首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many studies have suggested a role for the members of the G12 family of heterotrimeric G proteins (Galpha12 and Galpha13) in oncogenesis and tumor cell growth. However, few studies have examined G12 signaling in actual human cancers. In this study, we examined the role of G12 signaling in prostate cancer. We found that expression of the G12 proteins is significantly elevated in prostate cancer. Interestingly, expression of the activated forms of Galpha12 or Galpha13 in the PC3 and DU145 prostate cancer cell lines did not promote cancer cell growth. Instead, expression of the activated forms of Galpha12 or Galpha13 in these cell lines induced cell invasion through the activation of the RhoA family of G proteins. Furthermore, inhibition of G12 signaling by expression of the RGS domain of the p115-Rho-specific guanine nucleotide exchange factor (p115-RGS) in the PC3 and DU145 cell lines did not reduce cancer cell growth. However, inhibition of G12 signaling with p115-RGS in these cell lines blocked thrombin- and thromboxane A2-stimulated cell invasion. These observations identify the G12 family proteins as important regulators of prostate cancer invasion and suggest that these proteins may be targeted to limit invasion- and metastasis-induced prostate cancer patient mortality.  相似文献   

2.
Heterotrimeric G proteins act as a molecular switch that conveys signals from G protein-coupled receptors in the cell membrane to intracellular downstream effectors. The Galpha subunits of the G(12) family of heterotrimeric G proteins, defined by Galpha(12) and Galpha(13), have many cellular functions through their specific downstream effectors. On the other hand, regulatory systems of the activity of Galpha(12) and Galpha(13) have not been fully clear. Here, we show that Socius, a previously identified Rho family small GTPase Rnd1 interacting protein, binds directly to Galpha(12) and Galpha(13) through its NH(2)-terminal region. Socius increased the amounts of GTP-bound active form of Galpha(12) in 293T cells. Furthermore, Socius promotes the Galpha(12)-induced RhoA activation in 293T cells. These results demonstrate that Socius is a novel activator of the Galpha(12) family.  相似文献   

3.
4.
5.
Regulation of G protein-mediated signal transduction by RGS proteins   总被引:2,自引:0,他引:2  
Kozasa T 《Life sciences》2001,68(19-20):2309-2317
RGS proteins form a new family of regulatory proteins of G protein signaling. They contain homologous core domains (RGS domains) of about 120 amino acids. RGS domains interact with activated Galpha subunits. Several RGS proteins have been shown biochemically to act as GTPase activating proteins (GAPs) for their interacting Galpha subunits. Other than RGS domains, RGS proteins differ significantly in size, amino acid sequences, and tissue distribution. In addition, many RGS proteins have other protein-protein interaction motifs involved in cell signaling. We have shown that p115RhoGEF, a newly identified GEF(guanine nucleotide exchange factor) for RhoGTPase, has a RGS domain at its N-terminal region and this domain acts as a specific GAP for Galpha12 and Galpha13. Furthermore, binding of activated Galpha13 to this RGS domain stimulated GEF activity of p115RhoGEF. Activated Galpha12 inhibited Galpha13-stimulated GEF activity. Thus p115RhoGEF is a direct link between heterotrimeric G protein and RhoGTPase and it functions as an effector for Galpha12 and Galpha13 in addition to acting as their GAP. We also found that RGS domain at N-terminal regions of G protein receptor kinase 2 (GRK2) specifically interacts with Galphaq/11 and inhibits Galphaq-mediated activation of PLC-beta, apparently through sequestration of activated Galphaq. However, unlike other RGS proteins, this RGS domain did not show significant GAP activity to Galphaq. These results indicate that RGS proteins have far more diverse functions than acting simply as GAPs and the characterization of function of each RGS protein is crucial to understand the G protein signaling network in cells.  相似文献   

6.
Kashef K  Lee CM  Ha JH  Reddy EP  Dhanasekaran DN 《Biochemistry》2005,44(43):14090-14096
Scaffolding proteins play a critical role in conferring specificity and fidelity to signaling pathways. The JNK-interacting leucine zipper protein (JLP) has been identified as a scaffolding protein involved in linking components of the JNK signaling module. Galpha(12) and Galpha(13), the alpha-subunits of heterotrimeric G proteins G12 and G13, respectively, stimulate the JNK module in diverse cell types. Here, we report that Galpha(13) physically interacts with JLP, and this interaction enhances Galpha(13)-mediated JNK activation. We also demonstrate endogenous interaction between JLP and Galpha(13) in MCF-7 cells. JLP interaction is specific to the G12 family of alpha-subunits via its C-terminal domain (termed GID-JLP), spanning amino acids 1165-1307, and this interaction is more pronounced with the mutationally or functionally activated form of Galpha(13) compared to that of wild-type Galpha(13). The presence of a ternary complex consisting of Galpha(13), JLP, and JNK suggests a role for JLP in tethering Galpha(13) to the signaling components involved in JNK activation. Coexpression of GID-JLP disrupts ternary complex formation in addition to attenuating Galpha(13)-stimulated JNK activity. These findings identify JLP as a novel scaffolding protein in the Galpha(13)-mediated JNK signaling pathway.  相似文献   

