteins and pheromone response pathway signaling molecules reveals that Fus1p may participate in a complex network of interactions. In particular, the Fus1p cytoplasmic domain interacts with Chs5p, a protein required for secretion of specialized Chs3p-containing vesicles during bud development, and chs5Delta mutants were defective in cell surface localization of Fus1p. The Fus1p cytoplasmic domain also interacts with the activated GTP-bound form of Cdc42p and the Fus1p-SH3 domain interacts with Bni1p, a yeast formin that participates in cell fusion and controls the assembly of actin cables to polarize secretion in response to Cdc42p signaling. Taken together, our results suggest that Fus1p acts as a scaffold for the assembly of a cell surface complex involved in polarized secretion of septum-degrading enzymes and inhibition of HOG pathway signaling to promote cell fusion.  相似文献   

14.
Paramyxoviruses utilize both an attachment protein and a fusion (F) protein to drive virus-cell and cell-cell fusion. F exists functionally as a trimer of two disulfide-linked subunits: F(1) and F(2). Alignment and analysis of a set of paramyxovirus F protein sequences identified three conserved blocks (CB): one in the fusion peptide/heptad repeat A domain, known to play important roles in fusion promotion, one in the region between the heptad repeats of F(1) (CBF(1)) (A. E. Gardner, K. L. Martin, and R. E. Dutch, Biochemistry 46:5094-5105, 2007), and one in the F(2) subunit (CBF(2)). To analyze the functions of CBF(2), alanine substitutions at conserved positions were created in both the simian virus 5 (SV5) and Hendra virus F proteins. A number of the CBF(2) mutations resulted in folding and expression defects. However, the CBF(2) mutants that were properly expressed and trafficked had altered fusion promotion activity. The Hendra virus CBF(2) Y79A and P89A mutants showed significantly decreased levels of fusion, whereas the SV5 CBF(2) I49A mutant exhibited greatly increased cell-cell fusion relative to that for wild-type F. Additional substitutions at SV5 F I49 suggest that both side chain volume and hydrophobicity at this position are important in the folding of the metastable, prefusion state and the subsequent triggering of membrane fusion. The recently published prefusogenic structure of parainfluenza virus 5/SV5 F (H. S. Yin et al., Nature 439:38-44, 2006) places CBF(2) in direct contact with heptad repeat A. Our data therefore indicate that this conserved region plays a critical role in stabilizing the prefusion state, likely through interactions with heptad repeat A, and in triggering membrane fusion.  相似文献   

15.
Newcastle disease virus (NDV) fusion (F) protein directs membrane fusion, which is required for virus entry and cell-cell fusion. We have previously shown that free thiols are present in cell surface-expressed NDV F protein and that blocking the production of free thiols by thiol-disulfide exchange inhibitors inhibited the membrane fusion mediated by F protein (J Virol. 81:2328-2339, 2007). Extending these observations, we evaluated the role of the overexpression of two disulfide bond isomerases, protein disulfide isomerase (PDI) and ERdj5, in cell-cell fusion mediated by NDV glycoproteins. The overexpression of these isomerases resulted in significantly increased membrane fusion, as measured by syncytium formation and content mixing. The overexpression of these isomerases enhanced the production of free thiols in F protein when expressed without hemagglutination-neuraminidase (HN) protein but decreased free thiols in F protein expressed with HN protein. By evaluating the binding of conformation-sensitive antibodies, we found that the overexpression of these isomerases favored a postfusion conformation of surface-expressed F protein in the presence of HN protein. These results suggest that isomerases belonging to the PDI family catalyze the production of free thiols in F protein, and free thiols in F protein facilitate membrane fusion mediated by F protein.  相似文献   

16.
The cytoplasmic tails of the envelope proteins from multiple viruses are known to contain determinants that affect their fusogenic capacities. Here we report that specific residues in the cytoplasmic tail of the Nipah virus fusion protein (NiV-F) modulate its fusogenic activity. Truncation of the cytoplasmic tail of NiV-F greatly inhibited cell-cell fusion. Deletion and alanine scan analysis identified a tribasic KKR motif in the membrane-adjacent region as important for modulating cell-cell fusion. The K1A mutation increased fusion 5.5-fold, while the K2A and R3A mutations decreased fusion 3- to 5-fold. These results were corroborated in a reverse-pseudotyped viral entry assay, where receptor-pseudotyped reporter virus was used to infect cells expressing wild-type or mutant NiV envelope glycoproteins. Differential monoclonal antibody binding data indicated that hyper- or hypofusogenic mutations in the KKR motif affected the ectodomain conformation of NiV-F, which in turn resulted in faster or slower six-helix bundle formation, respectively. However, we also present evidence that the hypofusogenic phenotypes of the K2A and R3A mutants were effected via distinct mechanisms. Interestingly, the K2A mutant was also markedly excluded from lipid rafts, where approximately 20% of wild-type F and the other mutants can be found. Finally, we found a strong negative correlation between the relative fusogenic capacities of these cytoplasmic-tail mutants and the avidities of NiV-F and NiV-G interactions (P = 0.007, r(2) = 0.82). In toto, our data suggest that inside-out signaling by specific residues in the cytoplasmic tail of NiV-F can modulate its fusogenicity by multiple distinct mechanisms.  相似文献   