7.
8.
The Galpha subunits of the G(12) family of heterotrimeric G proteins, defined by Galpha(12) and Galpha(13), are involved in many signaling pathways and diverse cellular functions. In an attempt to elucidate downstream effectors of Galpha(12) for cellular functions, we have performed a yeast two-hybrid screening of a rat brain cDNA library and revealed that Ser/Thr protein phosphatase type 5 (PP5) is a novel effector of Galpha(12) and Galpha(13). PP5 is a newly identified phosphatase and consists of a C-terminal catalytic domain and an N-terminal regulatory tetratricopeptide repeat (TPR) domain [2]. Arachidonic acid was recently shown to activate PP5 phosphatase activity by binding to its TPR domain, however the precise regulatory mechanism of PP5 phosphatase activity is not fully determined. In this study, we show that active forms of Galpha(12) and Galpha(13) specifically interact with PP5 through its TPR domain and activate its phosphatase activity about 2.5-fold. Active forms of Galpha(12) and Galpha(13) also enhance the arachidonic acid-stimulated PP5 phosphatase activity about 2.5-fold. Moreover, we demonstrate that the active form of Galpha(12) translocates PP5 to the cell periphery and colocalizes with PP5. These results propose a new signaling pathway of G(12) family G proteins.  相似文献   

9.
Coupling of G proteins to ligand-engaged chemokine receptors is the paramount event in G-protein-coupled receptor signal transduction. Previously, we have demonstrated that the human cytomegalovirus-encoded chemokine receptor US28 mediates human vascular smooth muscle cell (SMC) migration in response to either RANTES or monocyte chemoattractant protein 1. In this report, we identify the G proteins that couple with US28 to promote vascular SMC migration and identify other signaling molecules that play critical roles in this process. US28-mediated cellular migration was enhanced with the expression of the G-protein subunits Galpha12 and Galpha13, suggesting that US28 may functionally couple to these G proteins. In correlation with this observation, US28 was able to activate RhoA, a downstream effector of Galpha12 and Galpha13 in cell types with these G proteins but not in those without them and activation of RhoA was dependent on US28 stimulation with RANTES. In addition, inactivation of RhoA or the RhoA-associated kinase p160ROCK with a dominant-negative mutant of RhoA or the small molecule inhibitor Y27632, respectively, abrogated US28-induced SMC migration. The data presented here suggest that US28 functionally signals through Galpha12 family G proteins and RhoA in a ligand-dependent manner and these signaling molecules are important for the ability of US28 to induce cellular migration.  相似文献   

10.
The Galpha subunits of the G(12) family of heterotrimeric G proteins, defined by Galpha(12) and Galpha(13), have many cellular functions in common, such as stress fiber formation and neurite retraction. However, a variety of G protein-coupled receptors appear to couple selectively to Galpha(12) and Galpha(13). For example, thrombin and lysophosphatidic acid (LPA) have been shown to induce stress fiber formation via Galpha(12) and Galpha(13), respectively. We recently showed that active forms of Galpha(12) and Galpha(13) interact with Ser/Thr phosphatase type 5 through its tetratricopeptide repeat domain. Here we developed a novel assay to measure the activities of Galpha(12) and Galpha(13) by using glutathione S-transferase-fused tetratricopeptide repeat domain of Ser/Thr phosphatase type 5, taking advantage of the property that tetratricopeptide repeat domain strongly interacts with active forms of Galpha(12) and Galpha(13). By using this assay, we identified that thrombin and LPA selectively activate Galpha(12) and Galpha(13), respectively. Galpha(12) and Galpha(13) show a high amino acid sequence homology except for their N-terminal short sequences. Then we generated chimeric G proteins Galpha(12N/13C) and Galpha(13N/12C), in which the N-terminal short sequences are replaced by each other, and showed that thrombin and LPA selectively activate Galpha(12N/13C) and Galpha(13N/12C), respectively. Moreover, thrombin and LPA stimulate RhoA activity through Galpha(12) and Galpha(13), respectively, in a Galpha(12) family N-terminal sequence-dependent manner. Thus, N-terminal short sequences of the G(12) family determine the selective couplings of thrombin and LPA receptors to the Galpha(12) family.  相似文献   

11.
Endothelin (EDN) receptor type B (EDNRB) activates serum response factor (SRF) via G(q/11) and G(12/13) G proteins. In this study, we investigated the involvement of intracellular loop sequences of EDNRB in coupling to these G proteins. EDNRB mutants were generated and tested for their abilities to activate SRF in NIH3T3 cells and in the mouse embryonic fibroblast cell line (F(q/11)) lacking both Galpha(q) and Galpha(11). EDNRB can activate SRF in NIH3T3 cells via G(q/11), although it can only activate SRF through G(12/13) in F(q/11) cells. Mutants with mutations in the second and third inner loops of EDNRB functioned in the same manner in both cell lines, either able or unable to activate SRF. This finding suggests that the second and third inner loops of EDNRB either participate or not in coupling to both G(q/11) and G(12/13) but are not specific for either one. However, in the first inner loop, a substitution of three Ala residues for Met(128)-Arg(129)-Asn(130) abolished the ability to activate SRF only in F(q/11) cells, suggesting that this mutation might specifically disrupt the coupling to G(12/13) rather than to G(q/11). Further characterization of this first inner loop mutant revealed that exogenous expression of Galpha(12) or Galpha(q) could restore SRF activation, whereas the expression of Galpha(13) did not. Therefore, we conclude that although the three intracellular loops of EDNRB may be involved in coupling to G proteins, residues Met(128)-Arg(129)-Asn(130) in the first intracellular loop are specifically required for activation of Galpha(13).  相似文献   

12.
13.
G protein-coupled receptor kinases (GRKs) are well characterized regulators of G protein-coupled receptors, whereas regulators of G protein signaling (RGS) proteins directly control the activity of G protein alpha subunits. Interestingly, a recent report (Siderovski, D. P., Hessel, A., Chung, S., Mak, T. W., and Tyers, M. (1996) Curr. Biol. 6, 211-212) identified a region within the N terminus of GRKs that contained homology to RGS domains. Given that RGS domains demonstrate AlF(4)(-)-dependent binding to G protein alpha subunits, we tested the ability of G proteins from a crude bovine brain extract to bind to GRK affinity columns in the absence or presence of AlF(4)(-). This revealed the specific ability of bovine brain Galpha(q/11) to bind to both GRK2 and GRK3 in an AlF(4)(-)-dependent manner. In contrast, Galpha(s), Galpha(i), and Galpha(12/13) did not bind to GRK2 or GRK3 despite their presence in the extract. Additional studies revealed that bovine brain Galpha(q/11) could also bind to an N-terminal construct of GRK2, while no binding of Galpha(q/11), Galpha(s), Galpha(i), or Galpha(12/13) to comparable constructs of GRK5 or GRK6 was observed. Experiments using purified Galpha(q) revealed significant binding of both Galpha(q) GDP/AlF(4)(-) and Galpha(q)(GTPgammaS), but not Galpha(q)(GDP), to GRK2. Activation-dependent binding was also observed in both COS-1 and HEK293 cells as GRK2 significantly co-immunoprecipitated constitutively active Galpha(q)(R183C) but not wild type Galpha(q). In vitro analysis revealed that GRK2 possesses weak GAP activity toward Galpha(q) that is dependent on the presence of a G protein-coupled receptor. However, GRK2 effectively inhibited Galpha(q)-mediated activation of phospholipase C-beta both in vitro and in cells, possibly through sequestration of activated Galpha(q). These data suggest that a subfamily of the GRKs may be bifunctional regulators of G protein-coupled receptor signaling operating directly on both receptors and G proteins.  相似文献   

14.
The release of neurotransmitters is known to be regulated by activation of heterotrimeric G protein-coupled receptors, although precise mechanisms have not yet been elucidated. To assess the role of the G(12) family of heterotrimeric G proteins in the regulation of neurotransmitter release, we established PC12 cell lines that expressed constitutively active Galpha(12) or Galpha(13) using an isopropyl-beta-D-thiogalactoside-inducible expression system. In the cells, expression of constitutively active Galpha(12) or Galpha(13) inhibited the high K(+)-evoked [(3)H]dopamine release without any effect on the high K(+)-induced increase in intracellular Ca(2+) concentration. A Ca(2+) ionophore ionomycin-induced [(3)H]dopamine release was also inhibited by the expression of active Galpha(12) or Galpha(13). These inhibitory effects of Galpha(12) and Galpha(13) on [(3)H]dopamine release were mimicked by the expression of constitutively active RhoA. In addition, Y-27632, and inhibitor of Rho-associated kinase, a downstream Rho effector, completely abolished the inhibition of [(3)H]dopamine release by Galpha(12), Galpha(13), and RhoA. These results indicate that Ca(2+)-dependent exocytosis is regulated by Galpha(12) and Galpha(13) through a Rho/Rho-associated kinase-dependent pathway.  相似文献   