17.
《The Journal of cell biology》1996,135(6):1619-1632
The voltage-sensitive K+ channel Kv2.1 has a polarized and clustered distribution in neurons. To investigate the basis for this localization, we expressed wild-type Kv2.1 and two COOH-terminal truncation mutants, delta C318 and delta C187, in polarized epithelial MDCK cells. These functional channel proteins had differing subcellular localization, in that while both wild-type Kv2.1 and delta C187 localized to the lateral membrane in high density clusters, delta C318 was expressed uniformly on both apical and lateral membranes. A chimeric protein containing the hemagglutinin protein from influenza virus and the region of Kv2.1 that differentiates the two truncation mutants (amino acids 536-666) was also expressed in MDCK cells, where it was found in high density clusters similar to those observed for Kv2.1. Polarized expression and clustering of Kv2.1 correlates with detergent solubility, suggesting that interaction with the detergent insoluble cytoskeleton may be necessary for proper localization of this channel.  相似文献   

18.
Members of the protein kinase C (PKC) family are characterized by an NH2-terminal regulatory domain containing binding sites for calcium, phosphatidylserine, and diacylglycerol (or tumor-promoting phorbol esters), a small central hinge region and a COOH-terminal catalytic domain. We have constructed fusion proteins in which the regulatory domain of PKC alpha was removed and replaced by a 19-amino acid leader sequence containing a myristoylation consensus or by the same sequence in which the amino-terminal glycine was changed to alanine to prevent myristoylation. The goal was to generate constitutively active mutants of PKC that were either membrane bound, due to their myristoylation, or cytoplasmic. Western blotting of fractions from COS cells transfected with plasmids encoding wild-type and mutant proteins revealed that PKC alpha resided entirely in a Triton X-100 soluble (TS) fraction, whereas both the myristoylated and nonmyristoylated mutants were associated primarily with the nuclear envelope fraction. A similar mutant that lacked the 19 amino acid leader sequence was also found almost entirely in the nuclear envelope, as was a truncation mutant containing only the regulatory domain, hinge region, and a small portion of the catalytic domain. However, an additional truncation mutant consisting of only the regulatory domain plus the first one-third of the hinge region was almost entirely in the TS fraction. A nonmyristoylated fusion protein containing only the catalytic domain was also found in the nuclear envelope. Immunostaining of cells transfected with these constructs revealed that both the myristoylated and nonmyristoylated mutants were localized in nuclei, whereas wild-type PKC alpha was primarily cytoplasmic and perinuclear. Phorbol dibutyrate treatment of PKC alpha-transfected cells resulted in increased perinuclear and nuclear staining. The results are consistent with a model in which activation of PKC, by phorbol esters or by deletion of the regulatory domain, exposes regions in the hinge and catalytic domains that interact with a PKC "receptor" present in the nuclear envelope, and may explain the ability of wild-type PKC to be translocated to the nucleus under certain conditions.  相似文献   

19.
SER virus is closely related to the paramyxovirus simian virus 5 (SV5) but is defective in syncytium formation. The SER virus F protein has a long cytoplasmic tail (CT) domain that has been shown to inhibit membrane fusion, and this inhibitory effect could be eliminated by truncation of the C-terminal sequence (S. Tong, M. Li, A. Vincent, R. W. Compans, E. Fritsch, R. Beier, C. Klenk, M. Ohuchi, and H.-D. Klenk, Virology 301:322-333, 2002). To study the sequence requirements for regulation of fusion, codons for SER virus F protein residues spanning amino acids 535 to 542 and 548 were mutated singly to alanines, and the two leucine residues at positions 539 and 548 were mutated doubly to alanines. We found that leu-539 and leu-548 in the CT domain played a critical role in the inhibition of fusion, as mutation of the two leucines singly to alanines partially rescued fusion, and the double mutation L539, 548A completely rescued syncytium formation. Mutation of charged residues to alanines had little effect on the suppression of fusion activity, whereas the mutation of serine residues to alanines enhanced fusion activity significantly. The L539, 548A mutant also showed extensive syncytium formation when expressed without the SER virus HN protein. By constructing a chimeric SV5-SER virus F CT protein, we also found that the inhibitory effect of the long CT of the SER virus F protein could be partially transferred to the SV5 F protein. These results demonstrate that an elongated CT of a paramyxovirus F protein interferes with membrane fusion in a sequence-dependent manner.  相似文献   

20.
Human parainfluenza virus type 3 (HPIV3) can cause severe respiratory tract diseases in infants and young children, but no licensed vaccines or antiviral agents are currently available for treatment. Fusing the viral and target cell membranes is a prerequisite for its entry into host cells and is directly mediated by the fusion (F) protein. Although several domains of F are known to have important effects on regulating the membrane fusion activity, the roles of the DI-DII linker (residues 369–374) of the HPIV3 F protein in the fusogenicity still remains ill-defined. To facilitate our understanding of the role of this domain might play in F-induced cell-cell fusion, nine single mutations were engineered into this domain by site-directed mutagenesis. A vaccinia virus-T7 RNA polymerase transient expression system was employed to express the wild-type or mutated F proteins. These mutants were analyzed for membrane fusion activity, cell surface expression, and interaction between F and HN protein. Each of the mutated F proteins in this domain has a cell surface expression level similar to that of wild-type F. All of them resulted in a significant reduction in fusogenic activity in all steps of membrane fusion. Furthermore, all these fusion-deficient mutants reduced the amount of the HN-F complexes at the cell surface. Together, the results of our work suggest that this region has an important effect on the fusogenic activity of F.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号