15.
Heterotrimeric G protein signaling specificity has been attributed to select combinations of Galpha, beta, and gamma subunits, their interactions with other signaling proteins, and their localization in the cell. With few exceptions, the G protein subunit combinations that exist in vivo and the significance of these specific combinations are largely unknown. We have begun to approach these problems in HeLa cells by: 1) determining the concentrations of Galpha and Gbeta subunits; 2) examining receptor-dependent activities of two effector systems (adenylyl cyclase and phospholipase Cbeta); and 3) systematically silencing each of the Galpha and Gbeta subunits by using small interfering RNA while quantifying resultant changes in effector function and the concentrations of other relevant proteins in the network. HeLa cells express equimolar amounts of total Galpha and Gbeta subunits. The most prevalent Galpha proteins were one member of each Galpha subfamily (Galpha(s), Galpha(i3), Galpha(11), and Galpha(13)). We substantially abrogated expression of most of the Galpha and Gbeta proteins expressed in these cells, singly and some in combinations. As expected, agonist-dependent activation of adenylyl cyclase or phospholipase Cbeta was specifically eliminated following the silencing of Galpha(s) or Galpha(q/11), respectively. We also confirmed that Gbeta subunits are necessary for stable accumulation of Galpha proteins in vivo. Gbeta subunits demonstrated little isoform specificity for receptor-dependent modulation of effector activity. We observed compensatory changes in G protein accumulation following silencing of individual genes, as well as an apparent reciprocal relationship between the expression of certain Galpha(q) and Galpha(i) subfamily members. These findings provide a foundation for understanding the mechanisms that regulate the adaptability and remarkable resilience of G protein signaling networks.  相似文献   

16.
Growth factors induce massive actin cytoskeletal remodeling in cells. These reorganization events underlie various cellular responses such as cell migration and morphological changes. One major form of actin reorganization is the formation and disassembly of dorsal ruffles (also named waves, dorsal rings, or circular ruffles). Dorsal ruffles are involved in physiological functions including cell migration, invasion, macropinocytosis, plasma membrane recycling, and others. Growth factors initiate rapid formation (within 5 min) of circular membrane ruffles, and these ruffles move along the dorsal side of the cells, constrict, close, and eventually disassemble ( approximately 20 min). Considerable attention has been devoted to the mechanism by which growth factors induce the formation of dorsal ruffles. However, little is known of the mechanism by which these ruffles are disassembled. Here we have shown that G proteins G(12) and G(13) control the rate of disassembly of dorsal ruffles. In Galpha(12)(-/-)Galpha(13)(-/-) fibroblast cells, dorsal ruffles induced by growth factor treatment remain visible substantially longer ( approximately 60 min) than in wild-type cells, whereas the rate of formation of these ruffles was the same with or without Galpha(12) and Galpha(13). Thus, Galpha(12)/Galpha(13) critically regulate dorsal ruffle turnover.  相似文献   

17.
The ubiquitously expressed heterotrimeric guanine nucleotide-binding proteins (G-proteins) G12 and G13 have been shown to activate the small GTPase Rho. Rho stimulation leads to a rapid remodeling of the actin cytoskeleton and subsequent stress fiber formation. We investigated the involvement of G12 or G13 in stress fiber formation induced through a variety of Gq/G11-coupled receptors. Using fibroblast cell lines derived from wild-type and Galphaq/Galpha11-deficient mice, we show that agonist-dependent activation of the endogenous receptors for thrombin or lysophosphatidic acid and of the heterologously expressed bradykinin B2, vasopressin V1A, endothelin ETA, and serotonin 5-HT2C receptors induced stress fiber formation in either the presence or absence of Galphaq/Galpha11. Stress fiber assembly induced through the muscarinic M1 and the metabotropic glutamate subtype 1alpha receptors was dependent on Gq/G11 proteins. The activation of the Gq/G11-coupled endothelin ETB and angiotensin AT1A receptors failed to induce stress fiber formation. Lysophosphatidic acid, B2, and 5-HT2C receptor-mediated stress fiber formation was dependent on Galpha13 and involved epidermal growth factor (EGF) receptors, whereas thrombin, ETA, and V1A receptors induced stress fiber accumulation via Galpha12 in an EGF receptor-independent manner. Our data demonstrate that many Gq/G11-coupled receptors induce stress fiber assembly in the absence of Galphaq and Galpha11 and that this involves either a Galpha12 or a Galpha13/EGF receptor-mediated pathway.  相似文献   

18.
The coordinated cross-talk from heterotrimeric G proteins to Rho GTPases is essential during a variety of physiological processes. Emerging data suggest that members of the Galpha(12/13) and Galpha(q/11) families of heterotrimeric G proteins signal downstream to RhoA via distinct pathways. Although studies have elucidated mechanisms governing Galpha(12/13)-mediated RhoA activation, proteins that functionally couple Galpha(q/11) to RhoA activation have remained elusive. Recently, the Dbl-family guanine nucleotide exchange factor (GEF) p63RhoGEF/GEFT has been described as a novel mediator of Galpha(q/11) signaling to RhoA based on its ability to synergize with Galpha(q/11) resulting in enhanced RhoA signaling in cells. We have used biochemical/biophysical approaches with purified protein components to better understand the mechanism by which activated Galpha(q) directly engages and stimulates p63RhoGEF. Basally, p63RhoGEF is autoinhibited by the Dbl homology (DH)-associated pleckstrin homology (PH) domain; activated Galpha(q) relieves this autoinhibition by interacting with a highly conserved C-terminal extension of the PH domain. This unique extension is conserved in the related Dbl-family members Trio and Kalirin and we show that the C-terminal Rho-specific DH-PH cassette of Trio is similarly activated by Galpha(q).  相似文献   

19.
Galpha(12), the alpha-subunit of the G12 family of heterotrimeric G proteins is involved in the regulation of cell proliferation and neoplastic transformation. GTPase-deficient, constitutively activated mutant of Galpha(12) (Galpha(12)Q229L or Galpha(12)QL) has been previously shown to induce oncogenic transformation of NIH3T3 cells promoting serum- and anchorage-independent growth. Reduced growth-factor dependent, autonomous cell growth forms a critical defining point at which a normal cell turns into an oncogenic one. To identify the underlying mechanism involved in such growth-factor/serum independent growth of Galpha(12)QL-transformed NIH3T3, we carried out a two-dimensional differential proteome analysis of Galpha(12)QL-transformed NIH3T3 cells and cells expressing vector control. This analysis revealed a total of 22 protein-spots whose expression was altered by more than 3-folds. Two of these spots were identified by MALDI-MS analysis as proliferating cell nuclear antigen (PCNA) and myeloid-leukemia-associated SET protein. The increased expressions of these proteins in Galpha(12)QL cells were validated by immunoblot analysis. Furthermore, transient transfection studies with NIH3T3 cells indicated that the expression of activated Galpha(12) readily increased the expression of SET protein by 24 h. As SET has been previously reported to be an inhibitor of phosphatase PP2A, the nuclear phosphatase activity was monitored in cells expressing activated Galpha(12). Our results indicate that the nuclear phosphatase activity is inhibited by greater than 50% in Galpha(12)QL cells compared to vector control cells. Thus, our results from differential proteome analysis presented here report for the first time a role for SET in Galpha(12)-mediated signaling pathways and a role for Galpha(12) in the regulation of the leukemia-associated SET-protein expression.  相似文献   

20.
Regulation of cell polarity is a process observed in all cells. During directed migration, cells orientate their microtubule cytoskeleton and the microtubule-organizing-center (MTOC), which involves integrins and downstream Cdc42 and glycogen synthase kinase-3beta activity. However, the contribution of G protein-coupled receptor signal transduction for MTOC polarity is less well understood. Here, we report that the heterotrimeric Galpha(12) and Galpha(13) proteins are necessary for MTOC polarity and microtubule dynamics based on studies using Galpha(12/13)-deficient mouse embryonic fibroblasts. Cell polarization involves the Galpha(12/13)-interacting leukemia-associated RhoGEF (LARG) and the actin-nucleating diaphanous formin mDia1. Interestingly, LARG associates with pericentrin and localizes to the MTOC and along microtubule tracks. We propose that Galpha(12/13) proteins exert essential functions linking extracellular signals to microtubule dynamics and cell polarity via RhoGEF and formin activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号